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Aesthetic responses to visual art comprise multiple types of experiences, from sensation
and perception to emotion and self-reflection. Moreover, aesthetic experience is highly
individual, with observers varying significantly in their responses to the same artwork.
Combining fMRI and behavioral analysis of individual differences in aesthetic response, we
identify two distinct patterns of neural activity exhibited by different sub-networks. Activity
increased linearly with observers’ ratings (4-level scale) in sensory (occipito-temporal)
regions. Activity in the striatum (STR) also varied linearly with ratings, with below-baseline
activations for low-rated artworks. In contrast, a network of frontal regions showed a
step-like increase only for the most moving artworks (“4" ratings) and non-differential
activity for all others. This included several regions belonging to the “default mode
network” (DMN) previously associated with self-referential mentation. Our results
suggest that aesthetic experience involves the integration of sensory and emotional
reactions in a manner linked with their personal relevance.
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INTRODUCTION

Human beings in every culture seek out a variety of experiences
which are classified as “aesthetic”—activities linked to the per-
ception of external objects, but not to any apparent functional
use these objects might have. Looking at paintings, listening to
music, or reading poems—these are hedonic experiences in which
humans consistently choose to engage. And although the relevant
objects in and of themselves have no immediate or direct value for
survival or for the satisfaction of basic needs (food, shelter, repro-
duction), they nevertheless accrue great value within human cul-
ture. What are the neural underpinnings of aesthetically moving
experience?

Although the foundation of aesthetic inquiry as a formal schol-
arly discipline is relatively recent—the philosopher Alexander
Baumgarten introduced the modern use of the term in 1739—
musings about the nature of “beauty” date back at least as early
as Plato (Plato, 1989) and Confucius, and evidence exists of
well-developed artistic traditions in most of the world’s ancient
cultures (e.g., China, India, Egypt, Mesopotamia, Persia). But it
is only recently that it has become possible to investigate the
physiological bases of aesthetic experience. Recent neuroimag-
ing studies have identified several brain regions whose activation
correlates with a variety of aesthetic experiences—namely loca-
tions in the anterior medial prefrontal cortex (aMPFC) and
the caudate/striatum, with several additional regions detected in
some studies but not others (Blood and Zatorre, 2001; Cela-
Conde et al., 2004; Kawabata and Zeki, 2004; Vartanian and
Goel, 2004; Jacobsen et al., 2006; Di Dio and Gallese, 2009; Kirk
et al., 2009; Ishizu and Zeki, 2011; Lacey et al., 2011; Salimpoor
et al., 2011). These findings form the initial basis for the field of

neuroaesthetics, but key questions remain. In this study we exam-
ined more closely issues surrounding the intensity and diversity of
aesthetic responses.

A major theme in philosophical inquiry into aesthetic expe-
rience is a tension between universality and subjectivity. On one
hand, many authors have argued that aesthetic evaluations rely
on universal principles. On the other, philosophical inquiry also
emphasized the importance of understanding aesthetic responses
as strongly subjective. These two views are not, in principle,
mutually exclusive: subjective judgment may lead to aesthetic
evaluations that are so consistent across individuals as to be
termed universal. Indeed, the notion of universal aesthetics relies
on the observation of wide agreement among people about the
aesthetic value of certain objects or classes of objects (e.g., flow-
ers; Scarry, 1999). Yet aesthetic judgments are not only subjective
but also highly susceptible to cultural norms, education, and
exposure. Thus, while there may be certain items that com-
mand consensus in their evaluations, for the majority of artifacts
judgments can vary widely.

This variation in aesthetic judgments can be used to isolate the
neural dimensions of aesthetic responses as opposed to reactions
to particular features of a given work of art (e.g., Kawabata and
Zeki, 2004; Salimpoor et al., 2011). To date, most studies have
used stimuli that generated wide agreement. Putative subjective
aspects of an experience were potentially confounded with differ-
ences in the stimuli themselves. Another fundamental problem is
that using stimuli on whose aesthetic value people tend to agree
necessarily gives more weight to common internal factors—be
they driven by culture or by evolution—and leaves little room
for truly individual aspects of subjective aesthetic experience
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to emerge. We solved this by using stimuli for which people
expressed strongly individual preferences. These large individual
differences enable us to use the diversity of visual artwork to parse
out the different components of aesthetic experience.

To allow for these individual preferences to emerge, an impor-
tant guiding principle in the choice of our stimulus set was that it
should span a variety of styles and periods (see Figure 1). One way
in which diverse stimuli may lead to individual differences is that
they invoke a variety of emotions—an aesthetic response includes
evaluations that can vary in valence and degree of arousal, from
“preference” and “pleasure” to “beauty,” “sadness,” “awe,” or
“sublimity” (Frijda and Sundararajan, 2007; Zentner et al., 2008).
Therefore, our instructions to observers explicitly acknowledged
that strongly moving aesthetic experiences may come in a variety
of forms, not merely beauty and preference. With this paradigm,
we find large individual differences in which of the artworks
observers find aesthetically moving: on average, each image that
was highly recommended by one observer was given a low rec-
ommendation by another. Therefore, any BOLD effects found in
a contrast of high vs. low recommendation reflect differences in
aesthetic reaction, not stimulus features.

Differences in subjective experience may arise not only from
differences in the emotions that a given artwork evokes but
also from how different individuals weigh these emotions. To
examine this, observers also responded to a nine-item question-
naire addressing evaluative and emotional components of their
aesthetic experience for each artwork.

We find that brain regions differentially activated by art-
works given high and low aesthetic recommendations can be
classified into two distinct sets by virtue of the pattern of their
response. BOLD activation varied linearly with observers’ rat-
ings in several sensory (occipito-temporal) regions. Activity in
the striatum (STR) and pontine reticular formation (PRF) also
varied linearly with ratings but straddled their resting base-
line, exhibiting below-baseline activations for low-rated art-
works. In contrast, a separate network of frontal and subcortical
regions showed a step-like increase only for the most mov-
ing artworks (“4” ratings) and non-differential activity for all
others. This included several regions belonging to the “default
mode network” (DMN) previously associated with self-referential
mentation, such as the anterior aMPFC. Within these net-
works, we observed sensitivity to positive and negative emo-
tional aspects of aesthetic experience, and evidence for individ-
ual differences correlated with personal differences in aesthetic
evaluation.

MATERIALS AND METHODS

OBSERVERS

Sixteen observers were recruited at New York University (11 male;
13 right-handed; 27.6 & 7.7 years) and paid for their participa-
tion. All had normal or corrected to normal vision. Informed
consent was obtained from all participants, in accordance with the
New York University Committee on Activities Involving Human
Subjects.

FIGURE 1 | Examples of the artworks used in this experiment. All images were obtained from the Catalog of Art Museum Images Online (CAMIO)
database (http://www.oclc.org/camio). See List of artworks for image credits and the full list of artworks used in the experiment.
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STIMULI

One hundred and nine images were selected from the Catalog
of Art Museum Images Online database (CAMIO: http://www.
oclc.org/camio; Figurel and List of Artworks). CAMIO con-
tains more than 90,000 images of textiles, paintings, architecture,
and sculpture from museum collections around the world. The
works of art came from a variety of cultural traditions (American,
European, Indian, and Japanese) and from a variety of histori-
cal periods (from the 15th century to the recent past). Images
were representational and abstract, and could be roughly classi-
fied as either female figure(s) (33), male figure(s) (23), a mixed
group (20), still life (11), landscape (14), or abstract paint-
ing (8). These classifications did not show significant effects on
responses.

Commonly reproduced images were not used, in order to min-
imize recognition. Most observers recognized no images, and no
observer recognized more than a very few (3-5) stimulus images
as reported by survey responses.

Images were scaled such that the largest dimension did not
exceed 20° of visual angle, and the area did not exceed 75% of
a 20° box. Stimulus presentation and response collection were
controlled using a Macintosh G4 running Matlab 6.5 and the
Psychophysics Toolbox (Brainard, 1997).

PROCEDURE

Observers were told they would be viewing a set of artworks while
lying in the scanner. They were to use a scale of 1-4 by pressing a
button on a hand-held response box to answer the question “how
strongly does this painting move you?” according to the following
instructions:

Imagine that the images you see are of paintings that may be
acquired by a museum of fine art. The curator needs to know
which paintings are the most aesthetically pleasing based on how
strongly you as an individual respond to them. Your job is to
give your gut-level response, based on how much you find the
painting beautiful, compelling, or powerful. Note: The paintings
may cover the entire range from “beautiful” to “strange” or even
“ugly.” Respond on the basis of how much this image “moves” you.
What is most important is for you to indicate what works you find
powerful, pleasing, or profound.

Each observer viewed all 109 artworks; the order was counterbal-
anced across observers to control for possible serial order effects.
Observers were instructed prior to entering the magnet and given
practice trials using artworks not in the stimulus set.

Nine-item evaluative questionnaire

After the fMRI session, observers were given a short break, and
were then taken to a behavioral lab where they sat in front of
a computer screen to complete a nine-item questionnaire. They
were shown the same set of paintings in the same order as in the
scanner. Each painting was shown for 6 s. Observers were asked to
rate the intensity with which each artwork evoked the following
evaluative/emotional responses: joy, pleasure, sadness, confusion,
awe, fear, disgust, beauty, and the sublime. Responses to this nine-
item questionnaire were given using mouse clicks on a visual
seven-point scale for each item. These items were presented in

random order on each trial. Observers could respond to the nine
items in any order, but could not change ratings.

Observers ranged from those with novice-level experience of
art and art history to several having completed some undergrad-
uate study in the history of art (evaluated using a survey at the
time of the experiment). Before entering the scanner, observers
were also administered the Positive and Negative Affect Schedule
(PANAS; Watson et al., 1988). PANAS is a highly stable and inter-
nally consistent metric for dispositional affect (mood), used to
determine how frequently an observer experiences positive and
negative affect in a defined time period. Observers in this study
were asked to answer questions with regard to the immediately
preceding few days.

fMRI SCANNING PROCEDURES

fMRI scans were carried out at New York University’s Center for
Brain Imaging, using a 3-T Siemens Allegra scanner and a Nova
Medical Head coil (NMO11 head transmit coil). Artworks were
projected onto a screen in the bore of the magnet and viewed
through a mirror mounted on the head coil.

The 109 artworks were divided into four sets (different subsets
per observer, depending on order) and shown over the course of
four functional scans using a slow event-related design. During
these functional scans, the blood oxygen level dependent (BOLD)
signal was measured from the entire brain using thirty-six 3 mm
slices aligned approximately parallel to the AC-PC plane (in plane
resolution 3 x 3mm, TR = 2, TE = 30ms, FA = 80°). Each
trial began with a 1s blank period then a blinking fixation point
for 1s, followed by the artwork for 6, and a blank screen for
4s, during which the observer pressed a key corresponding to
recommendation. An additional 0, 2, or 4s blank interval was
inserted pseudorandomly between trials to jitter trial timing, with
an average trial length of 13.14s.

Observers were also run in a localizer scan containing blocks
of objects, scrambled objects, faces, and places. This 320s scan
consisted of four 18 s blocks of each stimulus type, during which
the observer performed a “1-back” task (where observers monitor
for exact repeats of an image). Each block contained 16 stimulus
images plus two repeats, each presented for 800 ms with a 200 ms
inter-stimulus-interval. The full-color images were placed on top
of phase-scrambled versions of the same stimuli filling a 500 x
500 pixel square to control for differences in size across stimulus
categories.

A high resolution (I mm?) anatomical volume (MPRage
sequence) was obtained after the functional scans for registration
and spatial normalization.

BEHAVIORAL DATA ANALYSIS

For the observers’ recommendations collected during the scan-
ning session, a measure of agreement across individuals was com-
puted by taking the set of 109 recommendations for every pair
of observers and computing the Pearson correlation coefficient.
Images with any missing recommendation values were excluded
from the correlations in a pairwise manner. One observer gave no
“4” recommendations, and was, therefore, excluded from subse-
quent analyses relying on the contrast of “4” vs. “1” responses.
Similarly, a measure of across-observer agreement was computed
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for each item of the nine-item questionnaire collected after the
scanning session. For each item, the Pearson correlation coeffi-
cient was computed for each pair of observers.

Factor analysis of evaluative questionnaire

The responses on the nine-item questionnaire produced by each
observer to each artwork (16 x 109 = 1744 trials total) were then
converted to z-scores within observers and concatenated into a
single large matrix of scores. Principal components extraction was
used to identify factors with eigenvalues greater than one. Two
emotional/evaluative factors survived and were rotated using the
“direct oblmin” method, which does not require that the factors
be orthogonal. Scores on these two factors were computed for
each of the 1744 trials using regression (see Figure 7).

fMRI DATA ANALYSIS

The scans were pre-processed using the FMRIB Software Library
(FSL; Oxford, UK) to correct for slice-timing and motion,
and were high-pass filtered at 0.0125Hz. Subsequent analy-
ses were performed using BrainVoyager QX (Brain Innovation,
Maastricht, Netherlands). After alignment to observer-specific
high-resolution anatomical images, the scans were normalized to
Talairach space (Talairach and Tournoux, 1988), blurred with an
8 mm Gaussian kernel, and converted to z-scores.

4-vs.-1 whole brain analysis

To identify regions sensitive to observer recommendation, a
whole-brain random effects group-level general linear model
(GLM) analysis was computed with the responses of each
observer on each of the four possible recommendation levels
coded as separate regressors (as a 6s “on” period for each image
convolved with a standard two-gamma hemodynamic response
function, HRF). A contrast of the “4” regressors vs. the “1” regres-
sors was computed and the resulting statistical map was corrected
for multiple comparisons at a false discovery rate (FDR) of q <
0.05 (Benjamini and Hochberg, 1995; Genovese et al., 2002) and a
cluster threshold of 53 mm? voxels. This contrast will be referred
to as the 4-vs.-1 whole-brain analysis (see Appendix Table A1 and
Figures 3-5).

ROI analysis

In order to compare BOLD activation for all four recommenda-
tion levels across these regions, the group-level clusters from the
4-vs.-1 analysis were used to draw regions-of-interest (ROIs) from
which we extracted timeseries for each observer. Using the aver-
age (over voxels in the ROI) of non-blurred, z-scored timeseries
for each scan, individual observer parameter estimates for each of
the four recommendation levels were obtained using a GLM with
a standard two-gamma HRF convolved with a 6s “on” period
for each image (see Figures 3—5). Standard errors were computed
across observers.

4-vs.-321 whole brain analysis

To further isolate processes particular to aesthetic response, we
computed a second whole-brain contrast relying on the same
whole-brain GLM as above, but with a new contrast of only the
“4” recommendations vs. the average of all the other recommen-
dation levels, balanced to add to zero [e.g., a linear contrast of

(=1 —1 —1 3) for the 1, 2, 3, and 4 regressors]. The same statisti-
cal threshold was used to correct for multiple comparisons — FDR
of g < 0.05and a 53 mm? cluster threshold. This contrast will be
referred to as the 4-vs.-321 whole-brain analysis (see Figure 6).
Note that this contrast may lead to the discovery of new activa-
tions not found in the original 4-vs.-1 analysis. Given the widely
extended and interconnected nature of the resulting whole-brain
map, we do not report the full set of activation coordinates—most
of the peak activations were coincident with regions reported
for the 4-vs.-1 contrast. Group-level ROIs were isolated for four
prominent activations not found in the 4-vs.-1 contrast: the ante-
rior medial pre-frontal cortex (aMPFC), the left hippocampus
(HC), left substantia nigra (SN), and the left posterior cingulate
cortex (PCC). It was not possible to draw an isolated ROI for the
aMPFC from this contrast given the large swath of activation—
we, therefore, drew a more restricted ROI for the aMPFC based on
the 4-vs.-1 whole-brain contrast, but with a statistical threshold of
p < 0.001.

ROI analysis of evaluative factors

The trial-by-trial scores for the two factors extracted from the
principal components factor analysis of the nine-item evaluative
questionnaire were used to create BOLD predictors by convolv-
ing with a standard 2 gamma HRF with a length of 1 TR (2)
and a delay of 1 TR relative to image onset. This middle TR
was chosen as a compromise given our uncertainty about when,
during a 65 viewing, an observer was able to integrate enough
information across successive fixations of an artwork to generate
an affective response. The resulting timecourses were combined
with an “Image On” predictor and orthonormalized using the
Gram-Schmidt process before being entered into a GLM predict-
ing BOLD activation in each of the ROI’s identified in the whole
brain analysis (see Figure 7).

Individual differences analysis of evaluative questionnaire

We performed an analysis of individual differences in responses
to the nine-item evaluative questionnaire and their relationship
to BOLD activation. Each observer’s recommendations and their
subsequent responses on the nine items were converted to z-
scores, and then concatenated into a single large matrix (16
observers x 109 images = 1744 rows). We performed a step-
wise regression analysis in SPSS (IBM, Somers, NY) of observers’
recommendations against their responses to the nine items to
eliminate redundant terms or terms which had no significant
predictive power for recommendations. Individual standardized
beta weights were then computed for how well each of the items
surviving this procedure predicted recommendations, entered
in order from most-to-least predictive at the group level (see
Appendix Table A2). The resulting beta weights, which can be
conceptualized as reflecting the weight an observer places on a
particular emotion/evaluation when making recommendations,
were used to predict the size (across observers) of the 4-vs.-1
BOLD effect in the set of ROIs identified in the whole-brain
recommendation-based analysis. This yielded an overall R? for
each ROI and beta weights for each of the items with associated
confidence intervals. A significant effect in this analysis would
indicate that variability across observers in the size of the BOLD
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effect in an ROI is related to variability in how much individual
observers weigh a particular emotion/evaluation when making
recommendations (see Figure 8).

RESULTS

There was very low agreement in recommendations across
observers, as assessed by computing the correlations between
observers’ recommendations taken in pairs (Figure 2). The aver-
age agreement (0.13 £ 0.17) indicates quite low agreement for
visual art compared to other kinds of stimuli (e.g., Vessel and
Rubin, 2010). (The mean of this distribution is significantly
different from zero by a t-test, t[119] = 8.72, p < 10~!3, but
Cronbach’s alpha, a measure of inter-rater reliability, confirms the
very low agreement, o = 0.709; Cronbach, 1951). This finding
has an important methodological consequence: on average, each
image highly recommended by one observer was given a low rec-
ommendation by another. Therefore, any BOLD effects found in
a contrast of high vs. low recommendation reflect differences in
aesthetic reaction, not features of the images.

A whole-brain group contrast of trials in which an observer
gave an image the highest recommendation (“4”) vs. trials in
which the image was given the lowest recommendation (“17)
revealed a set of posterior, anterior, and subcortical brain regions
that were correlated with observers’ aesthetic recommendations
(Appendix Table A1; see “Materials and Methods, 4-vs.-1 Whole
brain analysis”). Below, we describe further the responses of these
regions, grouped by the nature of the response. The groupings
were based on an analysis beyond that which produced Table A1
(4-vs.-1)—specifically, the pattern of responses across all four
recommendation levels (see below). To examine those patterns,
individual regions of interest (ROIs) were created based on the
4-vs.-1 whole-brain contrast, and the average timecourses were
analyzed to estimate the response to each of the four response
levels (see “Materials and Methods, ROI analysis”).

In posterior (occipito-temporal) ROIs, there was a linear rela-
tionship between recommendation level and BOLD response

2571 |
| 1 Average:
| 0.13+0.17
e 20y I
3 !
« 15t |
o I
2 ol
1S |
2 I
5t |
I
0 Ll «
-1 -0.5 0 0.5 1

Pairwise Across-Observer Correlation (r)

FIGURE 2 | The distribution of pairwise correlations across observers’
recommendations, illustrating highly individual responses. Each
observer's recommendations were correlated with every other observer’s
recommendations, taken in pairs. This histogram shows the distribution of
all the correlation coefficients.

(Figure 3; left inferior temporal sulcus, ITS: —49, —61, —2; left
parahippocampal cortex, PHC: —31, —32, —15; right superior
temporal gyrus, STG: 52, —10, 7). In left ITS and left PHC BOLD
response increased in an approximately linear fashion above rest-
ing baseline for increasing recommendations. Similarly, BOLD
signal in right STG decreased in an approximately linear fashion
below resting baseline for decreasing aesthetic reactions.

In two subcortical regions, the left striatum (STR) and the
pontine reticular formation (PRF), there was also a linear rela-
tionship between recommendation and BOLD activation. But in
contrast to occipito-temporal ROIs, BOLD response levels strad-
dled the resting baseline (Figure 4; STR: —12, 10, 6; PRF: 0, —28,
—17). Thus, highly-rated images led to activation greater than
baseline and low-rated images led to decreases from the resting
baseline.

In contrast with the linear relation between recommenda-
tion and BOLD response observed in the occipito-temporal and
subcortical regions above, frontal ROIs identified in the 4-vs.-1
contrast (Appendix Table A1) revealed a markedly different pat-
tern of responses. In the left inferior frontal gyrus, pars trian-
gularis (IFGt), left lateral orbitofrontal cortex (LOFC), and left
superior frontal gyrus (SFG) there was a non-linear, “step-like”
pattern relating aesthetic recommendation and BOLD response
(Figure 5). Activation in left IFGt (—50, 32, 12) and left LOFC
(—35, 24, —4) was near baseline for artworks given a 1, 2, or 3
recommendation, but was strikingly higher for artworks given a

_]_

-0.6

rSTG

al 73 4
| High

-8.0 -4.89 8.0 4.89 Recommendation

FIGURE 3 | Posterior occipito-temporal regions of cortex show linear
deflections from baseline with increasing recommendation. The
whole-brain images illustrate the t-statistic for the 4-vs.-1 contrast. Panels
on the right illustrate the average beta weight (as a z-score) for each
recommendation level, averaged across 15 observers (/ITS = left
inferotemporal sulcus; /PHC = left parahippocampal cortex; rSTG = right
superior temporal gyrus). Error bars are standard errors of the mean across
observers.
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FIGURE 4 | Two subcortical regions show linear deflections centered
around their resting baseline. The whole-brain images illustrate the
t-statistic for the 4-vs.-1 contrast. Panels on the right illustrate the average
beta weight (as a z-score) for each recommendation level, averaged across
15 observers (STR = left striatum; PRF = pontine reticular formation). Error
bars are standard errors of the mean across observers.

4, the highest recommendation (Figure 5; right-middle panels).
The left SFG (-5, 19, 62) also showed this non-linear, step-like
pattern, though shifted downward such that artworks rated 1,2, or
3 were significantly below baseline and only artworks rated 4 were
at baseline (Figure 5, top panel). Similarly, activation in the left
mediodorsal thalamus (mdThal: —6, —18, 12), which is heavily
bidirectionally connected to the prefrontal cortex (Tobias, 1975;
Tanaka, 1976; Behrens et al., 2003) showed a non-linear pattern
of BOLD response with little differentiation for artworks given
recommendations of 1, 2, or 3, but a much higher response for
artworks given a 4 (Figure 5, bottom right).

HIGHLY MOVING IMAGES ENGAGE THE DEFAULT-MODE

NETWORK AND RECRUIT ADDITIONAL NEURAL SYSTEMS

The strikingly higher response of frontal regions for artworks
rated as the most aesthetically pleasing over all other artworks
lends initial support to the hypothesis that a “4” recommen-
dation was fundamentally different from a 1,2, or 3, and that
these trials were not just revealing “more” activation in a gen-
eral network sub-serving preferences, but that they reflected the
engagement of an additional process. To test this hypothesis fur-
ther, we calculated a second whole-brain contrast between just the
trials resulting in a rating of 4 and the average of all other trials
(ratings of 1, 2, or 3; see “Materials and Methods, 4-vs.-321 Whole
brain analysis”). This new analysis gave us more power to detect
regions showing a difference for trials rated as 4 but that may not
have been detected in the 4-vs.-1 contrast.

This 4-vs.-321 contrast revealed a large swath of activation on
the medial surface of the left hemisphere, extending from the
anterior medial prefrontal cortex (aMPFC: —6 38 4) to the SFG
activation seen in the 4-vs.-1 contrast (Figure 6 top left). The
aMPFC is known to be a core region of the DMN; (Shulman
et al., 1997; Mazoyer et al., 2001; Raichle et al., 2001), and, as
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FIGURE 5 | Anterior frontal regions and an associated region of the
thalamus show non-linear, “step-like” responses to increasing
recommendation. The whole-brain images illustrate the t-statistic for the
4-vs.-1 contrast. Panels on the right illustrate the average beta weight (as a
z-score) for each recommendation level, averaged across 15 observers
(ISFG = left superior frontal gyrus; /IFGt = left inferior frontal gyrus, pars
triangularis; ILOFC = left lateral orbitofrontal cortex; ImdThal = left
mediodorsal thalamus). Error bars are standard errors of the mean across
observers.

expected, inspection of the response to all four recommendation
levels in this region shows a decrease in activation below base-
line for presentation of most images (those rated a 1, 2, or 3).
In contrast, those artworks rated as the most aesthetically moving
(recommendation of 4) lead to BOLD activation at aMPFC’s rest-
ing baseline (Figure 6 top right). In other words, activation in the
aMPFC for highly moving artworks is not suppressed, as it is for
most artworks and most other types of external stimuli. The left
posterior cingulate cortex (PCC: —9 —49 18) another core region
of the DMN, showed a similar, though less striking, pattern of
activation (Figure 6, middle right).

In addition to the aMPFC and PCC, the 4-vs.-321 contrast also
revealed several subcortical regions showing significantly higher
activation for only the highest rated artworks. The left substantia
nigra (SN: —8, —12, —6) and the left hippocampus (HC: —30
—21 —10; Figure 6 bottom panel) were not differentially acti-
vated by trials rated as 1, 2, or 3, but did show significantly greater
activation for trials that resulted in recommendations of 4.

Frontiers in Human Neuroscience

www.frontiersin.org

April 2012 | Volume 6 | Article 66 | 6


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Vessel et al.

The brain on art

0-2(aMPFC
0 }
0.2
-04—F_|_7L
ol 2 3 \_74[
N .04
3 . =
@ 0.glPCC
e I
& 0475y
o
<
n 0.2
3 el
o
J e
1 2 3 4
0.65¢
0.4
q(FDR) < 0.050 0.2 m
oy [
-8.0 -3.738.0 3.73 1.2 3 4
t(14) Low High
Recommendation

FIGURE 6 | The default mode network and several subcortical regions
show increased activation for only the most aesthetically pleasing
images. The whole-brain images illustrate the t-statistic for the 4-vs.-321
contrast. Panels on the right illustrate the average beta weight (as a
z-score) for each recommendation level, averaged across 15 observers
(laMPFC = left anterior medial prefrontal cortex; /IPCC = left posterior
cingulate cortex; /SN = left substantia nigra; /HC = left hippocampus). Error
bars are standard errors of the mean across observers.

It is important to note that the differential response across the
4 recommendation levels cannot simply reflect response selec-
tion, as observers are selecting a response on every trial. It is also
unlikely that the BOLD effects reflect an implicit mapping of a
four response to a “yes” response, and not to aesthetic experience
per se. If this were the case, one might expect to see faster response
times on those trials. However, when we analyzed observer’s mean
response times for trials of each recommendation level sepa-
rately, we saw no such effect [one-way ANOVA with subjects as
a random effect; F(3, 56) = 0.44, p = 0.73].

SEPARABLE BOLD RESPONSES TO POSITIVE AND NEGATIVE

ASPECTS OF AESTHETIC EVALUATION

Aesthetic experiences can invoke a wide variety of evaluative and
emotional responses. Following the fMRI session, observers saw
each artwork a second time and rated the degree to which it
brought about a specific response on a nine-item questionnaire
of evaluative terms (see “Materials and Methods, Nine-item eval-
uative questionnaire”): pleasure, fear, disgust, sadness, confusion,
awe, joy, sublime, and beauty.

Evaluative reactions to individual paintings were not consis-
tent across individual observers (average across observer correla-
tions of 0.13, 0.49, 0.29, 0.38, 0.32, 0.30, 0.16, 0.17, and 0.17 for
each term respectively; standard deviations ranging from 0.10 to
0.20). The range of agreement on these items illustrates that some
of the variability in recommendations across observers was at least
partly driven by different feelings being evoked by each painting
(e.g., low agreement for ratings of pleasure), but was also because
different people place different weights on those feelings (such as
fear).

This variability at two stages—both in the mapping between
artworks and feelings they evoke, and in mapping between evoked
feelings and aesthetic recommendation—precludes any meaning-
ful direct relationship (at the group level) between ratings of these
nine items and activation in the set of brain regions revealed
by the 4-vs.-1 and 4-vs.-321 whole-brain group analyses. One
approach to understanding these subjective evaluative responses
is to test whether there exists a reduced set of latent factors
that are common across observers and can explain a significant
proportion of the variance in responses.

A principal components factor analysis identified two group-
level factors that together accounted for 59% of the variance in
observers’ ratings on the evaluative questionnaire (Figure7A)
Factor 1: eigenvalue of 3.045, accounting for 33.8% of variance;
Factor 2: eigenvalue of 2.269, accounting for 25.2% of variance
(see “Materials and Methods, Factor analysis of evaluative ques-
tionnaire”). Factor 1 loaded very highly on pleasure, beauty, and
other positive questionnaire items, while Factor 2 loaded very
highly on fear, disgust, and sadness (Figure 7B). Scores on these
factors were computed for each observer looking at each image
and used to re-analyze the BOLD timeseries from the previously
identified set of ROIs (see “Materials and Methods, ROI analysis
of evaluative factors”).

BOLD signal in the SN was sensitive to the “positive” evalua-
tive factor (Figure 7C). Positive scores on Factor 1 were associated
with higher BOLD signal in left SN [1-tailed #(15) = 2.15, p =
0.024]. Left STR and left SFG also showed a trend toward sen-
sitivity to Factor 1 [1-tailed #(15) = 1.13, p = 0.14 and 1-tailed
t(15) = 1.16, p = 0.13, respectively].

The STR was also sensitive to the “negative” factor, as was the
left IFGt (Figure 7C). Positive scores on Factor 2 were associated
with higher BOLD signal in left STR [1-tailed #(15) = 2.68,
p=0.0086] and left IFGt [1-tailed #(15) = 2.16, p = 0.024].
Additionally, the left aMPFC was weakly sensitive to Factor
2, approaching significance [1-tailed #(15) = 1.66, p = 0.059].
None of the posterior occipito-temporal regions were sensitive to
either factor.

BOLD EFFECTS IN THE PRF AND LEFT ITS REFLECT INDIVIDUAL
WEIGHTS ON EVALUATIVE RESPONSES

Evaluative responses across observers were highly individual (see
above). Individuals may rely on different evaluative and emo-
tional responses when making their aesthetic recommendations.
A regression analysis on each individual’s set of responses was
used to determine what weights would need to be assigned to each
of these items in order to predict each observer’s recommenda-
tion for each artwork (see “Materials and Methods, Individual
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two clusters. (C) BOLD predictors constructed from factor scores reveal
ROls that respond to image onset or either factor. Responsivity to Factor 1 is
significant in /SN and approaches significance in /ISTR and /ISFG.

Responsivity to Factor 2 is significant in /STR, /IFG and approaches
significance in laMPFC. Error bars are standard errors of the mean, computed
across observers.

differences analysis of evaluative questionnaire”). Three of the
items could be removed without significantly affecting the pre-
dictability of the set: joy, confusion, and the sublime.

Across observers, different subsets of the remaining evaluative
terms were effective in predicting individual recommendations
(Appendix Table A2). For example, some observers tended to
recommend images that they reported as awe inspiring, while
other observers did not show a significant relationship between
awe and recommendation, but did show a relationship between
images that evoked fear and their recommendations of those
images.

These individual profiles of evaluative weightings were corre-
lated with the magnitude of observed 4-vs.-1 BOLD effects in two
ROIs, the PRF and left ITS (Figure 8). Individualized weights on
the remaining six evaluative terms were able to account for a large
proportion of across observer variability in the PRF and left ITS
4-vs.-1 BOLD effect sizes (R*> = 0.70 and 0.62, respectively).

Observers who tended to recommend images they found to be
awe-inspiring showed a larger effect of recommendation in the
PRE, a part of the reticular activating system [Figure 8A; beta =
1.22 £ 0.98, #(8) = 2.88, p = 0.021]. No other evaluative term
reached significance in the PRE.

In the left ITS, observers’ weights for pleasure were signif-
icantly related to the BOLD effect [Figure 8B; beta = 1.72 £
1.34, t(8) = 2.96, p = 0.018]. This relationship suggests that left
ITS may at least partially mediate the relationship between rated
pleasure for an artwork and aesthetic recommendation. No other
evaluative term reached significance in the left ITS.
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FIGURE 8 | Individual differences in the importance of different
evaluations when making aesthetic recommendations are correlated
with the size of the BOLD effect in 2 ROls. (A) Observers for whom
“awe" is an important predictor of aesthetic recommendation show a
larger 4-vs.-1 BOLD effect size in PRF [R% = 0.70; awe beta weight = 1.22,
t(8) = 2.88, p = 0.021]. (B) Observers for whom “pleasure” is an
important predictor of aesthetic recommendation show a larger 4-vs.-1
BOLD effect size in left ITS [R? = 0.62; pleasure beta weight 1.72,

t(8) = 2.96, p=0.018].

CONTROL ANALYSIS

Regions that respond to specific stimulus types (faces or places)
showed no effect of recommendation [One-Way ANOVA, left FFA
F(3, 44) = 0.21, p = 0.89; right FFA F(3, 44) = 0.08, p = 0.97;
left CoS F(3,52) = 0.20, p = 0.89; right CoS F(3,52) = 0.20,
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p = 0.90]. These regions were identified using an independent
localizer scan. We were able to identify a face-responsive region
in the posterior fusiform gyrus (FFA) in 12 of the observers (Puce
et al., 1995; Kanwisher et al., 1997; McCarthy et al., 1997) and
a place-responsive region in the collateral sulcus (CoS) in 14 of
the observers (Epstein and Kanwisher, 1998; Epstein et al., 1999).
This finding rules out the possibility that the linear effects of rec-
ommendation observed in PHC, STG, or ITS depend on stimulus
differences.

DISCUSSION

Aesthetic judgments for paintings are highly individual, in that
the paintings experienced as moving differ widely across people.
The neural systems supporting aesthetic reactions, however, are
largely conserved from person to person, with the most moving
artworks leading to a selective activation of central nodes of the
DMN (namely, the aMPFC, but also the PCC and HC) thought
to support personally relevant mentation (see below). The most
moving artworks also activate a number of other frontal and sub-
cortical regions, including several which reflect the evaluative and
emotional dimensions of aesthetic experiences. A separate net-
work of posterior and subcortical regions show a graded (linear)
response signature to all artworks in proportion to an observer’s
aesthetic judgment. Finally, two regions (PRF and left ITS), show
differences in activation level across individuals that are correlated
with whether the individual finds certain aspects of a painting
(e.g., awe) appealing.

ENGAGEMENT OF THE DEFAULT MODE NETWORK DURING THE

MOST AESTHETICALLY MOVING EXPERIENCES

The aMPFC shows decreases in activation from its resting base-
line for all images except those rated as most aesthetically moving.
Previous studies have reported that activation in this region is
positively correlated with aesthetic evaluation (Kawabata and
Zeki, 2004; Vartanian and Goel, 2004; Jacobsen et al., 2006; Di
Dio and Gallese, 2009; Ishizu and Zeki, 2011). However, none of
these studies have clearly shown the relationship of aesthetically
driven activations to this region’s resting baseline.

The DMN is a network of brain areas associated with inward
contemplation and self-assessment (Gusnard and Raichle, 2001;
Raichle et al., 2001; Kelley et al., 2002; Wicker et al., 2003;
D’Argembeau et al., 2005, 2009; Andrews-Hanna et al., 2010).
As with other areas in the DMN (such as the PCC, where we
also see differential activity for only the most aesthetically pleas-
ing images), aMPFC typically shows below-baseline activity in
response to external stimulation, and this was indeed what we
found in observers’ responses to many of the art stimuli to which
they were exposed. However, for those few stimuli that each
observer judged as creating a strong aesthetic experience, the
suppression of aMPFC were alleviated, which is typically seen
when observers perform tasks related to self-reflection or during
periods of self-monitoring. Such activation in the aMPFC at or
above its resting baseline in response to an external stimulus is
rare.

Importantly, our results show that only the most aesthetically
moving artworks lead to differential, and widespread, activation
in the aMPFC, contrary to the claim (Kawabata and Zeki, 2004;

Ishizu and Zeki, 2011) that activation in this region is related to
beauty in a linear fashion. This difference may be a consequence
of the lower number of response levels used in their studies
(three vs. four), the inclusion of paintings deemed “ugly” by their
observers, the fact that the paintings were not being seen for the
first time, or by differences in instructions.

Several studies of self-reflective processes have shown that
aMPFC does not deactivate during tasks in which observers assign
to themselves personally relevant traits of varying valence (e.g.,
happiness, honesty, cruelty, etc., Kelley et al., 2002; D’Argembeau
et al., 2005; Amodio and Frith, 2006; Moran et al., 2006). Trait
studies may reflect a set of processes whereby observers don’t sim-
ply think about themselves, but, more specifically, match traits
with self-inspection, as a part of broader social cognition. In a
similar manner, release from deactivation during aesthetic expe-
rience may reflect observers’ matching self-inspection with their
perception of an object.

Strong emotions that are salient to observers also attenuate the
depression of aMPFC activation associated with task performance
(Simpson et al., 2001a,b), while emotion processing that is not
personally relevant (e.g., viewing pictures of unknown persons in
empathy-producing situations) has no effect on decreased acti-
vation of aMPFC during task performance (Geday and Gjedde,
2009). Highly moving aesthetic experiences appear to represent
an analogous situation in which an external stimulus brings about
a strong emotional response.

During such intense aesthetic experiences, the aMPFC may
function as a gateway into the DMN, signaling personal rel-
evance and allowing for a heightened integration of external
(sensory/semantic) sensations related to an art object and internal
(evaluative/emotional) states. How such integration is neurally
instantiated and how it is related to reward circuits (e.g., whether
it is caused by or creates activity in reward-related brain areas) are
important questions for further research.

UNIQUE RESPONSE SIGNATURES FOR SENSORY AND

EVALUATIVE NETWORKS

This is the first report of unique response signatures separating
cortical activations to artwork into a posterior occipito-temporal
network and an anterior frontal network. In addition to the
frontal activation in aMPFC, the SFG, IFGt, and LOFC also show
a step-like response, the latter two regions increasing above base-
line for only the most moving images. Within this set of frontal
regions, the factor analysis of evaluative responses further dis-
tinguishes the ROIs from one another—the LOFC shows no
sensitivity to either Factor 1 or Factor 2, while IFGt is sensitive
to Factor 2, and both SFG and aMPFC show weak sensitivity to
Factors 1 and 2, respectively. Subcortically, activations in the SN,
mediodorsal thalamus, and hippocampus also show a step-like
pattern of response, suggesting that these regions interact with
the frontal network.

This network of frontal regions, which we refer to as an “evalu-
ative” network, likely supports an analysis of emotional response
and personal relevance. We suggest that the step-like pattern is a
signature of an aesthetic response, where the most moving images
produce a clearly differentiable pattern of signal, going beyond
mere liking, to something more intense and personally profound.
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Additional support for this interpretation comes from a recent
study in which observers were instructed to view artworks in
terms of semantic or visual detail (“pragmatically”), as opposed
to in terms of color, composition, shapes, mood, and evoked
emotion (“aesthetically”). They found an activation in left lateral
prefrontal cortex (—44, 37, 7; BA 10) corresponding to what we
term left IFGt, which was selectively engaged in the “aesthetic”
condition (Cupchik et al., 2009).

The second signature we observe, a linear response to observer
recommendation, is found in more posterior cortical regions
(PHG, ITS, and STS). In all of these areas, BOLD signal responds
to the onset of any image and linearly tracks observers’ aesthetic
reactions. Several previous reports have also found activations in
occipito-temporal areas for preference judgments of a variety of
stimuli, including artwork, abstract geometric shapes, scenes, and
faces (e.g., Vartanian and Goel, 2004; Jacobsen et al., 2006; Kim
et al., 2007; Yue et al., 2007).

These activations likely reflect a stimulus-bound sensory
and semantic analysis of preference that is relatively automatic.
Supporting this interpretation is the finding that observers whose
recommendations were well predicted by ratings of image-
induced “pleasure” tended to show a larger BOLD effect in the ITS
(suggesting that observers differ in the degree to which they value
a sensory/semantic analysis performed by posterior areas versus
emotional evocativeness when reacting to aesthetic experiences).
It is important to note that the linear effect of aesthetic recom-
mendation that we observed in these areas is not due to systematic
differences in the type of stimuli preferred by the observers, as
neither the CoS nor FFA, defined using an independent local-
izer task (for places and faces, respectively) showed any effect of
recommendation.

Subcortical regions STR and PRF, which also show a lin-
ear relationship to observer’s recommendations, increased above
baseline for recommended images and decreased below baseline
for non-recommended images. Given the involvement of a col-
umn of areas in the midbrain with arousal functions (Kinomura
etal., 1996; Steriade, 1996), these activations may reflect “reward”
valence in STR and arousal level in PRF, two often theorized axes
of emotional responsivity (Lang et al., 1990; Low et al., 2008).
Although we did not explicitly measure physiological arousal, the
fact that the BOLD effect size in PRF was larger for observers who
tended to recommend images they found awe-inspiring suggests
a potential association between aesthetic awe and arousal.

INTEGRATION IN THE STRIATUM

Not only is STR activity linearly related to aesthetic recommen-
dation, it is also sensitive to both emotional/evaluative factors.
This suggests that STR may integrate perceptual, evaluative, and
reward components of aesthetic response for the purpose of
outcome selection (the choice of recommendation level). This
pattern, along with the detection of a related response pattern in
the mdThal, is in accord with the established existence of cortico-
striato-pallado-thalamic loops (Alexander et al., 1986; Steriade
and Llinés, 1988; Alexander and Crutcher, 1990; Middleton and
Strick, 2002; Kelly and Strick, 2004). Further research will be
needed to elucidate the temporal dynamics of the flow of infor-
mation between these regions in aesthetic responses.

The location of the observed striatal activation straddles the
anatomical division between dorsal and ventral STR, and is sim-
ilar to that reported by Vartanian and Goel (2004), though other
studies of preference have reported more ventral effects (Kim
et al., 2007; Lacey et al., 2011). Intriguingly, we did find sig-
nificantly greater activation in the right ventral STR for the
most highly recommended images (4-vs.-321 contrast, results not
shown). The literature on reward posits that the dorsal STR rep-
resents the “actor” function of learning and implements habits or
decisions (Maia, 2009), as well as the expectation of reward and
punishment (Delgado et al., 2000, 2003), whereas the ventral STR
(along with the amygdala, VTA, and OFC), carries out “critic”
functions of representing actual reward and reward-prediction
error (Schultz et al., 1992; Schoenbaum et al., 1998; Hikosaka
and Watanabe, 2000; Schultz, 2000; Tremblay and Schultz, 2000;
Setlow et al., 2003; Paton et al., 2006; Wan and Peoples, 2006;
Simmons et al., 2007). While the locus of our activation in STR
does not clearly fall in either the ventral or dorsal STR, the fact
that STR responds regardless of emotional valence is in agreement
with findings in monetary reward (Delgado et al., 2000, 2003).

Findings in regard to aesthetic reward have suggested a schism
between desired and achieved reward that maps onto dorsal and
ventral STR, respectively. Based on a PET study of pleasurable
resolution of musical expectation, Salimpoor et al. (2011) have
suggested that the caudate (“dorsal” STR) responds primarily to
expecting a desired reward (“wanting”), while the nucleus accum-
bens (ventral STR) is active while experiencing the peak emotional
response (“liking”) associated with the resolution of a musical
theme, line, or phrase. Unlike the novel, static images used in our
study, their musical stimuli are temporally extended experiences,
enablinglisteners to predict the resolution of a musical phrase (and
subsequent pleasure) based on familiarity with musical structure
or particular songs. This may partially explain the difference in
the locus of striatal effects following the hypothesized moment
of aesthetic reward, given the known involvement of basal gan-
glia structures in a variety of temporally sequenced behaviors
(Harrington et al., 1998). However, our task and results argue
against a strict interpretation of striatal activation as reflecting
anticipatory “wanting” a predicted reward, as there was no possi-
bility of differential anticipatory responses for any of our images.

AREAS FOR FURTHER RESEARCH

Our experiment is the first to find activation in the SN in visual
aesthetic response, though it has been reported for music (Suzuki
et al., 2008). Activation in the left SN for the most highly rated
images raises the possibility that the efferent dopaminergic con-
nections from the SN to the STR offer a mechanism by which
hedonic responses to the most highly moving images might be
modulated. This might be tested in further research.

In this set of observers, recommendation-related BOLD
response appears primarily as increases in activation in the left
hemisphere. However, it is unclear at this time whether this rep-
resents a real difference in the lateralization of aesthetic processes
or merely reflects variation in the sensitivity of observing these
effects at the whole-brain level.

Finally, it remains to be seen to what degree these systems are
perturbed by depression or other mood disorders. Intriguingly,
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we found that the size of the BOLD effect in PHC, reflecting
semantic/sensory processing, was larger for observers reporting
positive mood (r = 0.68, p < 0.004 using r to z transform), sug-
gesting that mood may act as a gateway to getting pleasure from
sensory/aesthetic experiences.

CONCLUSIONS

The nature of aesthetic experience presents an apparent para-
dox. Observers have strong aesthetic reactions to very different
sets of images, and are moved by particular images for very dif-
ferent reasons. Yet the ability to be aesthetically moved appears
to be universal. The emerging picture of brain networks under-
lying aesthetic experience presents a potential solution to this
paradox. Aesthetic experience involves the integration of neurally
separable sensory and emotional reactions in a manner linked
with their personal relevance. Such experiences are universal in
that the brain areas activated by aesthetically moving experiences
are largely conserved across individuals. However, this network

includes central nodes of the DMN that mediate the intensely
subjective and personal nature of aesthetic experiences, along
with regions reflecting the wide variety of emotional states (both
positive and negative) that can be experienced as aesthetically
moving.

The linking of intense aesthetic experience and personal rel-
evance may have implications for artists and educators alike—
further research could explore whether increasing the personal
relevance of aesthetic experiences increases their intensity and the
resulting associations.
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Triumphant Child, c. 1946. Walter Quirt (1902-1968, USA). Oil on canvas.

Trompe-I'Oeil Still Life with a Flower Garland and a Curtain, c. 1658. Adriaen van der Spelt (1630-1673, Dutch). Oil on panel.
Turning Point of Thirst, c. 1934. Victor Brauner (1903-1966, Romanian). Oil on canvas.

Unidentified Raga, c. 1775. unknown (Indian). Watercolor and gold on paper.

Venus, c. 1518. Lucas (the Elder) Cranach (1472-1553, Ger.). Oil on linden.

Vision of the Sage Markandeya, c. 1775-1800. Unknown (Himachal Pradesh, India). Watercolor and gold on paper.
Watson and the Shark, c. 1782. John Singleton Copley (1738-1815, USA). Oil on canvas.

Woman and Flowers (Opus LIX), c. 1868. Sir Lawrence Alma-Tadema (1836—1912, Dutch). Oil on panel.

Yama, King of Hell, c. 1800. Unknown (Tibet). Watercolor on cotton.

Young Woman with a Fan, c. 1754—1756. Pietro Rotari (1707-1762, It.). Oil on canvas.

Young Woman with a Turban, c. 1780. Jacques Louis David (1748-1825, Fr.). Oil on canvas.

Young Women Jumping Rope, c. 1942—1944. Rufino Tamayo (1899-1991, Mex.). Oil on canvas.

Frontiers in Human Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 66 | 15


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Vessel et al. The brain on art

APPENDIX

Table A1 | Mean Talairach coordinates for all activations found in the 4-vs-1 whole brain contrast.

Anatomical region BA X Y V4 SD X SDY SDZ Vol (mm3) Avg t

Inf Temporal Sulc (ITS) 37 L —49 —61 -2 4.2 2.7 4.1 1053 5.48
Parahippocampal Ctx (PHC) 36 L =31 -32 -15 2.3 2.3 2.3 405 5.44
Superior Temporal Sulc (STS) 22 R 44 —48 4 2.5 2.1 2.2 351 5.61
Fusiform Gyr 37 R 42 —-40 —-14 1.4 2.9 1.6 162 5.40
FRONTALCtx
Inf Frontal Gyr p triangularis (IFGt) 45/46 L —50 32 12 3.7 7.5 5.7 2727 5.57
Lateral Orbitofrontal Ctx (LOFC) 47 L -35 24 —4 6.7 3.6 3.7 918 5.18
Superior Frontal Sulc (SFS) 6 L —24 16 50 3.4 3.0 3.6 810 5.55
Superior Frontal Sulc (SFS) 8 L -19 32 51 2.4 3.1 2.2 594 5.61
Superior Frontal Sulc (SFS) 9 L -18 47 31 2.3 2.8 2.9 351 5.63
Superior Frontal Gyr (SFG) 6 L -5 19 62 2.1 3.9 4.4 729 5.51
Inf Frontal Gyr p orbitalis (IFGo) 44 L —44 7 15 2.0 2.8 2.6 378 5.53
Dorsolateral Prefrontal Ctx (dIPFC) 9 L —44 5 37 2.0 2.3 1.7 297 5.27
Precentral Sulc 9 R 34 9 25 1.7 1.5 2.4 135 5.19
Cingulate Sulc 32 L -7 22 38 1.4 2.6 1.6 162 5.23
Precentral Gyr 6 L —33 -13 65 1.6 1.6 1.7 162 5.27
'SUBCORTICALREGIONS
Striatum (STR) — L -12 10 6 2.8 2.3 2.9 702 5.43
Pontine Reticular Formation (PRF) — 0 —28 -17 2.5 1.7 15 135 5.03
MedioDorsal Thalamus (mdThal) — L -6 -18 12 1.7 2.1 2.8 243 5.26
Thalamus — L -12 -9 8 2.4 1.4 1.6 162 5.1

Superior Temporal Gyr (STG) 42/22 R 52 -10 7 4.5 2.7 3.2 702 6.06

BA, Brodmann's area; SD, spatial standard deviation; Vol, volume, Avg t, average t statistic; Ctx, cortex; Sulc, Sulcus, Gyr, Gyrus; Inf, Inferior; p, pars.
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Table A2 | Results of the individual differences regression in which each observer’s recommendations were predicted from the reduced set of

six emotional terms.

Standardized beta coefficient

R? F P resVar Beauty Awe Fear Pleasure Sadness Disgust
0.50 17.1 1.4 x 10713 0.53 0.34 0.22 0.1 0.29 0.06 —0.02
0.30 7.2 1.9 x 10798 0.74 0.52 0.14 0.00 0.01 0.03 —0.08
0.47 15.4 1.8 x 10712 0.56 0.22 0.24 0.30 —0.07 0.15 0.1
0.35 9.3 4.1 x 10708 0.68 0.42 —0.08 0.02 0.24 —0.10 0.05
0.65 31.0 6.3 x 1072 0.38 0.66 0.16 0.08 0.07 —0.21 —0.04
0.41 8.8 3.3 x 10797 0.63 0.33 0.21 0.41 —0.16 0.08 0.01
0.53 19.3 6.7 x 10715 0.50 0.43 0.27 0.21 —0.01 0.09 0.33
0.66 33.1 7.1 x 10722 0.36 0.56 0.09 0.08 0.17 0.09 —0.02
0.78 58.8 9.1 x 1079 0.24 0.21 0.30 0.05 0.37 0.09 —0.07
0.73 33.6 3.0x 1071 0.29 0.47 0.12 0.24 0.05 0.15 0.12
0.60 25.9 1.6 x 10718 0.42 0.53 0.20 —0.13 0.15 —0.1 0.10
0.65 30.3 1.8 x 10720 0.38 0.18 —0.01 0.12 0.58 0.07 —0.04
0.65 315 3.7 x 1072 0.37 0.00 0.19 —0.05 0.61 —0.05 0.32
0.57 225 9.4 x 107V 0.46 0.18 0.06 0.06 0.56 0.04 0.09
0.38 9.8 2.5 x 10708 0.66 0.38 0.17 —0.22 0.31 0.16 0.25
0.62 28.3 1.1 x 10719 0.40 0.22 0.46 0.11 0.10 0.04 —0.12
AVERAGE

0.55 23.9 1.2 x 1079 0.48 0.35 0.17 0.09 0.20 0.04 0.06

The reported F statistic has (6, 102) degrees of freedom. resVar = residual variance in recommendation not accounted for by the regression.
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