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Recent evidence from functional magnetic resonance imaging suggests that cortical hemo-
dynamic responses coincide in different subjects experiencing a common naturalistic
stimulus. Here we utilize neural responses in the electroencephalogram (EEG) evoked by
multiple presentations of short film clips to index brain states marked by high levels of corre-
lation within and across subjects.We formulate a novel signal decomposition method which
extracts maximally correlated signal components from multiple EEG records.The resulting
components capture correlations down to a one-second time resolution, thus revealing
that peak correlations of neural activity across viewings can occur in remarkable corre-
spondence with arousing moments of the film. Moreover, a significant reduction in neural
correlation occurs upon a second viewing of the film or when the narrative is disrupted
by presenting its scenes scrambled in time. We also probe oscillatory brain activity during
periods of heightened correlation, and observe during such times a significant increase in
the theta band for a frontal component and reductions in the alpha and beta frequency
bands for parietal and occipital components. Low-resolution EEG tomography of these
components suggests that the correlated neural activity is consistent with sources in the
cingulate and orbitofrontal cortices. Put together, these results suggest that the observed
synchrony reflects attention- and emotion-modulated cortical processing which may be
decoded with high temporal resolution by extracting maximally correlated components of
neural activity.
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INTRODUCTION
The ability to reliably decode brain state from recordings of
neural activity represents a major neuroscientific frontier. Up until
recently, the majority of brain decoding research has employed the
event-related design (Spiers and Maguire, 2007) in which neural
activity is regressed onto discrete event variables, allowing one
to compute the neural correlates of a predefined and presum-
ably fixed brain state. In natural settings, however, brain states are
both continuous and transient. Moreover, the events eliciting state
changes do not generally occur in a temporally regularized man-
ner. Thus, there exists a need to track and index ongoing changes
in cognitive state. In the absence of event markers, one possible
solution is to regress the neural activity of one subject onto that
of another, thus utilizing the correlation between multiple records
to inform the state variables. Indeed, recent studies employing
functional magnetic resonance imaging (fMRI) have revealed
strong voxel-wise inter-subject correlations (ISC) across partici-
pants exposed to a common naturalistic stimulus (i.e., movie clips;
Hasson et al., 2004, 2010; Hanson et al., 2009). Unfortunately,
voxel-wise correlations in the blood oxygenation level dependent
(BOLD) signal are unable to capture weaker activity that is distrib-
uted over distant cortical areas. Furthermore, the limited temporal
resolution of fMRI constrains the potential of so-called “reverse-

correlation”procedures (Hasson et al., 2004) that identify stimulus
features eliciting the observed peaks in correlation. In other words,
while fMRI may tell us if neural activity significantly correlates in
response to a common stimulus, it will likely not be able to tell us
precisely when this synchronization occurs. Finally, the hemody-
namic response measured in fMRI only indirectly captures neural
activity and does not allow for analysis of fast oscillatory activity
(although it does correlate with oscillatory activity in the gamma
band; Mukamel et al., 2005).

To address these issues, in this study we employ EEG which
offers a temporally fine and direct measure of neural activity.
We record EEG during multiple views of short film clips and
optimally measure the temporal correlation of neural activity
between the multiple views. Instead of correlating raw signals in
an electrode-to-electrode fashion, we derive a novel signal decom-
position method which finds linear components of the data with
maximal mutual correlation. The resulting spatially filtered EEG
can capture patterns of activity distributed over large cortical areas
that would remain occluded in voxel-wise or electrode-wise analy-
sis. Furthermore, the temporal resolution of EEG is sufficiently fine
to capture rapid variations in amplitude and instantaneous power
in ongoing neural oscillations. Patterns of neural oscillation have
long been associated with cognitive functions such as attention
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[alpha-band activity (Klimesch et al., 1998; Foxe and Snyder,
2011), emotional involvement (beta oscillations; Ray and Cole,
1985)] and memory encoding (theta activity; Klimesch, 1999).
Thus, utilizing EEG allows us to relate the measured correlations to
ongoing oscillatory activity, shedding light on the cognitive states
involved during synchronized periods.

The measure of correlation presented here is fundamentally
different from that proposed in Hasson et al. (2004), which only
captures coincidence of high or low activity in the hemodynamic
response. Here, we leverage the high temporal resolution of EEG
to measure correlation in time between two viewings. Hence, the
spatial components extracted here capture not only coincidence,
but rather, they represent neural activity that similarly tracks or
follows the stimulus. We employ our measure to investigate the
link between neural correlation and viewer engagement – a cog-
nitive state which lacks a rigorous definition in the neuroscience
context and which we define operationally by “emotionally laden
attention.” In addition to the scientific value afforded by uncov-
ering the neural substrates of engagement, the ability to monitor
engagement in an individual or population has potential applica-
tion in several contexts: neuromarketing (Ariely and Berns, 2010),
quantitative assessment of entertainment (Gunter, 2000), measur-
ing the impact of narrative discourse (Mar, 2004), and the study
of attention-deficit disorders (Oosterlaan and Sergeant, 1998).
We hypothesize that our statistically optimized measure of brain
synchrony closely corresponds to the level of engagement of the
subject during viewing. To test this prediction directly, we manipu-
late the expected level of engagement in various ways and find that
our measure of neural correlation acts as a regularized and time-
resolved marker of engagement. Specifically, our analysis reveals
that peaks in this neural correlation measure occur in high cor-
respondence with arousing moments of the film, and fail to arise
in amateur footage of everyday life. Moreover, when the presenta-
tion of the film clip is repeated, or when it is shown with its scenes
scrambled in time, a significant decrease in correlation is observed.
Additionally, we probe the instantaneous power in convention-
ally analyzed EEG frequency bands, and demonstrate significant
co-variation of the activity in these bands with the optimized cor-
relation measure: while parietal and occipital power in the alpha
and beta bands are decreased during peaks in synchrony, frontal
theta power is increased during time windows of heightened corre-
lation. Finally, low-resolution source localization analysis suggests
that the components of correlated scalp activity are consistent with
sources in the cingulate and orbitofrontal cortices. These results
suggest that modulation of cortical processing during attention-
and emotion-laden states leads to the observed between-view cor-
relation,and such moments of“engagement”may be decoded from
the EEG down to a 1-s time resolution.

MATERIALS AND METHODS
EXTRACTION OF MAXIMALLY CORRELATED COMPONENTS
First we aimed to develop an analysis technique that is suitable for
the continuous stream of neural activity generated during viewing
of these film clips. With natural stimuli such as video, there may
not be well-defined epochs that could be used with traditional
methods of analyzing evoked or induced responses in EEG. Thus,
instead of regressing the EEG signal against predefined discrete

moments in time, we correlate the signal with the data from a sec-
ond viewing that serves as a time-accurate reference for analysis.
The second viewing could be by the same or a different subject. We
want to combine electrodes linearly so as to identify, if necessary,
distributed sources of neural activity instead of relying on indi-
vidual voltage readings on the scalp. The traditional technique for
extracting linear combinations of data with maximal correlation is
Canonical Correlation Analysis (CCA; Hotelling, 1936). Unfortu-
nately, CCA requires the canonical projection vectors (i.e., spatial
filters) to be orthogonal. This is not a meaningful constraint as
spatial distributions are determined by anatomy and the location
of current sources and are thus not expected to be orthogonal.
Moreover, CCA assumes that each of the two data sets requires
a different linear combination, thus doubling the number of free
parameters and unnecessarily reducing estimation accuracy (Bell-
man, 1957). By dropping this assumption – a sensible choice as
the two data sets are in principle no different – we have fewer
degrees of freedom which allows us also to drop the constraint on
orthogonality. The resulting algorithm, which maximizes the Pear-
son Product Moment Correlation Coefficient (Pearson, 1896) and
is referred to here as “correlated components analysis,” amounts
to simultaneously diagonalizing the pooled covariance and the
cross-correlations of the two data sets. The linear components
that achieve this can be obtained as the solutions of a generalized
eigenvalue equation (equation 3), very much along the lines of
other source separation algorithms used in EEG (Parra and Sajda,
2003).

CORRELATED COMPONENT ANALYSIS
Here we provide the details of a component analysis technique
which has been specifically designed to find linear components of
the data that are maximally correlated in time when comparing
two different renditions.

Given two data sets X1 ∈ R
D×T and X2 ∈ R

D×T , where D is
the number of channels (i.e., electrodes) and T the number of
time samples, we seek to find a weight vector w1 ∈ R

D such that
the resulting linear projections y1 = XT

1 w and y2 = XT
2 w exhibit

maximal correlation. For example, X1 and X2 may be the EEG data
records stemming from two viewings of the movie clip. Moreover,
w is a spatial filter which linearly combines the electrodes such that
the resulting filter outputs y1 and y2 recover correlated sources.
Formally, the optimization problem seeks to maximize the Pearson
Product Moment Correlation Coefficient (Pearson, 1896) between
y1 and y2 (assuming zero-mean data):

ŵ = arg max
w

yT
1 y2

‖ y1 ‖ ‖ y2 ‖
= arg max

w

wT R12w√
wT R11w

√
wT R22w

, (1)

where the sample covariance matrices are denoted by Rij =
1
T Xi XT

j , i, j ∈ {1, 2} . Differentiating equation (1) with respect

to w and setting to zero yields:

σ11σ22

σ12
R12w = (σ22R11 + σ11R22) w, (2)
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where σij = wTRijw denote scalar power terms required to bring
the two data sets onto the same scale. While we generally do not
have prior knowledge of σij, here we make the assumption that the
two data sets have similar power levels, and thus σ11 ≈ σ22

1. More-
over, we symmetrize the cross-covariance matrix R12 to arrive at
the following eigenvalue equation:

(R11 + R22)
−1 (R12 + R21) w = λw, (3)

where λ = σ12/σ11. As equation (3) is a generalized eigenvalue
problem, there are multiple (and not necessarily orthogonal)
solutions. The weight vector that maximizes the correlation coef-
ficient between y1 and y2 follows as the principal eigenvector of
(R11 + R22)−1(R12 + R21), with the optimal value of the correla-
tion given by the corresponding eigenvalue. Moreover, the second
strongest correlation is obtained by projecting the data matri-
ces onto the eigenvector corresponding to the second strongest
eigenvalue, and so forth. As the decorrelation (correlation matrix
inverse) operation is sensitive to dimensions dominated by noise,
we effectively regularize the algorithm by truncating the eigenvalue
spectrum of the pooled covariance to the K strongest principal
components. The value of K serves as a regularization parameter:
the larger the number of whitened components, the stronger the
optimal correlation. However, lower values for K will shield the
learning algorithm from picking up spurious correlations from
noisy recordings.

INTRA- AND INTER-SUBJECT CORRELATION (IaSC, ISC)
The two data matrices X1 and X2 used to compute the corre-
lation and cross-correlation matrices in the forthcoming results
are defined here. For the first analysis which is concerned with
within-subject correlations, we define the subject-aggregated data
matrices as follows:

X̄1 =
[

X(1)
1 X(2)

1 · · · X(N )
1

]

X̄2 =
[

X(1)
2 X(2)

2 · · · X(N )
2

]
, (4)

where X(n)
i , i ∈ {1, 2}, n = {1, 2, . . . , N } is the EEG data record

from the ith viewing of the movie by the nth subject. For the analy-
sis that is concerned with across-subject correlations, we defined
the aggregated matrices X̄1 and X̄2 such that the subsequent cor-
relation considers all unique combination of pairs of subjects. For
example, for a three-subject population, we have:

X̄1 =
[

X(1)
1 X(1)

1 X(2)
1

]

X̄2 =
[

X(2)
1 X(3)

1 X(3)
1

]
, (5)

where it should be noted that the above matrices correlate the
records from viewing 1 only. Analogous definitions hold for the
second viewing. As it is expected that only certain scenes evoke

1Note that in our application, it is reasonable to assume that the power levels of
recordings stemming from two viewings (or two subjects) are roughly equivalent.

significant correlations, we compute the correlations in a time-
resolved fashion by employing a sliding window with a 5-s dura-
tion with a shift of the window occurring every second (80%
overlap between successive windows).

FORWARD MODEL
Given a set of linear spatial filters W and the data covariance matrix
R, the forward models A = RW(WTRW)−1 represent the scalp
projections of the synchronized activity extracted by the projection
vectors W (Parra et al., 2005).

SOURCE LOCALIZATION
We have used the standardized low-resolution brain electromag-
netic tomography package (sLORETA, version 20081104) to trans-
late the obtained forward models into distributions of underlying
cortical activity (Pascual-Marqui, 2002).

SPECTRAL ANALYSIS
To compute the instantaneous power of EEG in the theta (4–
8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequency bands,
we employed a complex Morlet filter of the form h(t ) =

ae2πifc t e
−

(
t√
2σ

)2

, with the following parameters for each
band: (theta) a = 0.05, fc = 6, σ = 0.12,− 0.5 ≤ t ≤ 0.5 s; (alpha)
a = 0.05, fc = 10, σ = 0.1,− 0.33 ≤ t ≤ 0.33 s; (beta) a = 0.2,
fc = 20, σ = 0.075,− 0.33 ≤ t ≤ 0.33 s. The instantaneous power
follows as the squared magnitude of the complex filter output
y(t ) = h(t )∗x(t ), where ∗ denotes the convolution operator.

EXPERIMENTAL PARADIGM
A total of 20 subjects with self-reported normal or corrected-to-
normal vision and normal hearing, participated in the study. The
minimum, median, and maximum age of the subjects was 21, 24,
and 45, respectively, with 14 males and 6 females volunteering. All
experiments were approved by the Institutional Review Board of
the City College of NewYork and all subjects gave written informed
consent prior to the experiment. Subjects were instructed to sit
comfortably, attentively watch the forthcoming movie clips, and
refrain as much as possible from overt movements. Each subject
was then presented with three 6-min movie clips, with each clip
being shown twice. The order of the three clips was randomized
across subjects, but the order was preserved within each subject
(for example, a typical session consisted of M2-M1-M3-M2-M1-
M3). The movie clips chosen were from the following films:“Bang!
You’re Dead,” (1961) directed by Alfred Hitchcock as part of the
Alfred Hitchcock Presents series; “The Good, the Bad, and the
Ugly,” (1966) directed by Sergio Leone; and a control film which
depicts a natural outdoor scene on a college campus.

DATA COLLECTION AND PRE-PROCESSING
The EEG was recorded with a BioSemi Active Two system
(BioSemi, Amsterdam, Netherlands) at a sampling frequency of
512 Hz. Subjects were fitted with a standard, 64-electrode cap fol-
lowing the international 10/10 system. To subsequently remove
eye-movement artifacts, we also recorded the electrooculogram
(EOG) with four auxiliary electrodes. All signal processing was
performed offline in the MATLAB software (MathWorks, Natick,

Frontiers in Human Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 112 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Dmochowski et al. Correlated components of ongoing EEG

MA, USA). After extracting the EEG/EOG segments correspond-
ing to the duration of each movie, the signals were high-pass
filtered (0.5 Hz) and notch filtered (60 Hz). Eye-movement related
artifacts were removed by linearly regressing out the four EOG
channels from all EEG channels; we chose the regression approach
over component-based techniques which are compared in Wall-
strom et al. (2004). EEG samples whose squared magnitude falls
above four standard deviations of the mean power of their respec-
tive channel were replaced with zeros. It should be noted that
without regressing eye-movement related activity from the data,
the forthcoming correlated components showed stereotypical sig-
natures of eye movements, as expected given that well-edited films
are known to evoke similar scan paths in viewers (Dorr et al.,
2010). After regression, these components disappeared.

STATISTICAL SIGNIFICANCE
To establish significance of the time-resolved correlation, we
employ a permutation test approach (Fisher, 1971). To yield cor-
relation values under the null hypothesis, we compute the corre-
lations with one of the two records (either from a second viewing
or subject) scrambled in time: the second record is divided into
5-s blocks, with the order of the blocks then randomly shuffled.
All significance tests are corrected for multiple comparisons using
the false discovery rate (Benjamini and Hochberg, 1995).

RESULTS
PEAKS IN INTRA-SUBJECT CORRELATIONS (IaSC) OCCUR AT
MOMENTOUS FILM EVENTS
We first consider intra-subject correlations (IaSC) between the
two viewings and their relationship to stimulus characteristics.
To that end, we construct subject-aggregated data matrices by

concatenating in time the data from multiple subjects separately
for each viewing (see equation 4). The aggregated data is sub-
stituted into the eigenvalue equation of equation (3) to yield the
optimal spatial filters and resulting components. For each of n = 10
subjects, the coincidence in neural activity across the two viewings
is then measured by computing the correlation coefficient in the
component space. The population IaSC follows as the average of
these correlation coefficients across all subjects.

Figure 1A depicts the top three correlation-maximizing com-
ponents, shown in the form of “forward models” (Parra et al.,
2005; see Methods) which depict the projection of the correlated
neural activity on the scalp. It is interesting to note the remark-
able level of agreement in the forward models across the three
movies shown, including the amateur film depicting an outdoor
scene lacking noteworthy action. The first component is symmet-
ric and marked by an occipital positivity and parietal negativity.
The second component is also symmetric with positivity over
the temporal lobes and negativity over the medial parietal cortex.
Meanwhile, the third component shows a strong frontal positivity
with broad temporal-parietal-occipital negativity.

The resulting population correlation coefficients are shown as
a function of movie time for “Bang! You’re Dead” in Figure 1B.
The gray shaded area indicates the correlation level required to
achieve significance at the p < 0.01 level (using a permutation
test). The first component shows extended periods of statistical
significance, staying above the significance level for approximately
33% (corrected for multiple comparisons by controlling the False
Discovery Rate; Benjamini and Hochberg, 1995) of the film. More
importantly, the peaks of the population IaSC correspond to
moments in the clip marked by a high level of suspense, tension,
or surprise, often involving close-ups of the young protagonist’s

A

B

C

D E

FIGURE 1 | Neural correlations during two critically acclaimed films and

one amateur control. The scalp projections of the first three maximally
correlated components show a remarkable congruence across the three films
shown (A). The within-subject correlation peaks at particularly arousing
moments of “Bang! You’re Dead,” (B,C) with over 30% of the film resulting in

statistically significant correlations in the first component (D). On the other
hand, any extended periods of statistically significant correlation fail to arise
during the control clip. Moreover, when presenting “Bang! You’re Dead” with
its scenes scrambled in time, a significant reduction in neural correlation
ensues (E).
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revolver (which the audience, but not the boy, knows is gen-
uine and contains one bullet) being triggered – Figure 1C. For
an appreciation of the correspondence between the population
IaSC and the plot trajectory, please refer to the online demo for a
real-time visualization of all three components’ population IaSC
curves throughout the film clip. The correlation time series of the
second component spends approximately 23% of the film dura-
tion above the significance level, with local maxima seeming to
coincide with scenes of cinematic tension involving hands (i.e.,
the protagonist’s Uncle realizes that his revolver is in the hands
of the boy; the protagonist points the real gun at an approach-
ing mailman; the boy finds a case of bullets in the guest room).
Finally, the population IaSC as measured in the space of the third
component is significant for approximately 10% of the clip dura-
tion, exhibiting peaks at moments roughly linked to anticipation.
Figure 1D summarizes the proportion of significantly correlated
time windows of each component and movie. It is clear that there
is little correlated neural activity present in the EEG stemming
from the control film. We employed a standard hypothesis test of
proportions (Glantz, 2005) to test whether pairs of observed ratios
are drawn from disparate distributions: where significant, we have
indicated the corresponding p-values. In the first component, for
example, there is a significant increase in the proportion of sig-
nificantly correlated time windows in the two critically acclaimed
films as compared to the control film.

POPULATION IaSC IS STRONGLY ATTENUATED WHEN “MEANING” OF
STIMULUS IS LOST
We constructed a further control by extracting the (46) scenes
of “Bang! You’re Dead,” randomly shuffling their temporal order,
and recording the neural activity in response to this temporally
reordered, but otherwise identical, stimulus (for this experiment,
a separate group n = 10 subjects was employed, and each subject
viewed the scrambled film twice). Comparing the neural responses
of the scrambled film with the original version controls for the
low-level visual and auditory features of the stimulus which are
identical in both conditions. On the other hand, the meaning,

affect, and suspense are presumably elevated when viewing the
film clip in its original order. As shown in Figure 1E, the pro-
portion of statistically significant windows is reduced to 14, 0%
(no significant time windows), and 1% for components 1, 2, and
3, respectively, in the scrambled film. Once again, a hypothesis
test of proportions reveals that these reductions are statistically
significant at the p < 0.01 level.

INTER-SUBJECT CORRELATION (ISC) DECREASES DURING SECOND
VIEWING
Next, we consider the effect of prior exposure to the stimulus on
the resulting neural correlation. To that end, we measured the pop-
ulation inter-subject correlation (ISC) during the first and second
viewings of the clips for n = 10 subjects. Analogously to the mea-
sure of population IaSC defined above,we construct the aggregated
matrices such that the subsequent correlation considers all unique
combinations of pairs of subjects (see equation 5). Once these
concatenated data sets are constructed, the eigenvalue problem of
equation (3) is solved to yield the spatial filters maximizing the
ISC across the entire population.

Figure 2A depicts the scalp projections of the maximally cor-
related components for “Bang! You’re Dead.” It is immediately
evident that these components bear a strong resemblance to those
maximizing the population IaSC in the previous subsection – this
is an intuitively satisfying result, as it stands to reason that the
neural “sources” responsible for the correlated stimulus-driven
activity across viewings of the same individual would also lead
to across-subject reliability. While a high level of congruence
exists between the forward models of the first and second view-
ings, it is interesting to note the stronger frontal positivity in the
third component of the first viewing (as compared to the second
viewing). For each viewing, we also computed the time-resolved
correlation coefficients averaged across subject-pairs (shown in
Figure 2B), and performed the Wilcoxon signed rank test to
determine the probability that the differences in population ISC
between the two viewings could have originated from a zero-
median distribution (Gibbons and Chakraborti, 1992). For all

A B C

FIGURE 2 |The effect of prior exposure on neural correlation. The scalp
projections of the components maximizing population ISC during the first
viewing are largely congruent to those stemming from viewing 2 (A).

However, the resulting time-resolved correlation measures are significantly
lower during the second viewing (B). Furthermore, more time windows
exhibit statistically significant ISC in the first viewing (C).
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three components, the null hypothesis was rejected (p = 0.004,
p = 0.012, p = 0.005, for components 1, 2, and 3 respectively).
Finally, as shown in Figure 2C, there is a statistically significant
reduction in the proportion of time windows showing significant
correlation during the second viewing in the second (p = 0.022)
and third components (p = 0.027).

HIGH NEURAL CORRELATION MARKED BY DECREASED ALPHA AND
INCREASED THETA
Due to the fine temporal resolution inherent to EEG, it is possible
to uncover the frequency bands that are systematically increased
(or decreased) during periods of high correlation. For exam-
ple, desynchronization in the alpha band has been shown to be
associated with increased attention (Klimesch et al., 1998), while
increased alpha-band oscillations presumably reflect an attention
suppression mechanism (Foxe and Snyder, 2011). As a result,
one may expect an inverse relationship between alpha power and
decoded engagement. To that end, we compared the instantaneous
power (Boashash, 1992) at several nominal EEG frequency bands
(collapsed across subjects and viewings) during times of high
within-subject correlation to that observed during low-correlation
periods. For each subject, we computed the mean instantaneous
power during temporal windows in the top and bottom 20% of the
population IaSC, and then tested the power differences (high cor-
relation versus low correlation, n = 10) for statistical significance
using a one-sample Student’s t -test. This procedure is performed
in the component space: that is, the instantaneous powers are com-
puted on the spatially filtered EEG. The results are summarized in
Figure 3, which displays the corresponding boxplots of differences

in instantaneous power. Each boxplot displays the median (central
mark), the 25 and 75 percentiles (box edges), extrema (whiskers),
and samples considered outliers (“plus” signs).

Effects deemed to be statistically significant are indicated with
gray shading, and p-values are listed in each panel. As expected,
there is a significant decrease in alpha power, measured in the space
of the second (temporal-parietal) component, during periods of
high IaSC. Moreover, the power in the theta band of the third
(frontal) component is significantly increased during highly cor-
related times – synchronization of frontal theta power with a con-
current decrease in alpha power has been linked to the encoding
of new information (Klimesch, 1999; Jensen and Tesche, 2002). It
has also been shown in an fMRI study that successful encoding of
episodic memory is correlated with high ISC during initial expo-
sure (Hasson et al., 2008). Finally, a strong reduction in beta power
in both the first and second components is revealed – a decrease in
temporal beta has been associated with so-called “intake” tasks, or
those that require sustained monitoring of external emotionally
laden stimuli (Ray and Cole, 1985).

SOURCE ANALYSIS SUGGESTS EMOTIONAL INVOLVEMENT
While the spatial resolution of EEG is inherently poor, low-
resolution tomography (LORETA) of scalp potentials has been
extensively employed to suggest possible cortical origins of the
observed activity (Fuchs et al., 2002; Pascual-Marqui, 2002; Jurcak
et al., 2007). To that end, we computed the LORETA estimates of
the neural current source distributions explaining the scalp pro-
jections of the synchronized activity. The results are illustrated in
Figure 4.

FIGURE 3 | Differences in instantaneous power during moments

of high versus low neural correlation. Distributions are
constructed along the subject dimension (n = 10, with statistically
significant effects denoted with a light gray background). High

correlation windows are marked by synchronization of theta activity
in the third component, desynchronization of alpha in the second
component, and desynchronization of beta in the first and second
components.
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FIGURE 4 | Sources of correlated neural activity for components

1, 2, and 3. The scalp projections of the correlated activity are shown
in the top left of each pane; the estimated distributions of cortical
sources are depicted in the remaining three panes. The correlated
activity of component 1 suggests involvement of the posterior
cingulate gyrus (Brodmann Area 31, labeled pcg), the

parahippocampal gyrus (Brodmann Area 27, phg), and precuneus
(Brodmann Area 7, pcu). The postcentral gyrus (pocg) and paracentral
lobule (pacl) are implicated in the localization of the activity in
component two. The activity captured by component 3 is consistent
with sources in the inferior frontal gyrus (ifg) and the orbital gyrus
(og). Anatomical locations shown are approximate.

The localization results from the first component of synchro-
nized activity suggest a possible source in the cingulate cortex,
with particularly strong activation occurring in the posterior cin-
gulate of the left hemisphere. The cingulate cortex has been viewed
by some as a unitary component of the limbic system subserving
emotional processing (Vogt, 2005). Strong activations may also
originate in the parahippocampal gyri (involved in the process-
ing of scenes; Epstein et al., 2003), as well as in the precuneus
and superior parietal lobule of the parietal cortex – widespread
involvement of the parietal cortex in neural correlation was also
reported in fMRI (Hasson et al., 2004). Performing LORETA on
the scalp projection of the synchronized activity in the second
component is also consistent with activity originating in the pari-
etal cortex, with the postcentral gyrus and paracentral lobules
showing strong activations across both hemispheres. Meanwhile,
source analysis of activity in the third component reveals possible
sources in frontal regions (in descending order of strength of acti-
vation): the inferior frontal, orbital, middle frontal, and superior
frontal gyri. The orbitofrontal cortex is considered to be a region of
multimodal association and is involved in the representation and
learning of reinforcers that elicit emotions and conscious feelings
(Kringelbach, 2005).

DISCUSSION
To investigate the relationship between engagement – an everyday
phenomenon which one can readily describe subjectively – and
neural correlation on a temporally fine time scale, we developed
a component analysis technique which yields cleaner estimates of
the underlying neural synchrony than that obtained by simply cor-
relating (noisy) EEG in an electrode-to-electrode fashion. By then
manipulating the naturalistic stimulus (for example, by repeating
the film or showing it with scrambled scenes), we found a close
correspondence between expected engagement and neural cor-
relation. The observed desynchronization of alpha-band activity
during times of high neural correlation suggests increased atten-
tion during moments of engagement. Indeed, there may be signif-
icant overlap between engagement and attention, as both appear

to involve a suppression of internally oriented mental processing
with a focus on external stimuli. We suggest here that in addition
to increased attention, engagement entails emotional involvement
(“emotionally laden attention”), a claim supported by the finding
of decreased beta activity (Ray and Cole, 1985). Furthermore, we
find increased theta activity in frontal areas which has been repeat-
edly implicated in memory encoding (Klimesch, 1999; Jensen and
Tesche, 2002). This is also consistent with the finding that the
most memorable events are those that are emotionally arousing
(Anderson et al., 2006).

It is worthwhile to point out that we also repeated the analy-
sis but with canonical correlation analysis (CCA) employed to
derive the components. The resulting spatial filters exhibited very
noisy topologies with seemingly little anatomical plausibility. We
attributed this to the higher dimensionality of CCA and insuffi-
cient data to fit its parameter space. Both the proposed“Correlated
Components Analysis” and the classical CCA explicitly correlate
two data sets; instead, one may also apply conventional source
separation algorithms such as Independent Components Analysis
(ICA; Delorme and Makeig, 2004) to a concatenated data matrix
of the form [X1 X2]. Blind source separation techniques such as
ICA are also powerful in extracting artifactual components which
may then be straightforwardly subtracted from the data. On the
other hand, the components yielded by an ICA decomposition
are unordered and do not necessarily represent activity that is
correlated across viewings. Thus, a manual procedure (and sub-
sequent multiple comparison correction) would be required to
search for components which exhibit the desired behavior (i.e.,
correlation across viewings). To that end, an ICA-type algorithm
which incorporates correlation constraints may prove useful in
future investigations.

Analyzing naturalistic data presents a challenge in that seg-
ments of data severely corrupted by subject movement and rapid
impedance changes need to be retained in the processed data set: in
multiple-trial analyses of the event-related variety, one may simply
discard corrupted trials. Here, in an effort to preserve the temporal
structure of the data, we have replaced all samples varying from
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their channel’s mean by more than 4 standard deviations with
zeros. Fortunately, the obtained components do not show tem-
poral time courses or spatial topologies consistent with motion
artifacts. Ultimately, the effects of the manipulations used (show-
ing the film a second time or with its scenes scrambled) on the
resulting neural correlations suggest that what is being observed is
neural in origin.

The analysis of the cortical origins of scalp potentials, partic-
ularly in the third component, argues for possible sources in the
orbitofrontal cortex associated with emotional involvement. While
analysis of scalp potentials cannot conclusively pinpoint the loca-
tion of a current source in the brain (Kincses et al., 1999; Grave de
Peralta Menendez et al., 2000), it can nevertheless suggest which
source locations are consistent with the data, and thus helps to
generate hypotheses as to the spatial origins of activity. Thus, we
plan to perform combined fMRI-EEG experiments to confirm the
estimates observed here. Moreover, a combined fMRI-EEG study
will ascertain the importance of temporal resolution in identi-
fying moments of high “engagement” – while the frame rate of
a film far exceeds the temporal resolution of any fMRI scanner,
the information rates of natural audiovisual stimuli are substan-
tially lower than the frame rates employed to display their content.
The fine temporal resolution of EEG may allow one to estab-
lish the time scale at which engagement is regulated in human
subjects – something likely not feasible with fMRI.

Given the rising interest in the workings of the brain under real
world conditions (Spiers and Maguire, 2007), the decoding and
tracking of brain states in natural, uncontrolled settings promises
to be a vigorous research direction in the coming years. While
naturalistic experiments are straightforward to conduct (in con-
trast to the more controlled variety of event-related designs), the
task of analysis becomes substantially more difficult in the sense
that discerning the features of the perceptually rich, unregular-
ized stimuli is a non-trivial undertaking. The results of our study
point to the ability of marking ongoing attentional and emotional
changes using temporally localized changes in neural synchrony.
Moreover, while not considered in this work, it may be interesting
to differentiate stimuli eliciting peaks in IaSC with those evoking
peaks in ISC. Intuitively, IaSC measures how reliably a scene elic-
its a response in the viewer in repeated presentations. It is thus
not surprising that we found the respective components to corre-
spond to markers of engagement. On the other hand, ISC conveys
an agreement of a group of individuals, in that multiple viewers
must experience a common stimulus similarly for the correlation
to peak. The within-subject correlations were strongly modulated
by the “meaning” of the stimuli, in the sense that identical stimuli

with a disrupted narrative strongly attenuated IaSC. While not
explicitly analyzed here, we expect ISC to similarly depend on
narrative. Whether the agreement of the group of individuals
expressed by ISC is group specific, i.e., “cultural,” or whether a
narrative is universally engaging may be an interesting subject for
further study.

If one takes a dynamical systems view of the brain in which
sensory processing interrupts internally oriented “default-mode”
activity (Gusnard et al., 2001; Raichle et al., 2001; Greicius et al.,
2003), one may view the proposed algorithm as attempting to
extract the stimulus-driven response while filtering out the intrin-
sic activity. In actuality, the neural response to the stimulus varies
both within and across subjects due to subjective evaluations of
the stimulus, and due to the uniqueness of each individual’s brain.
Moreover, it is not inconceivable that resting-state activity exhibit
some correlation across viewings. In general, however, projec-
tions of the data which maximize correlation across viewings will
reflect more of the sensory processing and less of the default-mode
activity than that of the raw recordings.

The observed involvement of attention and emotion suggests a
paradigm in which cortical processing of external stimuli is mod-
ulated by cognitive states. In this view, the brain is a dynamical
system in which its extrinsic response to a stimulus is shaped by
its global state. For example, the amplitude modulating effect of
attention on visual evoked response has been observed as early as
the 1960s (Garcia Austt et al., 1964). Thus, the neural activity of
a less attentive viewer will exhibit less of the extrinsic response
and more of the intrinsic activity (the effective “noise”), leading
to decreased correlation across multiple views. Another possibil-
ity is that sensory processing becomes more precisely time-locked
to the stimulus during periods of high engagement. The precise
mechanism leading to increased correlation will remain a subject
of investigation.

Regardless of the semantic description that one ascribes to
states marked by elevated neural synchrony, the results presented
in this study demonstrate that the amount of temporally resolved
neural correlation conveys high-level properties of the stimulus.
By further probing the spatial, spectral, and temporal dimensions
of this encoding, we may gain valuable insights into how neural
signals convey our everyday experience.
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