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The behavioral phenomena of sensory attention are thought to reflect the allocation of a lim-
ited processing resource, but there is little consensus on the nature of the resource or why
it should be limited. Here we argue that a fundamental bottleneck emerges naturally within
Bayesian models of perception, and use this observation to frame a new computational
account of the need for, and action of, attention – unifying diverse attentional phenomena in
a way that goes beyond previous inferential, probabilistic and Bayesian models. Attentional
effects are most evident in cluttered environments, and include both selective phenom-
ena, where attention is invoked by cues that point to particular stimuli, and integrative
phenomena, where attention is invoked dynamically by endogenous processing. However,
most previous Bayesian accounts of attention have focused on describing relatively simple
experimental settings, where cues shape expectations about a small number of upcoming
stimuli and thus convey “prior” information about clearly defined objects. While opera-
tionally consistent with the experiments it seeks to describe, this view of attention as prior
seems to miss many essential elements of both its selective and integrative roles, and
thus cannot be easily extended to complex environments. We suggest that the resource
bottleneck stems from the computational intractability of exact perceptual inference in
complex settings, and that attention reflects an evolved mechanism for approximate infer-
ence which can be shaped to refine the local accuracy of perception. We show that this
approach extends the simple picture of attention as prior, so as to provide a unified and
computationally driven account of both selective and integrative attentional phenomena.
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INTRODUCTION
A cornerstone of cognitive science is the idea that a process called
“attention” dictates which incoming information is fully processed
by a limited neural resource. However, attempts to discover exactly
why the brain needs to selectively filter its input, and what the
mechanisms and effects of this selection are, have floundered in a
sea of heterogeneous effects. This has led to assertions that a sin-
gle neural resource allocated by attention is not a useful concept
(Driver, 2001; Zelinksy, 2005). By way of introduction, we briefly
review the behavioral, physiological, and theoretical results that
support this assertion, highlighting two different themes of atten-
tion research, and some of the debate that has gathered around
them. In the main body of the paper we present a probabilistic
framework under which apparently disparate resource limitations
and attentional effects might be unified at the computational level.
We exploit the idea of perception as Bayesian inference, and iden-
tify a general limitation in the brain’s ability to perform ideal
inference over the multitude of features present in a complex
scene. We then suggest that attention acts as an adaptable Bayesian
hypothesis to locally improve the impoverished stimulus repre-
sentations that result. (More technically, we argue that the true
posterior over features is intractable due to the strong correlations
induced by “explaining away,” and that this intractability forms
an algorithmic bottleneck. Inference must thus be approximated,
and we argue that a natural and biologically plausible approxima-
tion may be a factored one. In our view, attention introduces an
additional term to this product, and thus shapes the result of the

approximation.) Finally, we illustrate this framework by modeling
two key groups of attentional effects in a simple, generic setting.

A DIVERSITY OF ATTENTIONAL EFFECTS
Despite James’s (1890) contention that “Everyone knows what
attention is,” metaphors, and models for attention are almost as
numerous as its documented effects. We focus on two apparently
complementary roles that connect two substantial threads of atten-
tional research: that of a selective filter, adjudicating on access to
a sensory- or cognitive-processing bottleneck; and that of an inte-
grative mechanism, necessary for the correct binding of features.

Attentional selection
One of the first theoretical metaphors for attention came from
Broadbent’s influential (Broadbent, 1958) “filter theory,” which
built on the contemporary view of the mind as a serial informa-
tion processing device to suggest that an attentional filter acted at
its very earliest stages, limiting the physical sources from which
information would be fed to the perceptual pipeline. Although
consistent with early “shadowing” experiments in which listeners
were able to neglect entirely sounds presented to one ear when they
were attending to a signal in the other (Cherry, 1953), this “early
selection” view was challenged by the observation that seman-
tic attributes only identifiable after substantial processing could
also affect selection – for example, the listener’s own name would
often “pop out” of the unattended stream (Moray, 1959; Treisman,
1960). This motivated a response in the form of “late selection”
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theories in which all inputs are analyzed fully, but only pertinent
inputs are perceived (Deutsch and Deutsch, 1963; Norman, 1968;
Duncan, 1980). Here, attention plays a very different role, select-
ing stimuli for access to consciousness rather than access to basic
sensory processing. Both of these approaches accounted for only
some of the data, faltering at the requirement to identify a single
point of selection in a serial processing stream (see for example
Kahneman and Treisman, 1984; Johnston and Dark, 1986; Pashler,
1998; Driver, 2001).

The single filter approach was challenged by “two-process” the-
ories (Neisser, 1967) in which a pre-attentive, parallel processing
stream can guide the allocation of an attention-demanding, deeper
processing stage; and attenuation theories in which inputs have a
graded likelihood of passing to later processing (Treisman, 1960,
1969). An influential proposal for reconciling early and late selec-
tion is the perceptual load theory of Lavie and Tsal (1994), in
which attention only selects when limited perceptual resources are
overloaded. Experiments supporting this idea suggested that the
widespread challenges to early selection were in part due to the
low perceptual load of the paradigms used to search for it (Lavie
and Tsal, 1994; Lavie, 1995). However, it remains challenging to
motivate computationally a failure to engage selective processing
under low load settings even when such selection would ben-
efit performance, raising the possibility that these experiments
in fact reflect a basic consequence of distributed coding rather
than variations in selection (Yu et al., 2008; Dayan and Solomon,
2010).

As Broadbent’s original model was picked apart, attention
researchers moved toward a picture in which a serial “filter” was
just an abstract metaphor for a variety of selection processes. Selec-
tion can occur on the basis of low-level physical attributes, or
high-level semantic attributes deemed pertinent by memory or
conscious control. “Bottom-up” processing can influence “top-
down” processing, but there is not always a clear distinction
between the two – neural processing is distributed and recurrent
rather than purely serial. Information can be processed to a variety
of “depths,” and attention gates access to different kinds of pro-
cessing – from simple physical analysis to conscious awareness – in
different situations. Throughout this research there is an enduring
commitment to the concept of a limited resource, though as the
field moved away from the idea of a single informational bottle-
neck, a sense of exactly what limitation it was that necessitated
selection tended to be replaced by a catalog of conditions under
which selection occurred (for reviews, see Kinchla, 1992; Wolfe,
1998; Driver, 2001).

Attentional integration
In the 1980s a focus on the “binding problem” produced theories
that offered a more nuanced functional role for attention. In its
most general form, the binding problem asks how the anatom-
ically dispersed neural processing of different components of a
task can be coordinated (Gray, 1999). The most prominent visual
aspect of this problem is how features represented in different
cortical areas are appropriately integrated or “bound” into com-
posite objects (see Treisman, 1998; Robertson, 2005). Treisman
and Gelade (1980) proposed that the effect of attention was to
solve the binding problem in a local “spotlight”-like region, gluing

together features into objects. Experimental support came from
attentional modulation of misbinding (or “illusory conjunctions”;
Prinzmetal, 1981; Treisman and Schmidt, 1982; Nissen, 1985); and
from visual search experiments, in which search for a target defined
by a unique conjunction of features seemed to require the sequen-
tial processing of a limited number of items at a time (Treisman,
1977, 1982, 1988; Treisman and Sato, 1990).

The origins of the binding problem lie in neurophysiologi-
cal evidence for cortical specialization – different features are
processed in different regions of the brain (Zeki, 1976, 1978;
Maunsell and Newsome, 1987; Wade and Bruce, 2001) – and for
the hierarchical broadening of receptive fields which may degrade
information about feature-location. This combination of anatom-
ical separation and spatial imprecision is thought to complicate the
association of features which belong to the same objects. Thus, in
Treisman’s “feature integration theory” (FIT), “feature maps” cor-
responding to specialized cortical areas (see Treisman and Gelade,
1980) register the presence of features but not their locations; with
an attentional spotlight, presumably originating in a top-down
signal from fronto-parietal areas (see Itti and Koch, 2001, for dis-
cussion of this correspondence), resolving the resultant ambiguity
of binding in a manner never completely specified.

Despite successes, FIT also faced many challenges. The dis-
tinction between serial, attention-demanding search and parallel
pre-attentive analysis has been repeatedly contested (Pashler, 1987;
Geisler and Chou, 1995; Palmer, 1995; Eckstein, 1998), as search
behavior has been found to depend on target-distractor similar-
ity (Duncan and Humphreys, 1989; Palmer, 1994; Verghese and
Nakayama, 1994), eccentricity (Carrasco et al., 1995), and lateral
inhibition and masking (Wertheim et al., 2006); and to be guided
by both bottom-up and top-down pre-attentive processes (Wolfe
et al., 1989). Questions have also been raised about the analysis
of illusory conjunction experiments, and the role of memory and
report mechanisms in apparent failures of binding (Neill, 1977;
Johnston and Pashler, 1990; Butler et al., 1991; Ashby et al., 1996;
Saarinen, 1996b,a; Donk, 1999, 2001; Prinzmetal et al., 2001).
Indeed, some have argued that there is in fact no binding problem
(Ghose and Maunsell, 1999), arguing that the cortex, rather than
consisting of a parallel array of simple feature maps as FIT would
suggest, embodies a hierarchy of increasingly complex representa-
tions that at the top can correspond to complex objects such as a
person or tool (Barlow, 1972). Researchers using this principle to
build models for invariant object recognition suggest that their
success implies that “high-level” representations for all objects
would suffice, leaving attention with no role in binding per se (for
example, Treisman, 1995; Riesenhuber and Poggio, 1999); though
others have suggested that there would still be a role for a more
complex form of object-based attentional selection (Tsotsos et al.,
1995).

Despite these problems with the interpretation of the classic
visual search and illusory conjunction paradigms, the impression
remains that feature integration taxes a neural resource of limited
capacity, and that attention assists with the interpretation of clut-
tered visual scenes (Desimone and Duncan, 1995; Pelli et al., 2007).
But once again, it has been difficult to clearly identify the nature of
that neural resource, and the mechanism by which attention aides
its allocation.
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Unification?
So what is “attention”? The metaphors above, as well as others
not discussed, have been built on separate streams of experiments.
Although each has been at least partly successful in its own domain,
agreement on a single account of the many different phenomena
has proven elusive (Driver, 2001; Zelinksy, 2005). Attention might
indeed be a single term misapplied to a heterogeneous collection
of phenomena; however, it is also possible that this failure to come
to a unified understanding stems from the historical emphasis,
which has been more on the putative effects of attention rather
than on the nature of the resource limitation which necessitates it.

Some have argued that many of the effects ascribed to attention
may instead be explained by the impact of uncertainty within tra-
ditional sensory models (Pelli, 1985). This is perhaps most obvious
in the simple Posnerian task, where the location of an upcoming
stimulus is signaled to the observer, leading to improvements in
judgments of its features. It is possible that such improvements
derive solely from the cued reduction in positional uncertainty;
an idea investigated in existing Bayesian models described below.
Although this simple interpretation of uncertainty reduction sits
uncomfortably with experiments in which the display remains
constant but behavior is altered by different task demands – for
example when two stimuli always appear and the cue only signals
which of them must be attended – one might still see an attentive
mechanism as reducing noise, excluding distractors or empty loca-
tions that could otherwise be confused with the target, or reducing
spatial uncertainty. Again, accounts of many observed phenomena
would flow naturally from this view (Cohn and Lasley, 1974; Shiu
and Pashler, 1995; Lu and Dosher, 1998, 2008; Morgan et al., 1998;
Dosher and Lu, 2000a,b; Lu et al., 2002; Baldassi and Burr, 2004).

The unifying potential of this approach is clear, but it is
nonetheless incomplete. If “attention” is able to reduce uncer-
tainty or noise, why does that noise corrupt perception in the
first place? The energetic cost of noise suppression may play a role,
but, by itself, metabolism cannot explain why attentive process-
ing seems to have limited concurrent scope, rather than applying
more globally for limited periods of time. And by what algorithmic
mechanism might uncertainty be manipulated?

Below, we develop a new framework that offers resolutions to
these challenges. The framework relies on a model of Bayesian
perception in potentially cluttered environments, and so we first
review the Bayesian approach.

BAYESIAN MODELS OF PERCEPTION
Bayesian models view perception as a process of probabilistic infer-
ence, fusing Helmholtz’s (1856) theories of unconscious inference
on the one hand, with the likelihood-based “internal noise” mod-
els of signal detection theory on the other. Many are normative in
structure, with accounts of perceptual phenomena emerging natu-
rally by the consideration of optimal inference – that is, the attempt
to infer the physical state of the world from the sensory neural
activity it evokes – within appropriately constrained probabilistic
models (see, for example, Knill and Richards, 1996). Both sen-
sory neural responses (Tolhurst et al., 1983) and simple perceptual
decisions (Green and Swets, 1989) are variable, even when derived
from apparently identical physical stimuli, suggesting that noise
pervades the early sensory system. In addition, the goal of per-
ceptual inference is often ill-posed (Helmholtz, 1856; Marr, 1982),

making the mapping even from hypothetical noiseless early neural
activity to an optimal perception ambiguous. A simple example
of this ambiguity is the confusion between the distance and size
of a faraway object, or, more generally, the many possible three-
dimensional configurations of objects that give rise to the same
two-dimensional pattern of light on the retina. Noise and ambi-
guity work together to make perceptual inference uncertain. In the
Bayesian view such uncertainty is properly quantified by distribu-
tions that represent degrees of belief, and is manipulated using the
usual rules of probability. Perception and action are then derived
from such probabilistic representations.

Here we adopt a slightly elaborated Bayesian framework devel-
oped for the treatment of cue combination in cluttered settings
(Sahani and Whiteley, 2011). The state of the world is repre-
sented at two levels: first, at a “high–level,” through a description
of the objects present, their properties and their relationships; and
second at the “mid-level” of the spatial and temporal distribu-
tion of “features” engendered by these objects. This description
is motivated by vision, but a similar approach may be taken for
the other senses with space replaced by a modality-appropriate
axis. This separation of levels represents a computationally useful
structure in the hierarchy of sensory generation. Sensation is most
proximally related to the features present, and these features are
in turn derived from the objects that appear. As different possible
objects may share potential features it makes sense to represent
these features explicitly within the model. Indeed, similar hierar-
chies appear in many models used in computational graphics and
vision,and represent in part a practical strategy for efficiently mod-
eling variation in image structure in relation to particular states of
the world. The sensory activity, represented by s, reflects the true
pattern of features in the world imperfectly1, with ambiguity and
noise that are captured by the probability distribution or likeli-
hood p(s|features). An observer has knowledge of both the typical
patterns of objects in the world, and of how these objects generate
features. This knowledge is encoded in the “prior” probability dis-
tributions p(objects) and p(features|objects). Inference, then, is a
simple matter of applying Bayes rule to find the “posterior”:

p
(
objects|s) =

∫
features

p
(
objects, features|s)

=
∫

features

p (s|features)

p(s)
p
(
features|objects

)
p
(
objects

) (1)

Whilst this posterior over objects is often the distribution of
greatest ethological significance, experimental studies of “mid-
level” perception frequently emphasize the posterior over features
instead, which is obtained by replacing the integral over features
by one over objects. Models of hierarchical inference (Figure 1)
may naturally and simultaneously yield estimates of the posteriors
at these different levels.

The term p(s) in the denominator of equation (1), sometimes
called the “Bayesian evidence,” ensures that the posterior is a prop-
erly normalized probability distribution over the possible states of

1In our cue combination work we have distinguished between sensory activity and
“cues” derived from that activity that carry information about single features. This
distinction is not crucial to the discussion here, and so we dispense with it; using s
to represent both proximal sensation and cues derived there from as appropriate.
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FIGURE 1 | Simple schematic of the Bayesian view of hierarchical

perception. Sensory activity s is generated by a set of unknown
features belonging to an unknown set of objects. The relationship
between these elements in the world and s is captured by a probability

distribution. The brain learns to use a recognition model to find a
posterior belief distribution about the objects and features based on s,
which incorporates prior knowledge of the environment collected
during learning.

the world. However, when more than one generative model of
the world is to be considered, it plays a larger role, hinted at by
the name (c.f. Mackay, 2004). In that case, a separate calculation is
performed for each model, giving a separate posterior distribution,
and a separate value of p(s). This value is the “marginal” proba-
bility of obtaining the sensory information s under the model in
question (it is also called the “marginal likelihood”). We might ask
what is the probability that each of our possible models is correct.
This is again answered by Bayes rule, but where we now consider
distributions over models of the world, rather than single states. In
this application of Bayes rule, the evidence for each model plays
the role that the likelihood of each state did in equation (1). If the
models are all equally likely a priori, then the evidence gives the
unnormalized probability that each is correct a posteriori.

A substantial body of behavioral evidence has accumulated in
support of the Bayesian characterization of perception, showing
that observers optimally incorporate uncertainty during cue com-
bination (Jacobs, 1999; Deneve et al., 2001; Landy and Kojima,
2001; Ernst and Banks, 2002; Knill and Saunders, 2003; Hillis et al.,
2004), motor planning (Trommershauser et al., 2003, 2005; Kord-
ing and Wolpert, 2004; Saunders and Knill, 2004, 2005; Tassinari
et al., 2006; Seydell et al., 2008), and single-modality percep-
tual decision-making (Landy et al., 2007; Whiteley and Sahani,
2008). There is also evidence that perception is influenced by prior
knowledge matched to the evolutionary environment (Geisler
et al., 2001; Weiss et al., 2002; Schwartz et al., 2005; Stocker and
Simoncelli, 2005, 2006). These successes have prompted some to
propose that the machinery of Bayesian inference is explicit within
neural circuitry (see Knill and Richards, 1996; Knill and Pouget,
2004; Friston, 2005; Doya et al., 2007), and theoretical work has
focused on possible neural implementations for the encoding and

manipulation of probability distributions (Pouget et al., 1998,
2003; Eliasmith and Anderson, 2003; Sahani and Dayan, 2003;
Ma et al., 2006). Whilst such an explicitly probabilistic neural cal-
culus might be most flexible, the possibility remains that Bayesian
behavior might emerge in ethological settings through implicit
calculations, rendering Bayes optimal decisions without explicit
representation of Bayesian quantities. We will express our pro-
posal in this paper in terms of explicit probability distributions,
because this makes exposition clearer and helps to provide motiva-
tion. However the computational behavioral analysis we describe
is largely agnostic to implementation. The same computational
considerations apply whether probabilistic calculations are made
explicitly or implicitly, and the same solutions must be considered.

ATTENTION IN THE BAYESIAN FRAMEWORK
Dayan and Zemel (1999) have argued that, to the extent that
attentional cues reduce perceptual uncertainty by manipulating
expectations (Pelli, 1985), their effect may best be seen in terms
of the incorporation of a Bayesian prior into perception. Con-
sider the simple experiment illustrated in Figure 3A, where a
pre-stimulus cue to location improves judgments of stimulus ori-
entation. An initial representation (“V1”) is hypothesized to carry
a sensory-derived likelihood over the location, x and orientation,
o, of the object: p(s|o,x). A second stage (“V4”) then integrates
this information to obtain a marginal posterior over orientation
alone: p(o|s), which guides the observer’s judgment. Prior infor-
mation about the location of the stimulus can be used to limit
the range of locations that must be considered when determining
the orientation. In Dayan and Zemel’s (1999) example, this prior
was set to 0 outside a “spotlight” region determined by the cue,
effectively reducing the limits of the integration over space to an
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attention-defined region Ra:

pa (o|s) ∝
∫ ∞

−∞
dx p (s|o, x) pa(x) =

∫
Ra

dx p (s|o, x) (2)

If Ra is centered on the true location of the stimulus, it acts to
reject potential activity away from the stimulus that might oth-
erwise contribute noise and uncertainty to the estimate of o.
This scheme was developed further by Yu and Dayan (2004) who
proposed an explicit neural representation of the mathematical
quantities involved, and relaxed the limited support of the atten-
tional focus to allow for a uniform prior probability outside the
central peak region. They found that many features of their model
neuronal responses matched experimental reports. Furthermore,
by considering explicit temporal integration of information in
combination with a likelihood threshold they were also able to
model the distribution of reaction times in this task.

These models provide the Bayesian analog to the theories of
attentional manipulation of noise cited above. In this simple case,
the interpretation of the cue as conveying prior information about
a following stimulus is normatively accurate; but the link grows
more tenuous when the cue signals not the stimulus but the task
(for example, when two oriented patches appear, but responses
are required for only one). Rao (2005) has suggested that other
attentional phenomena may indeed be captured by representing
the action of cued attention as a prior within a generative model;
but leaves unanswered the key question of why this should be so
when a modified prior is normatively inappropriate.

Below, we describe a quite different rationale for the action of
attention on inference, which extends its scope to situations in
which the cue carries no true prior information, and indeed to the
role of attention in natural perception where its allocation is driven
by internal processing rather than external cues. The construction
of this rationale begins with an hypothesis about the nature of the
resource limitation which attention must overcome.

A NEW APPROACH TO ATTENTION IN BAYESIAN
PERCEPTION
Our novel approach to understanding attention rests on the basis
that optimal probabilistic inference in the context of a natural per-
ceptual task of realistic complexity is computationally intractable
(Sahani and Whiteley, 2011) and, in the face of this complexity,
any feasible allocation of perceptual resources is necessarily lim-
ited. Thus an efficient strategy must rely on approximation. This
process of approximation forms a bottleneck: albeit an implicit
computational one rather than an explicit architectural one. Our
view is that the role of attention is to locally refine the nature of the
approximation, focusing computational resources to suit it to the
task and context at hand. As we will see, this computational view
has the potential to unify the apparent heterogeneity of attentional
effects.

COMPUTATIONAL LIMITATIONS
Scenes in the real-world comprise many objects with many con-
stituent features, and thus a true posterior belief about the state of
the world is a complex joint probability distribution over a multi-
tude of variables. The resources needed to compute and represent

this posterior distribution grow exponentially in the extent of the
dependencies between these variables.

Dependencies between sensory features emerge systematically
in several ways from generative models that express the causal
structure of the world. Some dependencies are expressed directly
by the generative prior. For instance, the extent of an object (in
space for visual or somatosensory input; in time and frequency
for sound) determines a common extent for many of its elemen-
tary features, thus introducing a strong positive correlation in the
value of such features over the typical object size. Conversely, prior
beliefs that objects appear infrequently or sparsely, and take on
a limited set of feature values when they do appear, may intro-
duce anti-correlation between features – if the ball is red it won’t
also be green. The identity of coincident features may also be
guided by natural statistics, for example a luminance-defined tex-
ture that corresponds to grass is very likely to be green, yellow, or
brown. Dependencies also emerge systematically through the like-
lihood as well as the prior. In particular, when multiple features
of the world combine to affect the sensory observations together,
a fundamental phenomenon of probabilistic reasoning known as
“explaining away” (Pearl, 1988) induces structure in the posterior
even if the prior is entirely independent. Intuitively, selecting one
putative cause of an observation from amongst many possibili-
ties “explains away” the observation, making the competing causes
less likely. This logic leads to posterior anti-correlation between
feature variables associated with the alternative causes.

The ubiquity of these dependencies means that when parsing a
realistic scene the brain cannot have the resources to represent the
full posterior, and therefore cannot act optimally in all respects. In
the language of complexity theory (Papadimitriou, 1994; Tsotsos,
2001), representing and computing over large joint distributions
is “algorithmically intractable.”

PROBABILISTIC MODELS FOR MULTIPLE OBJECTS
The complexity of the inferential problem can readily be observed
in the probabilistic structures necessary to express the relevant
distributions. As we have before (Sahani and Dayan, 2003; Sahani
and Whiteley, 2011), we consider vision as the canonical example.
Visual features – orientations, colors, textural elements, direction
of motion, depth, and so on – each assume a potential value at each
point in visual space. Indeed, some may potentially take on more
than one value simultaneously, as is the case for transparency of
motion, or form (Sahani and Dayan, 2003). Thus, at the level of
these features, a state of the world must be described by a series
of “map” functions, mk(x,θk). The superscript k labels the feature
that is being mapped. The function mk indicates the “strength”
with which the feature takes on value θk at location x. In the
case of motion, for instance, this strength might correspond to
“motion energy.” For other features it may depend on color satu-
ration or luminance contrast. Clearly such functions easily express
the distribution of features over space. Furthermore, the strength
mk(x,θk) may be non-zero for more than one feature value θk at
the same location, thus capturing potential transparency (or“mul-
tiplicity” in the language of Sahani and Dayan, 2003). A posterior
belief distribution based on sensory data s over a scene decom-
posed into K feature dimensions would therefore extend over K
such maps, each expressing a possible spatial distribution of a
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particular feature:

p

({
mk

(
x, θk

)}K

k=1

∣∣∣s) (3)

Having such functions defined over the spatial location of particu-
lar feature values has important representational, computational,
and biological properties. These functions roughly correspond
to the “feature maps” invoked in many computational models
of attention, which provide a compact and flexible representa-
tion of a complex scene. Pairing features with space is important
because the two are intimately connected – all features are spatially
distributed. This notation also corresponds to observed prop-
erties of cortical neurons – at the simplest level, they represent
something about the spatial location of at least one feature. Pop-
ulations that respond to more than one feature participate in the
encoding of distributions over several maps, and various levels of
uncertainty over location and feature value can be represented by
changing the form of the distribution. Sahani and Dayan (2003)
give a biologically plausible proposal for how populations of neu-
rons could represent these“doubly distributional”representations,
which could easily be extended to the generalized feature map case
presented here.

THE STRUCTURE OF APPROXIMATION
To compute and represent all of the dependencies between feature
map values for all the different features, and for all the possible
values of those features at all locations, is a formidable task. Even
in the simple discretized two-feature setting we consider below, a
complete description of the spatial distribution of features is a 162-
dimensional vector. Without constraints, the need for resources to
represent a full joint probability distribution on these maps grows
exponentially with the dimensionality of the space. Even with the
constraints imposed by realistic priors and likelihood functions,
the immensity of the space precludes tractability.

Thus, the internal model of the posterior is forced to be an
approximation to the true value. We write

q

({
mk

(
x, θk

)}K

k=1

)
∼ p

({
mk

(
x, θk

)}K

k=1

∣∣∣s ) , (4)

where q(·) is the approximating distribution, and the sym-
bol ∼ represents the operation of approximation. There are two
features of this approximation to consider – first, what form
q(·) takes and how it differs from p(·); and second, how q(·) is
computed.

One common probabilistic modeling approach to alleviate
intractability is to use a factored approximation, by which q(·)
is restricted to be a product of a number of component distrib-
utions each defined over a small collection of feature values. The
factored distribution thus approximates the structure of depen-
dencies, both positive and negative, between these collections (see,
e.g., Mackay, 2004). In our setting, a sensible factorization might
separate the different feature maps:

q

({
mk

(
x, θk

)}K

k=1

)
=

K∏
k=1

q
(

mk
(

x, θk
))

, (5)

or might extend over limited conjunctions of features, and might
perhaps also limit the extent of spatial correlations modeled. For
most proposed neural codes of distributions such a factorization
would result naturally from the limited spatial tuning and feature
separation of neural responses2. Note that by “factored” we do not
mean to imply that the representation is necessarily “factorial” –
that is, the sets of variables appearing in each factor need not be
disjoint. An example of a non-factorial representation would be
one in which neuronal receptive fields spanned conjunctions of
features, with single feature dimensions appearing in more than
one conjunction: for instance, one population of cells might be
tuned to color and orientation, and another to orientation and dis-
parity. For simplicity, however, we will continue to use the factorial
form of equation (5) in the remainder of this paper.

To compute an approximation that gives the best match to the
true posterior, a sensible approach is to minimize (within con-
straints) a distance measure between the two distributions. Here
we use the Kullback-Leibler (KL) divergence KL[p(·)||q(·)], which
results in an approximation covering as much of the true distribu-
tion as possible, rather than approximating it more finely within a
limited region (Minka, 2005). This seems intuitively appealing
for a brain that often needs to respond to the gross structure
of stimuli across the visual field. Our challenge, then, will be to
describe how this generality interacts with the narrower focus
of attention. The unconstrained minimum of KL[p(·)||q(·)] is
achieved when q(·) = p(·). Thus, q(·) is only an approximation
because of constraints that prevent complete minimization. One
constraint is structural: p(·) may not fall in the class described
by equation (5), in which case the factored q(·) cannot reach the
true minimum. A further constraint is algorithmic. For general
distributions p(·) which are intractable to compute exactly, the
minimum-divergence factored approximation is also intractable.
Again, appealing to the theory of probabilistic modeling, a family
of algorithms including belief propagation and expectation prop-
agation (see Minka, 2005, for a review) approaches the minimum
by iteratively minimizing local versions of the KL divergence3.
In our simulations below we use a particularly simple version of
these algorithms. Some recent work has speculated about how
such algorithms might be implemented by neurons (Rao, 2007;
Deneve, 2008; Steimer et al., 2009). Alternatively, the brain might
learn during development to compute an approximate recognition
model (see, e.g., Hinton et al., 1995). In all of these cases, the prior
and likelihood are encoded implicitly in an inferential machinery

2“Distributed” codes, (e.g., Sahani and Dayan, 2003), and “energy” codes, (e.g., Hin-
ton and Brown, 2000; Rao, 2004; Ma et al., 2006) are essentially complementary
representations; the former encoding through the mean parameters and the latter
through the natural parameters of similar exponential family distributions. It thus
comes as no surprise that they have essential computational properties in common.
Sampling codes could, in principle, encode arbitrary joint distributions using neu-
rons with limited receptive fields. However, the issues of computational tractability
would apply to the generation of suitably correlated samples, suggesting that even
here the effective representation might remain factored.
3These are different to the most common form of “variational” approximation,
in which the opposite divergence KL[q(·)||p(·)] is minimized over a factorial q(·).
Much of our analysis would go through with such a variational approach, or indeed
with other schemes of approximation. Nonetheless, we see the factorized (but
non-factorial) approximation and the minimization of KL[p(·)||q(·)] as appealing
choices in the neural context.
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that approximates the posterior without ever explicitly represent-
ing it – a crucial point, as representation of the true posterior is
exactly the intractable step that we suggest is to be avoided.

To summarize, for an approximation that factors over feature
maps, q(·) approximates the product of the prior and likelihood,
and is found by minimizing (within algorithmic constraints) the
KL divergence between this product and the factored distribution:

K∏
k=1

q
(

mk
(

x, θk
))

∼ 1

Z
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∣∣ {mk

(
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(6)

= argmin
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)∥∥∥∥∥
K∏

k=1

q
(

mk
(

x, θk
))]

, (7)

where the constant Z normalizes the product of likelihood and
prior.

THE ACTION OF ATTENTION
While the iterative procedure that arrives at the approximation of
equation (7) may be dynamic, the approximation itself is not. It
is defined by the generative model and the sensory observations;
not by the task, or by volitional control. How, then, do we see the
action of attention on this approximation? Our goal is to have
the attentional mechanism act to locally refine the approximate
posterior. One simple hypothesis would be that attention dictates
the relative allocation of iterative updates; but this would slightly
beg the issue – there is little fundamental difficulty with executing
updates everywhere in parallel. Instead, we suggest that attention
imposes parameterized local “hypotheses” about the true distrib-
ution, most likely through “top-down” neural connections within
the sensory system. The approximated posterior is then adjusted
to match as well as possible the product between the likelihood,
the prior and this hypothesized distribution [compare equation
(6) to equation (8)]:

K∏
k=1

qa

(
mk
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x, θk

))
∼ 1

Za
p
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s
∣∣ {mk

(
x, θk

)}K

k=1

)

× p
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(
x, θk

)}K

k=1

)
pa

({
mk

(
x, θk

)}K

k=1
; ra

)
. (8)

The incorporation of this attentional hypothesis has two effects.
First, it acts as a modified, but adjustable, “prior,” thus directly
affecting the posterior. Second, and more important in our view,
it modifies the region in which the approximation is matched to
the true posterior. Indeed, in principle the attentional term might
not carry normative information about any reasonable belief at
all and it may be factored out of the approximated posterior once
inference has been performed; but, even so, it would leave a modi-
fied approximation that was more accurate where the value of the
attentional hypothesis was high. Thus, it does not replace the pre-
attentive, normative prior – a prior which we imagine would have

been embodied in the bottom-up process of pre-attentive infer-
ence and thus be difficult to remove. For now, we will assume that
the approximated posterior does indeed incorporate the attention
hypothesis as an additional prior, but the alternative approach will
be explored further in the Discussion.

The attentional hypothesis in equation (6) Pa(·;ra) is para-
meterized by a vector ra, which reflects the internal state of the
attention-directing systems of the brain, embodied in their neu-
ronal firing rates, or perhaps some other aspect of activity. The
introduction of this new term alters the normalizing constant in a
way that depends on the hypothesis:

Za =
∫

{mk }
p

(
s
∣∣ {mk

(
x, θk

)}K

k=1

)
p

({
mk

(
x, θk

)}K

k=1

)
× pa

({
mk

(
x, θk

)}K

k=1
; ra

)
, (9)

where the integral is taken over all possible values of the fea-
ture maps. The value of this integral may be seen as a version
of the Bayesian Evidence (Mackay, 2004) in favor of an attentional
hypothesis Pa(·;ra), and reflects the compatibility between the
hypothesis and the sensory observations. It will play an important
role in the dynamic refinement of attention within our proposal.

The attentional hypothesis itself must be formed and encoded
within the brain, and is thus subject to the same general resource
limitation as the posterior. It would therefore be unreasonable to
propose that it represents complex conjunctive relationships across
the visual scene. Instead we suggest it comprises one (or possibly
a small number) of local modes. This concurs with behavioral
observations that attention tends to be spatially limited, observa-
tions that have previously contributed to the discrete “bottleneck”
and “spotlight” metaphors discussed above. Behavioral observa-
tions also support distinct modes of spatial and feature-based
attention (McAdams and Maunsell, 2000; Martinez-Trujillo and
Treue, 2004; Maunsell and Treue, 2006), and the architecture of
the visual system suggests that these signals would be processed
in different ways. These observations suggest that the hypothesis
may be further factored into spatial and featural components.

The value of such a locally defined attentional term lies in its
ability to guide sequential exploration of alternative accounts of
local regions of the sensory data. Consider the dependencies in the
true posterior that are induced by explaining away. If two different
combinations of features provide roughly equally good but mutu-
ally exclusive causal explanations of the sensory data, a factored
approximation will assign appreciable probability to all feature
values in both combinations, with independence between the fea-
ture dimensions. As such, it does not have the representational
power to distinguish the valid accounts from configurations in
which features from the two alternative combinations are mixed.
This is the situation encountered in a later section on feature bind-
ing and misbinding. However, if an attentional hypothesis focuses
on the value of one feature in one combination, the same factored
approximation will concentrate probability on the corresponding
features of that same combination at the expense of the other.
This relieves the ambiguity at the cost of selecting only one of
the two possible accounts. Yet recovery of both combinations is
possible by the sequential application of attention to each in turn,
in a manner reminiscent of bistable perception. In a similar way,
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spatially localized attention will focus the approximation on fea-
ture values that originate from the corresponding point in space at
the expense of others. Here, sequential exploration may map out a
positive correlation between feature values or their locations. This
approach of setting one variable within a complicated joint distrib-
ution to a series of known values and recomputing the distribution
over the other variables is similar to a probabilistic inference algo-
rithm called “cutset conditioning.” This is the exactly the role that
the attentional hypothesis plays here – trying out the different
possible feature values or locations, allowing the simple factored
approximation to operate within the probabilistically conditioned
problem.

THE DIRECTION OF ATTENTION
The primary goal of this paper is to propose a theory of the com-
putational need for attention and its effect on perception. It is not
to study the processes by which attention is directed to different
parts of the sensory environment. However, we would expect there
to be interplay between the role of attention and its allocation, and
so we briefly consider this interplay here.

The attentional hypothesis – often encapsulated by the location
of the mode or “spotlight” – can reflect genuine prior informa-
tion; top-down instructions or task demands; bottom-up cues,
and the results of salience computations; or the dynamic fluc-
tuations of attentional search. For example, a spatial cue that
indicated the location of an upcoming stimulus would be reflected
straightforwardly by a mode centered on the cue location in the
spatial component of the attentional hypothesis. However, a sim-
ilar spatial hypothesis might derive from other sources, and thus
carry a different semantic interpretation. Thus, if driven by local
salience in one feature, it might reflect the expected association
of significant values in other features; alternatively, in the course
of attentional search it would reflect a “trial” hypothesis whose
quality was to be evaluated. In each case, the underlying math-
ematical form is the same, which is a particular strength of this
framework – different forces act to bias the ongoing allocation
of limited representational resources, with potentially different
semantic significance: but are unified at the algorithmic level.

In the absence of direct biasing signals, we expect the attentional
hypothesis to evolve smoothly toward a better match between itself
and the true posterior. This match can be measured by the size of
the normalizing constant Za of their product [i.e., the normaliz-
ing constant of the distribution on the right-hand side of equation
(8)]. This is a simple consequence of the fact that the normalizing
constant is the sum of the probabilities given to all possible values.
The more similar the true posterior and attentional hypothesis are,
the more likely it is they will both award high probabilities to the
same values, increasing the sum of their product. The attentional
hypothesis, which is parameterized by ra, therefore evolves to find
a local maximum in Za;

dra

dt
∝ dZa

dra
(10)

The normalization constant is often referred to as the “model
evidence” when Bayes rule is used for model comparison. The
evolution of the attentional hypothesis can thus be conceptualized
as a process of continuous model comparison or hypothesis test-
ing, moving the attentional hypothesis always in the direction of a

better model of the true posterior. As described above, the brain’s
approximate posterior belief distribution is found by minimizing
the KL divergence between the product of the prior, likelihood,
and attentional hypothesis, and the approximating distribution.
Therefore, as the attentional hypothesis evolves, the KL divergence
will also evolve, and as it continuously works to minimize the KL
divergence the approximate posterior will reflect the attentional
hypothesis and whatever influences on it are currently dominant.

SUMMARY OF THE PROPOSAL
We have argued here that the true posterior distribution over
features in the world may be strongly correlated, making it compu-
tationally and representationally intractable. Thus, the perceptual
system must often need to approximate it. We have suggested that
one approximation, which agrees well with the featural specializa-
tion of neural responses, would be a factored one. Finally, we have
proposed that attention interacts with this approximation system
by imposing an additional distribution, which plays a mathemat-
ical role similar to a (possibly dynamic) “prior.” Although the
mathematics is that of a prior, this distribution may or may not
reflect a normative belief. Instead, it acts to shape the action of
inference to better match the likelihood and pre-attentive prior
within a region of interest.

SIMULATING KEY ATTENTIONAL PHENOMENA
Within the formidable variety of documented attentional phe-
nomena, two paradigms stand out for their centrality to two
apparently disparate domains of action of attention.

The first involves scenarios in which selective attention
improves stimulus judgments; most prominent is the stimulus pre-
cueing or Posnerian experiment, in which an observer is alerted
to the likely location of a stimulus by a cue of variable validity;
and the inferentially different “task cueing” experiment in which
two or more stimuli always appear, a cue indicating which of them
is behaviorally relevant. The second pair of paradigms studies the
role of attention in binding through tachistoscopic misbindings
or illusory conjunctions on the one hand, and conjunctive visual
search on the other.

Our goal is to demonstrate the conceptual basis of the
framework we have proposed, rather than to provide a detailed
account of any particular experiment. As such, we make use of
the simple discretized feature map model and approximation
approach of Sahani and Whiteley (2011). We begin by reviewing
this model briefly.

THE DISCRETE FEATURE MODEL
The essential elements of the image generative process – that is,
sparsely populated and spatially extended feature maps, observed
with uncertainty – can be captured by a simplified discrete
“grid world” consisting of sparsely distributed oriented and col-
ored objects observed through a noisy, low-resolution process
(Figure 2).

Objects in the model are arrayed along a single, discretized
spatial dimension (x), and take on features in each of the two dis-
cretized feature dimensions, orientation (o), and color (c) (despite
our use of these feature names for concreteness, the prior, and
observation process of the model will remain abstract without
being tailored to these particular features). Each feature dimen-
sion is associated with a map function, mo(x,o) and mc(x,c). These
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FIGURE 2 | Example image generated by the discrete feature model.

The model generates images comprising oriented, colored objects
(depicted as Gabor wavelets) arrayed along a single spatial dimension. The
example image at the bottom contains three such objects two of which
are superimposed. The top row of figures shows the orientation (left) and
color (right) object vectors (u), which determine the locations and feature
values. The examples correspond to two distinct spatial locations (one with

two objects), three orientations and two colors. The second row shows
the associated feature maps (m), which include information about feature
strength and polarity. Finally, the third row (s) shows the effective sensory
cues, or observed information about the feature values. These are
flattened and noisy, reflecting uncertainty in position, feature value, and
strength, as might result from a brief presentation of the image and the
incorporation of sensory noise.

specify the strength with which each feature is present at each
point in space: the contrast of orientation o at location x, and the
saturation of the hue c at x, respectively. The maps may each be
non-zero for more than one value of the feature at a single location,
corresponding to superimposed orientations or dithered color.

The locations, orientations, and colors at which the feature
maps are non-zero are determined by a shared, sparse, “object”
prior. This prior is expressed as a distribution on a binary vector
u, with one element for each possible (x, o, c) triplet; a “1” entry
in this vector at the element corresponding to (x1,o2,c3), say, indi-
cates the presence of an object at x1, with orientation o2 and hue
c3. Thus, u is conveniently represented as a 3-dimensional binary
array, which is “unrolled” into the vector by scan-rasterization.
This 3-dimensional array is “projected” onto two of its faces, to
yield two reduced vectors that indicate the spatial locations of

non-zero orientation values (uo) and color values (uc) is a sim-
ilar scan-rasterized fashion. The projection is represented by the
action of two rectangular matrices (Po and Pc):

uo = Pou,

uc = Pc u.
(11)

These vectors represent the locations and feature values of the
objects in the scene, but not the feature strengths. That informa-
tion is encoded in the generative values of the map functions,
which are non-zero only for entries corresponding to the ones in
the binary vectors. At those entries, the strength is drawn inde-
pendently from a zero-mean, unit variance, normal distribution.
Equivalently, we may view the multiplicity functions themselves as
vectors drawn from zero-mean multivariate normal distributions
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FIGURE 3 |The precueing task, with human and model results.

(A) A schematic of a typical precueing task. Observers fixate the
centre of the screen, and report whether a Gabor patch (“Target”)
presented briefly at one of eight locations with 4.5˚ eccentricity is
tilted to the left or right. Shortly before the patch appears a small
transient black square is shown. This “precue” may either appear at
fixation (Neutral, or “no attention”), or at the location of the
upcoming target patch (Peripheral, or “attention”) (Adapted from
Cameron et al., 2002). (B) Human observers’ mean performance
with and without precue-directed attention, as a function of stimulus
contrast. (Data from Cameron et al., 2002, 8 cycle per degree
condition, averaged over three subjects and replotted. Error bars
reflect inter-subject variation.) (C) Model performance with and
without attention. Signal-to-noise in the sensory cue signal stands in
for contrast.

with diagonal covariances Uo and Uc, whose diagonal elements are
given by the vectors uo and uc:

mo ∼ N (
0; Uo) where Uo = diag[uo],

mc ∼ N (
0; Uc) where Uc = diag[uc ], (12)

where the zero variance corresponding to “0” entries in uc or uo

ensures zeros in the corresponding feature map. Note that because
the Gaussian is zero-mean, high feature strengths may be repre-
sented by high positive or high negative values. This concurs with
neurally inspired representations of features in terms of a pair
of opposing axes – for example a red-green axis for color or a
positive-negative polarity axis for orientation contrast.

The feature maps are not observed directly; instead, a noisy
observation process introduces uncertainty in the location, feature
value, and feature strength of each object, as well as interference
between nearby features. The complicated neural processes by
which orientation and color are extracted are simplified in the
model to a canonical cascade of smoothing and perturbation.
Each feature map mθ (x,θ); θ ∈ {o, c} is convolved with a Gaussian-
shaped kernel in both space and feature value, upsampled, and
then corrupted by independent normally distributed noise with
diagonal covariance �θ to yield an observed vector sθ . Expressing
the linear convolution operation through the action of matrices
�θ we have:

so ∼ N (
�omo ; �o) ,

sc ∼ N (
�c mc ; �c) .

(13)

This simplification of the observation process will facilitate the
development of a straightforward form of approximate inference
and thus allow us to focus on the role of attention in shaping this
approximation. While more detailed observation models (includ-
ing, for example, signal-dependent levels of noise) would alter
the particulars of the inference process and its approximation, we
believe the essential hallmarks of attention within the model would
remain unchanged.

The distributions of equations (12) and (13) can be written
more compactly by concatenating the two feature dimensions as
follows:

m =
[

mc

mo

]
∼ N (0; U) where U =

[
Uo 0
0 Uc

]
, (14)

s =
[

sc

so

]
∼ N (�m; �) where � =

[
�o 0
0 �c

]
and

� =
[

�o 0
0 �c

]
. (15)

These equations represent a hierarchical generative model for
noisy feature observations, expressed as a prior on feature maps
given by

∫
du p(m|u) p0(u), where p0 is the sparse prior; and a

likelihood p(s|m). Perceptual inference involves inverting the gen-
erative model to compute a posterior belief about the state of
the world (say the true feature map) given the noisy observations
generated by that state; i.e., p(m|s) (see Figure 1).
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In the framework laid out above, we proposed that a generic,
computational resource limitation in the brain is the ability to rep-
resent large joint posteriors with complex correlational structure.
A natural scene contains a sparse distribution of features bound
into objects, and a reasonable prior might therefore consist of a
mixture of sparse distributions for different numbers of objects. In
other words, the probability of the spatial distribution of features
given one object, plus the probability of the spatial distribution
of features given two objects, and so on. This is exactly the kind
of correlational structure that, when scaled up to a real-world
scene, would hit the representational resource limit in terms of
the number of neurons needed to represent it. Even in the discrete
and impoverished model described here, with only two features
each taking on one of nine values, and nine possible locations, the
true posterior distribution on feature maps cannot be computed
exactly (Sahani and Whiteley, 2011); its form is that of a mixture
of Gaussians with one component for each possible configuration
of the vector u. Naively, there are 29 × 9 × 9 of these. Even if we
restrict consideration to vectors that represent no more than 5
objects present, the count still exceeds 1012. Thus, we are forced to
use a simple approximation which treats the feature-location pairs
as independent.

To derive this approximation, first note that when conditioned
on u, m and s are jointly Gaussian with zero-mean:

p

([
m
s

] ∣∣∣u) = p (s|m) p (m|u)

= N (�m; �) × N (0; U)

= N
(

0;

[
U U�T

�U �U�T + �

])
.

(16)

Thus the joint distribution over m and s, marginalizing out u, is a
mixture of zero-mean Gaussians:

p

([
m
s

])
=
∑

u

p0(u) p

([
m
s

] ∣∣u) . (17)

The complex form of the prior over u makes this sum intractable,
so we approximate the joint by minimizing the KL divergence
between the true joint and a Gaussian approximation. This opti-
mal approximating distribution is also zero-mean, and is obtained
simply by replacing the covariance matrix U in the conditional
distribution [equation (16)] with its average under the prior, U0

(see Appendix):

q

([
m
s

])
= argmin

q(·)∈N
KL[∑

u

p0(u) N
(

0;

[
U U�T

�U �U�T + �

]) ∥∥∥∥q

([
m
s

])]

= N
(

0;

[
U0 U0 �T

� U0 � U0 �T + �

])
.

(18)

For each object vector u, the corresponding covariance matrix U is
diagonal, with “1” entries on the diagonal indicating the presence

of a particular feature-location combination. Thus, the prior-
averaged matrix will also be diagonal, with entries between 0 and
1 corresponding to the prior probability of each feature-location
combination.

From equation (18), it is straightforward to derive the two
quantities we need for perceptual inference (see Appendix): the
approximate posterior belief distribution [equation (19)], and the
normalizing constant [equation (20)]:

q0 (m|s) = N
(

U0 �T
(
� U0 �T + �

)−1
s;

U0 − U0 �T
(
� U0 �T + �

)−1
� U0

)
, (19)

log Z0 = −1

2

[
log

∣∣∣2π
(
� U0 �T + �

)∣∣∣
+sT

(
� U0 �T + �

)−1
s

]
. (20)

This approximate posterior is, in a sense, “factorized.” The true
prior carries the information that the world comprises a sparse
mixture of objects; by approximating the model with a single
Gaussian we lose this information – the prior is expressed only
in terms of the marginal probability of each feature-location pair
individually. The approximate posterior also factors over the two
multiplicity functions mc and mo,neglecting information from the
prior about the conjunctive co-location of features. This factoriza-
tion damages the ability of the posterior to represent relationships
between features in different locations.

The final component of the model is an attentional hypothesis,
which acts to locally refine the impoverished representation of the
true posterior. As in equation (8), the attentional hypothesis takes
the form of a distribution over latent variables. In the context of
a model structured as above, it turns out to be most straightfor-
ward to treat it as a distribution on the object vector pa(u), rather
than directly on the maps; although such a distribution over u
clearly implies a consequent distribution over m. The introduc-
tion of such an hypothesis can thus be seen as a modification of the
sparse prior p(u), which in turn modifies the average covariance
that appears in the approximation. We label this new covariance
Ua . Besides this change, the derivation of the approximation pro-
ceeds as before, and we have [compare equations (19) and (20) to
equations (21) and (22)]:

qa (m|s) = N
(

Ua �T
(
� Ua �T + �

)−1
s;

Ua − Ua �T
(
� Ua �T + �

)−1
� Ua

)
, (21)

log Za = −1

2

[
log

∣∣∣2π
(
� Ua �T + �

)∣∣∣
+sT

(
� Ua �T + �

)−1
s

]
. (22)

With the model thus specified, we turn now to simulations of two
canonical attentional phenomena.
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ATTENTIONAL SELECTION
Many studies have shown that precueing the location of a stimu-
lus, or instructing observers about the relevance of a particular
stimulus location, can improve detection, discrimination, and
identification of that stimulus (e.g., Downing, 1988; Conner et al.,
1997; Morgan et al., 1998; Baldassi and Burr, 2000; Cameron et al.,
2002; Golla et al., 2004). A classic precueing task is illustrated
in Figure 3A (adapted from Cameron et al., 2002), in which a
brief spatial cue precedes the appearance of an oriented patch. If
the cue is valid – that is, if it correctly indicates the location of
the upcoming stimulus – then judgments about stimulus orienta-
tion are improved. Figure 4 illustrates perceptual inference in our
model of this task, and the effect of attention on this inference.
Stimuli in the experiment were monochromatic, so the model was
limited to a single feature map m = mo and a single observation
vector s = so. The experimental stimulus corresponded to a single
compact oriented Gabor patch. Thus the modeled sensory obser-
vations were based on vectors u and m that each contained a
single non-zero entry. The amplitude of this entry in m, and thus
the signal-to-noise ratio in s, varied with the contrast of the stim-
ulus. The observations s introduced uncertainty by smearing out
the single value in m and adding noise – with a different random
sample of noise drawn on each simulated trial.

The approximate posterior based on this observation s rep-
resented the outcome of perceptual inference without attention.
This posterior was computed according to equation (19) using a
generic prior that gave a small constant probability of appearance
for any object at any location. Importantly, the inference proce-
dure did not assume that only one object was present in the scene.
See Figure 4, center column.

The cue in this experiment may be seen as triggering a simple
initial attentional hypothesis that an object is present at the cued

location, thereby increasing the probability of the appearance in
the feature map of any orientation value at that location. As a
result, each diagonal element that corresponds to that location
in the modified average covariance Ua is boosted. Inference under
attention then follows equation (21) with this modified covariance
matrix. See Figure 4, right column.

Inference, whether with or without attention, yields an approx-
imate posterior distribution over the orientation feature map,
which forms the basis for a simulated decision. The decision was
derived from the mean of the posterior distribution, by integrat-
ing over space to yield a mean strength for each orientation, and
taking the orientation with maximal strength as the model’s“judg-
ment.” In the example shown in Figure 4 the posterior computed
with attention produces a more accurate decision, with the peak
of the mean orientation strength occurring in the correct loca-
tion. Repeating the simulation with different instances of noise in
s, we obtain a percentage of correct orientation judgments with
and without attention. Figure 3C shows these results as a function
of signal-to-noise ratio (simulating different stimulus contrasts).
The results provide a good qualitative match to the behavioral
improvements seen by Cameron et al. (2002) (Figure 3B).

It is worth noting that these results depend primarily on the
action of attention as a prior, and thus they arise here through
essentially the same mechanism as in earlier work on Bayesian
attention (Zemel and Dayan, 1999; Yu and Dayan, 2004). How-
ever, as we see below, the same mechanism can also act in settings
where no genuine prior information is available.

ATTENTIONAL INTEGRATION
The second paradigmatic attentional phenomenon concerns the
perception of objects defined by the conjunction of features, and
presented in crowded displays. Perhaps the simplest illustration of

uo

m o

so

U
o
0

m̂ o
0

so

U
o
a

m̂ o
a

so

 spatial location
feature value  

FIGURE 4 | Generation, inference, and decision in a model of precued

orientation recognition. Left column: The generative process. Only
orientation maps are modeled. The object (uo) and feature (mo) maps each
contain a single non-zero entry, corresponding to the location, and
orientation of the object shown. Sensory observations so convey this value
with a signal-to-noise ratio that reflects contrast. Center column: Inference
without attention. The generated sensory observations are approximately
combined with a uniform distribution over object location, leading to equal
values for each location-orientation pair on the diagonal of the matrix Ū

o

0

(the diagonal entries are shown rearranged to form a matrix in space and
orientation, analogous to the maps). The resulting modal feature map
estimate (m̂

o
a ) is averaged over space to yield an expectation over

orientation (shown adjacent), the peak of which gives the reported
orientation (arrow head). Right column: Inference with attention. The same
sensory observations combine with an attentional hypothesis focused on
the cued location but uniform over orientation (reflected in Ū

o

0 ). The modal
feature map estimate (m̂

o
a ) is averaged as in the inattentive case, yielding a

more accurate orientation estimate.
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FIGURE 5 |The illusory conjunction task. (A) A typical display. Observers
were asked to report on the form and color of the central objects (we have
used bars, where Treisman and Schmidt, 1982 used letters), whilst attention

was sometimes distracted by a task involving the peripheral digits. (B) Model
performance with and without attention. More binding errors are made when
attention is unavailable.

this setting is in the illusory conjunction experiment of Treisman
and Schmidt (1982)4. Figure 5A illustrates the sort of display used,
although we have replaced the letters of Treisman and Schmidt
(1982) by bars in order to preserve our exposition in terms of
a mid-level representation over orientation and color alone. The
observer must report the color and form of the central objects. In
some trials they are free to attend to these objects. On others, their
attention is diverted by a primary task involving the peripheral
black digits. Treisman and Schmidt (1982) reported that observers
more frequently misbound the central color and form cues when
attention was distracted than when it was not.

The generative picture corresponding to the relevant central
region of this display is illustrated in Figure 6. Two feature maps
were required in order to represent both form and color. The
two objects in the illustrated scene corresponded to two non-zero
entries in u, each with a different location, color, and orientation.
These led to two non-zero entries in each of uo and uc, thence in
mo and mc, and finally to two noisy bumps in each of so and sc.

Inference with attention distracted acted according to equation
(19) as before, yielding independent approximated posteriors over
both feature maps. Once again, these posteriors formed the basis
for the decision. The approach that was adopted for the precueing
experiments – with the mean feature maps integrated over space
before the decision is made – would here lead to loss of all spatial
information about feature pairing. Whilst this approach would fit
with the extreme form of FIT, it would introduce an approximation
in the decision process that was more extreme than that necessi-
tated by the inferential approximation alone. Instead, we simulated
the response to a question such as, “What color was the vertical
bar”? First, the location with maximum strength at the specified
orientation in the posterior-mean orientation feature map m̂o

0

4We focus on this design for its directness notwithstanding a history of subsequent
debate about the interpretation of the experimental data (see for example Ashby
et al., 1996).

was identified. The corresponding location in the posterior-mean
color feature map was then found, and the color with the greatest
strength at this location formed the report5. The inference and
decision process are illustrated in Figure 6.

With attention available, the search for the vertical bar was
replaced by a set of attentional hypothesis tests, one for each
location. The location hypothesis associated with the highest
Bayesian evidence was selected, and inference repeated to find
both posterior means m̂o

a and m̂c
a under this hypothesis. The

color report could now proceed by summing the mean poste-
rior color map as in the precueing simulation; although similar
results were obtained by selecting the single location as in the
unattended case. The fraction of correct binding reports is shown
as a function of signal-to-noise and the availability of attention in
Figure 5.

In this setting there is no straightforward, externally imposed,
prior belief as there was for the precuing experiment. Instead an
evaluation of all the different possible attentional hypotheses is
used to find a focused posterior consistent with the sensory data
and the task instructions. Thus, by invoking the various mecha-
nisms suggested in the present framework we are able to model
phenomena beyond the reach of previous Bayesian attention
models.

DISCUSSION
The framework introduced in this paper provides a new, prob-
abilistic perspective on attentional selection. Whilst bound by a
single unifying computational imperative, the scheme’s flexibility
allows it to encompass a variety of attentional phenomena. This
flexibility was illustrated in the context of a simple, abstract model

5This serial process, although reasonable, is not the only choice. The posterior-
mean color feature map also contains implicit information about the location of
objects, though not their orientations, and could be used to refine the location
judgment.
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FIGURE 6 | Generation, inference, and decision in a model of binding. (A)

Generation. Two non-zero entries in each of uo, uc, mo, and mc represent the
two oriented, colored bars. Each yields a smeared and noisy bump of activity
in the sensory cue maps so and sc. (B) Inference and decision without
attention. The mean posterior maps m̂

o
a and m̂

o
0 are obtained from the

generated sensory cue maps so and sc under non-specific priors (shown as in
Figure 4 by the diagonal elements of U0, rearranged into a map). The
maximum strength value in m̂

o
0 at the cued orientation selects a location. The

maximum strength value in m̂
c
0 at this location determines the reported color.

Noise in the inferred feature maps leads to an error in the example shown. (C)

Inference and decision with attention. The evidence Za is evaluated for each
hypothesis corresponding to an object at different positions with the cued
orientation, depicted by the stack of possible priors. The mean posterior maps
m̂

o
a and m̂

c
a are obtained under the attentional hypothesis with greatest

evidence. The mean color map m̂
c
a is then summed over space, and the

maximum strength value determines the reported color. This process
recovers the correct binding with exactly the same instantiation of sensory
activity as in (B).

which captured the essential elements of two quite disparate para-
digms, holding out promise of a resolution to some of the apparent
dichotomies and disagreements in attention research.

In this final section of the paper we attempt to relate this
framework more closely to work that has gone before, discuss some
of the challenges that remain in implementing more detailed mod-
els under the framework, and consider how such models would be
situated in a cortical hierarchy.

RELATIONSHIP TO OTHER THEORIES
The field of attentional research is littered with compelling
metaphors, and it is unsurprising that shades of many of these
theories can be seen in the unifying framework we propose.

Any selective process may be seen as competitive, and the dom-
inant metaphor for selection in neural processing is that of “biased
competition” (Desimone and Duncan, 1995; Desimone, 1998). In
this view, inputs compete for access to higher levels of processing
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and top-down influences bias this competition to the point that
only a single object is represented. In this neural view, the competi-
tion is between inputs attempting to gain representation at a higher
level. Inputs that lose this competition fall away. By contrast, the
competition that we envisage is between different hypotheses, each
of which seeks to explain as much of the sensory data as possible.
Ideally, no input would go unaccounted for – although the limited
capacity of the possible hypotheses might indeed favor solutions
in which some inputs are treated as noise.

In this sense, then, our view comes closer to a computa-
tional account that is often linked to neural phenomena of biased
competition, known as “selective tuning” (Tsotsos et al., 1995).
Indeed, Tsotsos has written elsewhere of the role of computa-
tional complexity in constraining visual processing and opening
the door to attention (Tsotsos, 2001). This scheme is rooted
in a template-driven visual hierarchy, with selection occurring
in later, more complex templates, and propagating down to
the contributory features. The probabilistic formulation adopted
in our framework confers a number of advantages over the
template-based model. Competition between hypotheses rather
than between high-level templates allows for greater flexibility in
the level at which attention acts, and in the nature of the attentional
focus – as in the experimental phenomenology, it can be localized
in space, on an object or on a feature dimension. Furthermore,
our view is that inference proceeds, albeit with approximation,
everywhere – even outside the focus of attention. This may fit
better with known pre-attentive capabilities than would the more
absolute competition.

As a method based on probabilistic inference, our proposal
inevitably comes closest to earlier Bayesian theories of atten-
tion (Dayan and Zemel, 1999; Yu and Dayan, 2004; Rao, 2005;
Chikkerur et al., 2010). It differs from these models in three
substantial ways:

• in the generality of the assumed generative model for images,
and therefore of the hypothesized process of perceptual infer-
ence;

• in the consequent necessity for, and centrality of, approximate
inference – which provides a role for attention during natural
viewing;

• and, finally, in the precise way in which attention acts, and the
nature of the resulting benefits to processing.

In all four Bayesian studies cited above, attention is introduced
as a “prior” in a process of otherwise exact inference with regard
to the features and location of a single object. As we argued in
the Introduction, this accords with the semantics of the inferen-
tial problem in settings similar to the precueing experiment of
Figure 3. In this case, the cue comes before a stimulus that does
indeed contain only a single object, and the cue is designed to pro-
vide information regarding the likely location of that object. The
right way to represent this in a probabilistic model is indeed as a
prior over object location, and once such a prior is assumed, infer-
ence about object features becomes more accurate by the rejection
of noise. Thus, this view essentially formalizes earlier work on
uncertainty reduction by attention (Pelli, 1985). In this setting of
a simple stimulus containing only a single object whose location is

indicated by a preceding cue, all of the Bayesian models (including
ours) are in agreement, and are equally valid.

However, attention seems to modify behavior and neural activ-
ity in many other settings. Behavioral effects similar to those seen
in the precueing experiment are also obtained when attention is
directed endogenously toward one of two or more stimuli that are
simultaneously present. Indeed, the most profound physiological
effects of attention are seen when both an attended and unattended
object fall within a single neuron’s receptive field (Moran and Des-
imone, 1985). But in such cases, the cue that directs attention does
not carry any legitimate prior information about the appearance
of the stimulus: the probability distribution of the visual stimulus
is the same whatever the value of the cue. Instead, the cue car-
ries information about the cost function: observers must report the
features of one of the objects. Attention also seems to play a role
in visual search, and in the natural process of scene understand-
ing. Again, in neither setting is the interpretation of attention as
a prior a natural one. In a probabilistic model that allowed exact
inference, the optimal action in these cases would be to com-
pute the full posterior distribution over objects and features, and
then to base subsequent decisions on this posterior by minimiz-
ing expected loss. There is no normative reason to believe that the
inference process itself would be affected by the cost function, but
this is what models such as that of Rao (2005) seem to require.
Thus there is element of dissonance. Where does the attentional
prior come from?

Our resolution to this problem – and the way in which our
proposal differs from previous Bayesian models – is to consider a
somewhat more realistically elaborated model in which more than
one object is present and contributes features to the image. Exact
inference is intractable in such a model, and the resulting need
for approximation makes room for a task-dependent refinement,
or (in natural viewing) a serial refinement of the approximation.
This is the role that we suggest for attention. The fact that this
refinement is guided by a multiplicative term allows attention to
take on the function of a prior when this is semantically appropri-
ate. It other settings it may be adjusted dynamically to maximize
the estimated normalizing constant of the product – thus set-
tling on domains where the unapproximated posterior is high. In
all cases, it works to shape the approximation, emphasizing the
KL divergence in the domains where it is large. In the specific
discretized model studied here, optimal inference over u in the
complete model would, in fact, be able to reject noise and improve
feature estimates simply by virtue of the sparse prior. This capac-
ity is destroyed by the Gaussian approximation, and so must be
recovered by an attentional hypothesis that focuses integration on
a single putative object location – thus reimposing a form of spar-
sity. This action plays as great a role in our model as does the
addition of the prior information itself.

This effect of shaping the approximation would be more cen-
tral in a variant of our approach that we mentioned only briefly
above. In principle, the attentional hypothesis could multiply both
the left- and right-hand sides of the approximation represented
by equation (8). As such, its role as a prior would become neg-
ligible. Instead, it would act only to establish the context for
the approximation (in much the same way that messages from
adjacent factors shape the context of local approximation in
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expectation propagation message-passing algorithms), emphasiz-
ing the divergence in those regions where the attentional signal
is high. However, whilst attractive in the setting of externally
instructed attention, as in the precueing experiment, this alterna-
tive formulation does not provide as compelling an account of the
dynamic evolution of natural attention, in the absence of external
instruction. In the current version, the hypothesis can be adapted
to match the sensory data by optimizing the approximated nor-
malization constant Za, the value of which emerges directly from
the approximation. In the alternative, this normalizer would have
to be computed separately, and it is less obvious that benefit would
accrue from driving it up. Nonetheless, this alternative approach
may deserve further enquiry.

A more recent Bayesian attention proposal by Chikkerur et al.
(2010) has also sought to extend the inferential approach to the
multi-object setting; however, rather than approximating infer-
ence in the multi-object model directly, these authors suggest that
inference is performed exactly within an approximated generative
model in which only a single object and its features are repre-
sented. As a result, the possibility of multiple objects and their
associated feature assignments are not considered during infer-
ence. Object recognition and feature binding are forced to operate
entirely serially, with or without attention. Within this single object
approximation, attention then acts as a prior on either location or
feature in very much the same way as it did in the earlier mod-
els. Thus, attention in their model acts outside the approximation,

rather than shaping it as we propose here, and there is no clear
principle to guide the natural evolution of attention.

SPECULATIONS REGARDING IMPLEMENTATION
A full specification of a hierarchical probabilistic model for per-
ception, capable of object- and feature-recognition in cluttered
environments and under conditions of uncertainty, is still beyond
our reach. From the neuroscientific standpoint, current knowledge
about coding properties of neurons in different cortical areas, and
their interconnections, is not specific enough to inform such a
model (or in the words of Roskies, 1999, we do not currently have
enough anatomical knowledge to properly constrain the binding
problem). However, it is still valuable to situate detailed models
of specific, simplified computations in a bigger picture of how
the hierarchical, recurrent structure of the brain might perform
Bayesian inference. Figure 7 illustrates a schematic of this “bigger
picture,” based on coarse anatomical properties.

As described in Figure 1, a configuration of objects in the world
evokes firing in the early sensory system (s), from which the pos-
terior belief p(objects|s) is constructed. However, this is not a
unitary computation. Rather, the sensory firing is passed through
a loose hierarchy of cortical regions, each of which represents an
approximation to the posterior distribution over a set of interme-
diate features (mi) to which its neurons respond (with firing rates
ri). In Figure 1 and in our simple model, this intermediate layer
was abstracted to a single set of parallel feature maps. In reality,

FIGURE 7 | A simple schematic of a neural framework for top-down attentional effects.
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many feature maps are more likely to be arrayed hierarchically, as
sketched in Figure 7.

The natural action of priors in such a hierarchy is “top-down,”
corresponding to the graphical structure of the generative model.
However, attentional hypotheses may play a role directly at inter-
mediate layers: framing an independent hypothesis about features
on a particular level. Such an hypothesis would interact with
natural priors, as well as with the indirect effect of attentional
hypotheses that applied to higher levels. Thus, whilst a flexible
attentional scheme would include feedback from parietal or other
attention-directing areas to feature representations at all stages,
attention effects in a feature layer would not depend exclusively
on the activation of these connections.

Clearly, without a much more detailed account of how neural
populations perform probabilistic computation, it is impossi-
ble to draw a tighter connection between our computational
model and neurophysiology. Although many speculations have
been advanced regarding neural implementations of probabilistic
reasoning (Sahani and Dayan, 2003; Ma et al., 2006; Rao, 2007;
Deneve, 2008), there is still considerably uncertainty about the
relative merits of the different schemes. Indeed distributions might
also be represented by samples (Hoyer and Hyvärinen, 2003), or
be implicit in learned but ad hoc representations. The compu-
tations we propose could be implemented in any one of these
schemes, but with different physiological predictions. At the same
time, although we have taken some strides toward framing a more
complex generative model for perception, the model is still sub-
stantially impoverished when compared to natural vision. Thus
on both counts we believe that it would be premature to attempt
a more detailed comparison with neural data. One consequence
of this absence of neural implementation bears special mention.

Many reports of the behavioral phenomena of attention involve
measurements of reaction times and it is unclear how such reac-
tion time effects would emerge within a purely computational
inferential framework (although, as shown by Yu and Dayan, 2004,
they may become accessible once that framework is embodied in
an explicit neural model). Thus, our present work remains limited
in its capacity to model not only neurophysiological findings, but
also this broad class of behavioral observations.

CONCLUSION
Bayesian inference in cluttered, real-world settings necessar-
ily involves the computation and manipulation of complex
distributions over many features and objects. Here we have pro-
posed that an inability to represent such complex posterior belief
distributions is precisely the resource limitation that is addressed
by sensory attention. We have argued that the brain is able only
to represent a simplified approximation to the full joint posterior,
and that attention helps to locally refine this approximation. Sim-
ulations illustrated the ability of the framework to model disparate
attentional phenomena, whilst also embodying many of the intu-
itions that have informed cognitive metaphors. In our view, the
processing bottleneck is not to be found in a particular location,
with particular functional parameters, or at a particular level of
processing; but is rather a fundamental and stringent constraint
on computation throughout the brain. The form of the approx-
imating distributions may vary depending on the properties of
each cortical area, and this allows for the subtly different forms
of attentional action implied by the behavioral literature. In sum,
then, the framework provides a unifying rationale for many diverse
documented attentional phenomena, bringing them together into
a computationally motivated theory.
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APPENDIX
DERIVATION OF EQUATION (18)
We wish to find

q

([
m
s

])
= argmin

q(·)∈N
KL

[∑
u

p0(u) N
(

0;

[
U U�T

�U �U�T + �

]) ∥∥∥∥q

([
m
s

]) ]
.

First, let us consider the solution to

q (z) = argmin
q(·)∈N

KL
[
p(z) ‖ q (z)

]
for an arbitrary vector z and distribution p(z). The Gaussian q() is defined by its mean μq and covariance matrix �q. Writing 〈·〉p for
expectations over p and H[p] for the entropy of p, we have

KL
[
p(z) ‖ q(z)

] = 〈− log q(z)
〉
p − H

[
p
]

= 1

2

〈
log

∣∣2π�q
∣∣+ (
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q

(
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p
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p
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= 1

2
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〉
p

]
− H

[
p
]

Setting the derivatives with respect to μq and �−1
q to 0 to find the stationary points we obtain:

∂

∂μq
KL

[
p(z) ‖ q(z)

] = 1

2

〈
�−1

q

(
z − μq

)〉
p

= 0

⇒ μq = 〈z〉p

and

∂

∂�−1
q

KL
[
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] = 1

2
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) (
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)T
〉
p

]
= 0

⇒ �q =
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z − μq
) (

z − μq
)T
〉
p
.

So the constrained minimum of the KL divergence is achieved by setting the mean and covariance of the Gaussian q to equal
the mean and covariance of the distribution p. To minimize the KL divergence of equation (18), we thus need to find the mean and
covariance of a mixture of Gaussians. Let

p(z) =
∑

u

p0(u)N (0; �(u))

Then

〈z〉p =
∫ (∑

u

p0(u)N (z|0; �(u))

)
z dz

=
∑

u

p0(u)

∫
N (z|0; �(u)) z dz

=
∑

u

p0(u) · 0 = 0

and〈
zzT

〉
p

=
∫ (∑

u
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)
zzT dz

=
∑

u

p0(u)

∫
N (z|0; �(u)) zzT dz

=
∑

u

p0(u)�(u)
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Equation (18) then follows by averaging the elements of the block matrix form of �(u).

DERIVATION OF EQUATIONS (19) AND (20)
These equations depend on standard results for conditional and marginal Gaussian forms. Let[

x
y

]
∼ N

(
0;

[
A C

CT B

])
Then we have that

y ∼ N (0; B) and x|y ∼ N
(

CB−1y; A − CB−1CT
)

.

Now, equation (19) follows by applying this conditional form to the Gaussian of equation (18). Equation (20) results by noting that
Z 0 = q0 (s) and simply evaluating the log density of the marginal Gaussian on s at the observed value of the sensory input.
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