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There is considerable evidence (e.g., Pexman et al., 2008) that semantically rich words,
which are associated with relatively more semantic information, are recognized faster
across different lexical processing tasks.The present study extends this earlier work by pro-
viding the most comprehensive evaluation to date of semantic richness effects on visual
word recognition performance. Specifically, using mixed effects analyses to control for
the influence of correlated lexical variables, we considered the impact of number of fea-
tures, number of senses, semantic neighborhood density, imageability, and body–object
interaction across five visual word recognition tasks: standard lexical decision, go/no-go
lexical decision, speeded pronunciation, progressive demasking, and semantic classifica-
tion. Semantic richness effects could be reliably detected in all tasks of lexical processing,
indicating that semantic representations, particularly their imaginal and featural aspects,
play a fundamental role in visual word recognition. However, there was also evidence that
the strength of certain richness effects could be flexibly and adaptively modulated by task
demands, consistent with an intriguing interplay between task-specific mechanisms and
differentiated semantic processing.
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Although the ultimate goal of reading is to extract meaning from
visually printed words, the effect of meaning-level influences on
lexical processing is surprisingly poorly understood (see Pexman,
in press, for a recent review; see also Balota et al., 1991). For the
most part, the empirical literature has focused on how sublexi-
cal (see Carreiras and Grainger, 2004) and lexical (see Balota et al.,
2006) representations influence visual word recognition. Likewise,
despite their complexity and theoretical sophistication, influen-
tial computational models of visual word recognition (e.g., Perry
et al., 2007) are silent on the role of semantic information (but see
Harm and Seidenberg, 2004). Indeed, semantic effects are difficult
to reconcile with classic logogen-based models of word recogni-
tion, which implicitly assume that lexical processing latencies tap a
magic moment (Balota, 1990), i.e., a discrete moment in time when
the lexical entry for a word has been identified but meaning-level
information has not yet been accessed.

A number of studies (e.g., Buchanan et al., 2001; Cortese and
Fugett, 2004; Duñabeitia et al., 2008; Pexman et al., 2008; Siakaluk
et al., 2008; Yap et al., 2011) suggests that a word associated with
relatively more semantic information can be considered to be
semantically richer, and word recognition is generally facilitated
for such words. A number of dimensions have been identified that
appear to tap a word’s semantic richness, including: (1) the num-
ber of features (NF) associated with its referent, (2) its semantic
neighborhood density (SND) in high-dimensional semantic space,
(3) the number of distinct first associates (NoA) elicited by the word
in a free-association task (Nelson et al., 1998), (4) imageability, the
extent to which a word evokes mental imagery of things or events

(imageability), (5) number of senses (NS), the number of mean-
ings associated with a word, and (6) body–object interaction (BOI),
the extent to which a human body can physically interact with the
word’s referent. Specifically, word recognition is typically faster
for words when their referents are associated with many seman-
tic features (Pexman et al., 2003, 2008), when they are located
in dense semantic neighborhoods (Buchanan et al., 2001; Shaoul
and Westbury, 2010), when they elicit many associates (Duñabeitia
et al., 2008), when they evoke more imagery (Cortese and Fugett,
2004), when they possess multiple meanings (Yap et al., 2011),
and when they evoke more sensorimotor information (Siakaluk
et al., 2008). That each of these variables affects word recognition
behavior suggests that each taps an important aspect of semantic
representation.

These findings can be accommodated by the embellished inter-
active activation framework suggested by Balota (1990; see also
Balota et al., 1991), where there is bidirectional cascaded pro-
cessing between letter-level, lexical-level, and semantic-level rep-
resentations. Importantly, one could assume that there is stronger
top-down feedback from semantic-level to orthographic-level rep-
resentations for semantically rich words, facilitating lexical access
for such words. The interactive activation framework is based on
the assumption that lexical processing is subserved by mental lex-
icons containing localist units that represent the spelling, sound,
and meaning of a word (see Coltheart et al., 2001), and that ortho-
graphic and semantic processing are handled by separate systems.

An important theoretical alternative to localist models is rep-
resented by parallel distributed processing (PDP) models, which
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do not assume the existence of mental lexicons. Instead, ortho-
graphic, phonological, and semantic information are respectively
represented by distributed patterns of activity over separate layers
of orthographic, phonological, and semantic neuron-like pro-
cessing units (Plaut et al., 1996). In the classic connectionist
triangle model of lexical processing (e.g., Seidenberg and McClel-
land, 1989), when a word is presented, activation flows from the
orthographic to the semantic layer (either directly or mediated by
the phonological layer) via weighted connections that reflect the
network’s knowledge of the mappings between orthography and
semantics. Semantically rich words, which possess more stable and
more readily computable meanings (Strain et al., 1995), are rep-
resented by the activation of more semantic units, hence yielding
greater feedback activation from the semantic to the orthographic
layer; this facilitates word recognition (see Hino et al., 2002, for
more discussion of how PDP models can handle semantic richness
effects).

Importantly, within the PDP approach, there is no sharp delin-
eation between lexical and semantic processing. Instead, word
recognition is assumed to rely on a common cognitive system
where lexical and semantic knowledge interdependently and con-
currently influence word recognition (Dilkina et al., 2008, 2010).
Indeed, this view meshes well with the literature on semantic
dementia, a variant of frontotemporal lobe dementia marked by
deficits in conceptual and lexical knowledge (see Hodges et al.,
1998, for a review). Although the finer details of this literature
are beyond the scope of the present report, there is broad support
for a positive correlation between lexical and conceptual deficits
in semantic dementia patients, which is consistent with a single
system that mediates both lexical and semantic processing (see
Dilkina et al., 2010, for a connectionist model of lexical/semantic
processing that explains the patient data).

SEMANTIC RICHNESS EFFECTS ARE MULTIDIMENSIONAL
AND TASK-DEPENDENT
Importantly, although all the measures described ostensibly reflect
aspects of a word’s semantic richness, it is clear that they do not
tap a common undifferentiated construct. For example, NF and
NS seem to primarily reflect the complexity of a word’s semantic
representation, while SND and NoA may tap the extent to which
that representation is interconnected with those of other words.
Likewise, while imageability effects (Strain et al., 1995; Cortese
et al., 1997; Cortese and Fugett, 2004) could be mediated by the
interactions between lexical and visual (Paivio, 1991) or contex-
tual (Schwanenflugel, 1991) information, BOI effects appear to
implicate embodied sensorimotor representations (Siakaluk et al.,
2008; Tillotson et al., 2008; Bennett et al., 2011; Wellsby et al.,
2011). Consistent with this, the bivariate correlations between the
different semantic richness variables are relatively modest, and the
measures are also able to account for unique variance in word
recognition performance (Pexman et al., 2008).

More relevantly for the purposes of the present study, the
effects of semantic richness dimensions are flexibly and adap-
tively modulated by the specific demands of different lexical
processing tasks (see Balota and Yap, 2006). For example, seman-
tic richness variables are better predictors of semantic classifi-
cation, compared to lexical decision, performance. In semantic

classification, participants are required to discriminate between
words from different semantic categories (e.g., is CABBAGE con-
crete or abstract?), while in lexical decision, they have to dis-
criminate between real words and made-up words (e.g., FLIRP).
Semantic processing is implicated to a greater extent in seman-
tic classification because participants have to resolve the specific
meaning of a word in order to make a correct response, whereas
they can rely heavily on familiarity-based information to drive a
lexical decision response (Balota and Chumbley, 1984).

Similarly, semantic effects are typically stronger in lexical deci-
sion than in speeded pronunciation performance. For example,
early work by Chumbley and Balota (1984) reported that seman-
tic variables such as instance dominance (the likelihood that a word
will be given as an example to a category in response to the category
name), number of associates, and NS produced reliable effects in
lexical decision, but not in speeded pronunciation. More recent
studies employing larger sets of stimuli (e.g., Balota et al., 2004)
indicate that semantic effects (e.g., imageability effects) can be reli-
ably detected in the pronunciation task, although they are greatly
attenuated (see also Yap and Balota, 2009). These findings suggest
that semantic information plays a stronger role in lexical decision,
compared to pronunciation, because semantic information can
be recruited to drive the familiarity-based word/non-word dis-
crimination process that is specific to lexical decision (Balota and
Chumbley, 1984; Chumbley and Balota, 1984).

The multidimensionality and task-specificity of semantic rich-
ness effects are also evident at a more fine-grained level. For
example, although high-NF words are recognized faster in both
lexical decision and semantic classification (Pexman et al., 2008),
a denser semantic neighborhood is associated with faster lexical
decision performance, but has no effect on semantic classification
performance (Yap et al., 2011). While lexical decision is facilitated
by stronger semantics → orthography feedback for words from
dense neighborhoods, the opposing effects of nearby (facilitatory)
and distant (inhibitory) neighbors may cancel each other out (Mir-
man and Magnuson, 2006) in tasks which emphasize semantic
processing (e.g., semantic classification).

Intriguingly, the effect of semantic ambiguity is also very dif-
ferent in lexical decision and semantic classification. Specifically,
although there is an ambiguity advantage (i.e., better performance
for words with many senses) in lexical decision (e.g., Borowsky
and Masson, 1996; Hargreaves et al., 2011), there is either a null
ambiguity effect or an ambiguity disadvantage in semantic clas-
sification (Piercey and Joordens, 2000; Hino et al., 2002, 2006;
Pexman et al., 2004; Hargreaves et al., 2011; Yap et al., 2011). Sim-
ilar to neighborhood density, multiple meanings produce greater
semantic feedback, which is helpful for lexical decision. How-
ever, a task which requires more focus on semantic processing
can be slowed down by ambiguity, due to one-to-many map-
pings between orthography and semantics for ambiguous words
(Borowsky and Masson, 1996), by increased competition between
the different activated meanings (Grainger et al., 2001), or by com-
petition between the activated meanings and the required response
(Pexman et al., 2004).

The foregoing findings underscore the importance of exam-
ining semantic richness effects across a constellation of lexical
processing paradigms, as effects are not process-pure but instead
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reflect both task-specific and task-general processing (Balota and
Chumbley, 1984; Grainger and Jacobs, 1996). In line with this prin-
ciple, Pexman et al. (2008) used hierarchical multiple regression
to explore the effects of various semantic richness dimensions on
lexical decision and semantic classification performance, basing
their analyses on a common set of 514 concrete words from the
McRae et al. (2005) norms. Yap et al. (2011) extended this work by
also considering richness effects on speeded pronunciation (i.e.,
read words aloud) performance. Collectively, these studies yielded
a number of the intriguing task-specific findings discussed earlier.
In the same vein, Duñabeitia et al. (2008) studied the effect of NoA
across different visual word recognition tasks, including speeded
pronunciation, lexical decision, eye movements during sentence
reading (see Rayner, 1998, for a review), and progressive demask-
ing (Dufau et al., 2008). Eye movement data provide on-line,
moment-to-moment measures of cognitive processes implicated
in reading, while progressive demasking is a relatively novel per-
ceptual identification task where a word gradually emerges from
a mask over time, and the time taken to identify the specific word
being presented is measured.

THE PRESENT RESEARCH
The primary objective of the present study is to provide the most
comprehensive evaluation to date of the impact of extant seman-
tic richness dimensions (NF, SND, imageability, NS, BOI) across
different visual word recognition tasks. In addition to the ubiqui-
tous traditional tasks (i.e., lexical decision, speeded pronunciation,
semantic classification) examined by Pexman et al. (2008) and Yap
et al. (2011), we also include newer tasks such as the progressive
demasking task (PDT; Dufau et al., 2008) and go/no-go lexical
decision (Gordon, 1983; Perea et al., 2002). In the progressive
masking task, a word stimulus (e.g., DOG) is rapidly alternated
with a mask (e.g., ###), and through successive display changes, the
word gradually emerges from the mask. Participants make a but-
ton press as soon as they can identify the stimulus, hence yielding
response time (RT) measures for a perceptual identification para-
digm based on the presentation of visually degraded stimuli. Since
it is a perceptual identification task, one might argue that unique
stimulus identification is mandatory in progressive demasking;
hence, progressive demasking latencies might provide a purer mea-
sure of lexical processing (Carreiras et al., 1997). Methodologically
speaking, progressive demasking has important advantages over
lexical decision and speeded pronunciation, as the experimenter
does not need to create non-word distracters and performance is
unaffected by articulatory factors (Ferrand et al., 2011). Finally,
because of the way it is set up, progressive demasking slows down
and stretches out the recognition process, potentially making this
task more sensitive to underlying perceptual (Dufau et al., 2008)
and semantic (Ferrand et al., 2011) processing.

The go/no-go lexical decision task1 is an interesting variation
on the standard task in which participants respond by pressing a

1The go/no-go lexical decision task should be distinguished from the go/no-go
speeded pronunciation task (e.g., Hino and Lupker, 1998, 2000). In the latter task,
participants name a stimulus aloud only if it is a word and withhold their response
if it is a non-word. One of the reviewers made the interesting suggestion that this
task could potentially provide important new insights into the task-specificity of
semantic effects. Specifically, in go/no-go pronunciation, the response is the same as

button when a word is presented but withhold their response when
a non-word is presented. The go/no-go task possesses a number
of advantages. According to Perea et al. (2002), in addition to
yielding faster, more accurate, and less noisy performance, go/no-
go lexical decision also reduces task-specific processing demands
(e.g., response competition during the decision process). In order
to rigorously rule out the influence of correlated variables, which
may spuriously inflate the predictive power of semantic richness
variables (see Gernsbacher, 1984), linear mixed effects analyses
(Baayen et al., 2008) will be used in the present study to control
for phonological onsets (Balota et al., 2004) and established lexical
variables (Balota et al., 2004; Yap and Balota, 2009); linear mixed
models also allow us to generalize across both participants and
items using a single model. All five datasets (LDT, go/no-go LDT,
pronunciation Task, PDT, and SCT) are new, collected for the pur-
poses of the present paper, and details of those datasets will be
provided in the Methods section.

METHOD
PARTICIPANTS
Participants in all five tasks were undergraduate students at the
University of Calgary who received course credit for participating.
All participants reported that English was their first language and
that they had normal or corrected-to-normal vision. There were
38 participants in the SCT, 31 participants in the LDT, and 30 in
each of the other tasks.

MATERIALS
The word stimuli for this study were 514 concrete words2 from
McRae et al.’s (2005) norms. The stimuli also included 514 non-
words used in the LDT and go/no-go LDT (which were matched
to the words for length), and 514 abstract words which served
as fillers in the SCT. The variables in the analyses were divided
into three clusters: surface, lexical, and semantic variables (see
Table 1 for descriptive statistics of predictors and measures for
items included in the analyses).

Surface variables
Dichotomous variables were used to code the initial phoneme of
each word (1 = presence of feature; 0 = absence of feature) on
13 features: affricative, alveolar, bilabial, dental, fricative, glottal,
labiodental, liquid, nasal, palatal, stop, velar, and voiced (Balota
et al., 2004). These control for the variance associated with voice
key biases in speeded pronunciation.

Lexical variables
These included log frequency (Brysbaert and New, 2009), num-
ber of morphemes, and number of letters. In order to address the
high correlations between orthographic (Coltheart et al., 1977)
and phonological (Yates, 2005) neighborhood size (r = 0.79), and

the one required in the standard pronunciation task but there is also a lexical deci-
sion involved. Performance on the go/no-go pronunciation task could then address
the question of whether the increased influence of semantics on lexical decision is
due to differences in the response modality (i.e., vocal response vs. button press) or
the fact that lexical decision involves a word/non-word discrimination.
2The McRae et al. (2005) concrete nouns were selected as stimuli because number
of semantic features is available for this set of words.
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Table 1 | Descriptive statistics for stimulus characteristics and

behavioral data.

Variable (n = 473) M SD

Log frequency (Brysbaert and New, 2009) 2.46 0.62

Number of morphemes 1.23 0.47

Number of letters 5.89 1.94

Number of orthographic neighbors 3.67 4.95

Number of phonological neighbors (Yates,

2005)

7.95 9.69

Orthographic Levenshtein distance (Yarkoni

et al., 2008)

2.21 0.92

Phonological Levenshtein distance (Yap and

Balota, 2009)

2.05 1.01

Imageability 6.01 0.42

Body object interaction 4.56 1.18

Log number of senses (Miller, 1990) 0.61 0.26

Semantic neighborhood density (ARC;

Shaoul and Westbury, 2010)

0.51 0.11

Number of features (McRae et al., 2005) 12.17 3.24

Lexical decision task RTs 600.94 67.90

Lexical decision task accuracy 0.91 0.11

Go/no-go lexical decision task RTs 560.48 69.60

Go/no-go lexical decision task accuracy 0.95 0.09

Pronunciation task RTs 547.64 43.46

Pronunciation task accuracy 0.94 0.07

Progressive demasking task RTs 1429.59 132.00

Progressive demasking task accuracy 0.92 0.10

Semantic classification task RTs 710.05 103.20

Semantic classification task accuracy 0.95 0.08

between orthographic (Yarkoni et al., 2008) and phonological (Yap
and Balota, 2009) Levenshtein distance (LD; r = 0.92), we used
principal component analysis to reduce the two neighborhood
size measures and the two LD measures to a neighborhood size
(N) and LD component respectively (see Yap et al., 2011).

Semantic variables
Imageability ratings were obtained for 473 of the words from the
MRC norms (Coltheart, 1981) and from the norms collected by
Cortese and colleagues (Cortese and Fugett, 2004; Schock et al., in
press) and Bennett et al. (2011). BOI ratings for 459 of the words
were obtained from the Bennett et al. (2011) norms and BOI rat-
ings for the remaining 55 words were collected at the University
of Calgary from another separate group of 38 undergraduate stu-
dents. NF values were taken from the McRae norms, and NS values
were log-transformed and were from Miller (1990). Finally, SND
values were based on ARC (average radius of co-occurrence) values
from Shaoul and Westbury (2010); words whose closest neighbors
are more similar to them have higher ARC values.

PROCEDURE
In all tasks, testing began with a short series of practice trials with
verbal feedback provided by the experimenter. Each of the tasks
followed the same general procedure: on each trial, a word was
presented in the center of a 20′′ monitor controlled by a desktop

computer. The LDT, go/no-go LDT, pronunciation task, and SCT
were all conducted using E-Prime software (Schneider et al., 2002),
while the PDT was run using Windows executable software for the
PDT (Dufau et al., 2008).

On each trial in the LDT, participants classified each item as a
word or non-word by pressing the far right or far left button on
a response box, respectively. On each trial in the go/no-go LDT,
participants pressed the far right button to classify an item as a
word, and made no response to non-words. On each trial in the
pronunciation task, participants read the word aloud into a micro-
phone connected to the response box. Participants’ pronunciation
responses were recorded with a digital recorder and later coded
for accuracy. In the PDT, each item (e.g., TABLE) was presented
alternating with a mask (#####), with each trial consisting of a
series of repeated cycles. Initially the mask was presented on the
screen for 195 ms and the stimulus for 15 ms, and over subsequent
cycles the mask presentation time decreased while the stimulus
presentation time increased (e.g., in the next cycle the mask would
be presented for 180 ms and the stimulus for 30 ms). Participants
were instructed to press the space bar on the keyboard as soon as
they could determine what the word was. (If no response was made
after 2700 ms, the mask disappeared and the stimulus remained on
the screen until the participant pressed the space bar.) Participants
then typed the word and pressed the enter key to advance to the
next trial. Finally, in the SCT, participants classified each word as
concrete or abstract by pressing the far right or far left button,
respectively.

RESULTS
We excluded trials for which the response was incorrect (7.52% in
the LDT, 2.60% in the go/no-go LDT, 3.48% in the pronunciation
task, 5.05% in the PDT, and 5.18% in the SCT), as well as responses
that were faster than 200 ms or slower than 3000 ms (<1% of trials
in all tasks). We also excluded trials for which the RT exceeded 2.5
SD from each participant’s mean (2.74, 2.94, 2.55, 2.00, and 2.91%
respectively).

There were 473 items for which we had values on each of
the lexical and semantic variables examined. For these items,
intercorrelations between predictors and dependent measures are
presented in Table 2. As illustrated in Table 2, although there
were several significant correlations between the richness vari-
ables, most of the correlations were relatively modest (rs between
0.05 and 0.28), with the exception of the relationship between NS
and SND (r = 0.49). However, it should be noted that word fre-
quency is relatively highly correlated with both NS (r = 0.51) and
SND (r = 0.77), suggesting that frequency is driving the NS–SND
correlation. Indeed, when one partials out the effect of frequency,
the correlation becomes 0.17. Generally, the modest correlations
between richness measures suggest that these dimensions do not
all tap the same underlying construct, and that semantic richness
is multidimensional.

All data were analyzed using R (R Development Core Team,
2011). Linear mixed effects models were fitted to the RT data3 from
each task, using the lme4 package (Bates et al., 2012); p-values for

3There were too few response errors in most of the tasks to warrant parallel analyses
of the accuracy data.
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fixed effects were computed using the languageR package (Baayen,
2012). The influence of surface, lexical, and semantic richness vari-
ables were treated as fixed effects, while participants and items were
treated as random variables. The results of these analyses are pre-
sented in Table 3 and Figure 1. Clearly, even when lexical variables
were controlled for, semantic richness effects were observed in all
tasks. At the same time, the pattern of significant richness effects
varied across tasks. Imageability and NF were significant predic-
tors in all tasks (although the NF effect was marginal in the PDT).
SND was a significant predictor in the standard and go/no-go
LDT, while BOI was a significant predictor in all tasks except the
PDT. Finally, with the exception of the go/no-go LDT, NS did not
significantly predict performance on tasks. Notably, in all cases
where significant relationships were observed between latencies
and semantic richness measures, the direction of the relationships
was the same: relatively greater richness (whether in terms of more
senses, or a more highly imageable referent, or more bodily experi-
ence, or a denser neighborhood, or more features) was associated
with relatively faster latencies.

DISCUSSION
The present study represents the most comprehensive large-scale
study of semantic richness effects to date. Using the McRae et al.
(2005) concrete words, we investigated the influence of five theo-
retically influential semantic richness dimensions4 (imageability,
BOI, NS, SND, NF) on lexical processing, using five different word

4Although number of associates (Duñabeitia et al., 2008; Müller et al., 2010) is clearly
an important semantic richness variable, including this predictor would have greatly
reduced the statistical power of our analyses, given that NoA values were available
for only 377 (out of 473) of our stimuli. We did conduct additional analyses exam-
ining NoA effects for this subset of words, and found that with the exception of
speeded pronunciation, NoA effects were not significant on any task (see also Yap
et al., 2011). However, it is possible that these results are specific to the items used
in the present study (i.e., concrete nouns).

recognition tasks (LDT, go/no-go LDT, speeded pronunciation,
PDT, SCT), extending earlier studies (e.g., Duñabeitia et al., 2008;
Pexman et al., 2008; Yap et al., 2011) which have considered fewer
variables across fewer tasks. It is noteworthy that semantic richness
effects could be reliably detected in all tasks of lexical processing,
even in speeded pronunciation, where meaning does not need to
be computed and there is no emphasis on familiarity-based infor-
mation (see Balota and Chumbley, 1984). More importantly, the
present analyses yield a particularly stringent and conservative
test of richness effects, given the large number of lexical vari-
ables controlled for and the fact that the unique predictive power
of each richness dimension was assessed while holding the other
four dimensions constant. However, as a counterpoint to the task-
generality of semantic richness effects, there was also evidence of
clear and systematic task-specificity. For example, SND effects were
reliable only in the standard and go/no-go LDT, while BOI effects
were absent in the PDT. We will now consider the implications of
these findings in greater detail.

SEMANTIC RICHNESS EFFECTS ARE TASK-GENERAL
In line with previous investigations, the present study provides
further evidence that semantic richness effects generalize across
disparate word recognition tasks, broadly consistent with the
idea that feedback activation from semantics to orthography and
phonology is a pervasive aspect of lexical processing (Hino and
Lupker, 1996; Pexman and Lupker, 1999; Pexman et al., 2001;
Siakaluk et al., 2008). In addition to examining established word
recognition measures (i.e., lexical decision, pronunciation, seman-
tic classification), we are the first to assess the influence of multiple
richness dimensions on newer paradigms such as the go/no-go
LDT and PDT. Researchers have suggested that the latter tasks
may help magnify the size of effects of interest by slowing down
the recognition process (PDT; Dufau et al., 2008) or by minimizing
the role of task-specific decision processes (go/no-go LDT; Perea

Table 3 | Estimates for lexical and semantic fixed effects parameters, along with p-values based on the t -statistic (n = 473).

Predictor variable LDT G/NG LDT Pronunciation PDT SCT

LEXICAL VARIABLES

Letters 5.94* 6.47* 7.28*** 34.16*** 17.87***

Morphemes −3.52 2.35 −5.86 −16.58 4.28

Log frequency −44.26*** −41.18*** −17.79*** −66.28*** −32.73***

N component 2.38 2.07 3.11 1.14 −2.56

LD component 2.66 7.90 8.77** −19.89
† −26.50***

SEMANTIC VARIABLES

Imageability −0.26*** −0.33*** −0.08* −0.35** −0.39***

BOI −5.25** −5.25** −4.03** −5.28 −8.30**

NS −15.71 −20.76* −5.91 −18.89 −0.22

SND −82.26* −68.88* −21.63 −78.64 −52.61

NF −2.22** −1.74* −1.18** −2.39
† −2.69**

Letters, number of letters; morphemes, number of morphemes; Log frequency (Brysbaert and New, 2009); N component, composite number of orthographic and

phonological neighbors (Yates, 2005); LD component, composite orthographic and phonological Levenshtein distance (Yarkoni et al., 2008); BOI, body–object interac-

tion; NS, log number of senses (Miller, 1990); SND, semantic neighborhood density (Shaoul and Westbury, 2010); NF, number of features (McRae et al., 2005); LDT,

lexical decision task; G/NG LDT, go/no-go lexical decision task; PDT, progressive demasking task; SCT, semantic classification task.

*p < 0.05; **p < 0.01; ***p < 0.001; † p < 0.10.
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FIGURE 1 | Partial effects plots of semantic richness effects, adjusted for

the median value of the other numerical predictors in the model, as a

function of task. 95% highest posterior density intervals are provided. Note.
BOI, body–object interaction; Senses, log number of senses (Miller, 1990);

SND, semantic neighborhood density (Shaoul and Westbury, 2010); Features,
number of features (McRae et al., 2005); LDT, lexical decision task; G/NG LDT,
go/no-go lexical decision task; PDT, progressive demasking task; SCT,
semantic classification task.

et al., 2002). Compared to the standard LDT (see Table 1), it is
clear that participants were indeed much slower on the PDT, and
also faster and more accurate on go/no-go LDT. However, there
was no evidence that these two tasks were particularly sensitive to
semantic richness effects (cf. Ferrand et al., 2011), compared to
the standard LDT. In general, our PDT results are compatible with
findings from a recent megastudy that compared performance
on lexical decision, pronunciation, and progressive demasking
for the same set of 1,482 monosyllabic monomorphemic French

words (Ferrand et al., 2011). In that study, Ferrand et al. reported
that progressive demasking performance was primarily influenced
by perceptual/visual factors such as number of letters, and that
the PDT did not provide substantive additional insights beyond
those provided by the LDT (but see Carreiras et al., 1997, who
reported opposite effects of neighborhood density, a measure of
orthographic richness, in the two tasks).

Although we have claimed that semantic richness effects
generalize across tasks, we need to carefully qualify this by
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acknowledging that not all effects are reliable in all tasks. Specifi-
cally, when a large number of lexical and semantic factors were
controlled for, the only two richness variables that produced
reliable (or borderline reliable) effects on every task were image-
ability and NF; word recognition was faster for highly imageable
words and words for which referents had more features. This
suggests that feedback from semantics to orthography during lex-
ical processing is most consistently and robustly mediated by
the imaginal and featural aspects of semantic representations.
Such a finding is also consistent with frameworks that model
semantics via a distributed attractor network (e.g., Plaut and
Shallice, 1993), which yields faster settling times for the seman-
tic representations of high-imageability or high-NF words, since
these are associated with the activation of more semantic feature
units.

It is also noteworthy that BOI effects (Siakaluk et al., 2008)
were significant in every task except the PDT; this task-generality
is consistent with recent work by Bennett et al. (2011). The
pervasiveness of BOI effects strongly supports the idea that the
relative availability of sensorimotor information associated with
a word contributes to lexical-semantic processing (see also Juhasz
et al., 2011), possibly through the recruitment of modality-specific
systems (see Hargreaves et al., 2012, for more discussion). Com-
pared to imageability, NF, and BOI, the other richness measures
showed more evidence of task-specificity. For example, SND pro-
duced reliable effects in the standard and go/no-go LDT, but
not in the other three tasks. Likewise, NS did not predict vari-
ance on any task except the go/no-go LDT. We will discuss these
intriguing between-task dissociations in greater detail in the next
section.

SEMANTIC RICHNESS EFFECTS ARE TASK-SPECIFIC
One of the most intriguing aspects of the semantic richness liter-
ature is how the strength and even direction of certain semantic
richness effects can be systematically and adaptively modulated
by the specific demands of a given lexical processing task (see
Balota and Yap, 2006). For example, as already observed by Pex-
man et al. (2008) and Yap et al. (2011), semantic variables col-
lectively account for relatively much more variance in the SCT,
compared to other tasks where semantic processing is not the
primary basis for a response. At a more fine-grained level, the influ-
ence of SND, which provides support for models which structure
semantics via lexical co-occurrence (e.g., Shaoul and Westbury,
2010), was evident in the two LDTs, but not in the other three
tasks. This replicates the pattern reported by both Pexman et al.
(2008) and Yap et al. (2011), and suggests that neighborhood
density effects are more reliable in tasks where familiarity-based
information is emphasized. Moreover, when a task (i.e., SCT)
requires participants to compute the specific meaning of presented
words, there might be a trade-off between the facilitatory effects
of close neighbors and inhibitory effects of distant neighbors
(Mirman and Magnuson, 2006), resulting in null neighborhood
effects.

Turning to NS, we were surprised to note that this variable pre-
dicted unique variance only in the go/no-go LDT (see Table 3),
given that previous studies (e.g., Borowsky and Masson, 1996;
Hargreaves et al., 2011) reported an ambiguity advantage using

the standard LDT. When we examined the zero-order correla-
tions between NS and RT, the relationships were clearly negative
(i.e., facilitatory) across all tasks. However, in the mixed effects
analyses, when lexical and semantic predictors were more strin-
gently controlled, NS reliably predicted additional unique word
recognition variance only in the go/no-go LDT, possibly because
performance on that task is inherently less noisy and contam-
inated by task-specific processing demands. We should clarify
that ambiguity was operationally defined in the present study
using WordNet (Miller, 1990) NS. However, in this metric, the
multiple senses of a word may or may not be related to one
another.

Rodd et al. (2002) have argued that it is important to distin-
guish between words with multiple related senses (i.e., polysemes,
e.g., TWIST) and words with multiple unrelated meanings (i.e.,
homonyms, e.g., BARK). Interestingly, Rodd et al. reported that in
lexical decision, there is an ambiguity advantage for polysemes
(related senses) but an ambiguity disadvantage for homonyms
(unrelated senses; see also Klepousniotou and Baum, 2007). This is
consistent with the idea that the semantic richness of a representa-
tion is reinforced by multiple related senses but is undermined by
multiple unrelated senses through lexical competition (see Rodd
et al., 2002, for more discussion). Because our measure of ambi-
guity does not distinguish between related and unrelated senses, it
is possible that there is a trade-off between the facilitatory effects
of related senses and the inhibitory effects of unrelated senses. Of
course, it is also possible that this particular metric of NS (count-
ing the number of dictionary senses), despite its objectivity, is a
relatively coarse proxy for variability in a word’s core meaning
(Hoffman et al., 2011).

Hoffman et al. have developed an intriguing new ambiguity
measure, semantic diversity (SD), using lexical co-occurrence data.
Although a full description of their approach is beyond the scope
of the present report, they essentially considered all the contexts a
word could appear in and computed the similarity between these
contexts. A word that can appear in very diverse linguistic contexts
(e.g., PART) is considered to be high-SD (i.e., high in ambiguity),
while a word that can only occur in a restricted range of contexts
(e.g., GASTRIC) is considered low-SD (i.e., low in ambiguity).
Interestingly, although the correlation between NS and SD is pos-
itive and moderate in strength (r = 0.41), words judged explicitly
to have few senses nevertheless varied greatly on their SD values
(Hoffman et al., 2011), suggesting that this is a more sensitive mea-
sure of ambiguity that could be exploited by researchers in future
work.

An important limitation of the present work is the item set used.
Several of the semantic richness measures are available for only a
limited set of items; these tend to be words (nouns) that refer to
highly concrete referents. As such, although we examined a large
set of these items our results may not necessarily generalize to
other item sets. Future research should examine semantic richness
effects in other word sets and should extend the study of seman-
tic richness to other word types, such as verbs, in order to gain
additional insights about lexical-semantic representation. Future
work can also be directed toward exploring non-linear effects of
semantic richness dimensions, and possible interactions between
these variables.
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CONCLUSION
The present study examined the influence of multiple semantic
richness dimensions across various tasks of lexical processing. The
fact that semantic richness effects could be reliably detected on all
tasks attests to their robustness and generality. At the same time,
there was ample evidence supporting the multidimensional nature
of semantic richness and demonstrating that these dimensions are
selectively modulated by task demands. In order to be more fully
specified, emerging theories of semantic representation need to

take into account this complex interplay between lexical-semantic
processes and task-specific mechanisms.
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