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Joint attention consists in following another’s gaze onto an environmental object, which
leads to the alignment of both subjects’ attention onto this object. It is a fundamental
mechanism of non-verbal communication, and it is essential for dynamic, online, interindi-
vidual synchronization during interactions. Here we aimed at investigating the oscillatory
brain correlates of joint attention in a face-to-face paradigm where dyads of participants
dynamically oriented their attention toward the same or different objects during joint and
no-joint attention periods respectively. We also manipulated task instruction: in socially
driven instructions, the participants had to follow explicitly their partner’s gaze, while in
color-driven instructions, the objects to be looked at were designated at by their color so
that no explicit gaze following was required. We focused on oscillatory activities in the
10 Hz frequency range, where parieto-occipital alpha and the centro-parietal mu rhythms
have been described, as these rhythms have been associated with attention and social
coordination processes respectively. We tested the hypothesis of a modulation of these
oscillatory activities by joint attention.We used dual-EEG to record simultaneously the brain
activities of the participant dyads during our live, face-to-face joint attention paradigm. We
showed that joint attention periods – as compared to the no-joint attention periods – were
associated with a decrease of signal power between 11 and 13 Hz over a large set of
left centro-parieto-occipital electrodes, encompassing the scalp regions where alpha and
mu rhythms have been described. This 11–13 Hz signal power decrease was observed
independently of the task instruction: it was similar when joint versus no-joint attention
situations were socially driven and when they were color-driven. These results are inter-
preted in terms of the processes of attention mirroring, social coordination, and mutual
attentiveness associated with joint attention state.
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INTRODUCTION
We live in a social world. A lot of our time and cognitive resources
are devoted to the processing of information conveyed by others.
Synchronizing our actions with those of others and appropriately
responding to social signals are essential to adaptive behavior.
Among social signals, a particularly important cue for interindi-
vidual synchronization is gaze (Argyle et al., 1973; Patterson,1982).
Eye contact and gaze following are pervasive components of social
exchanges. Gaze regulates interpersonal interactions and turns of
conversation. In humans, eye gaze has evolved as an essential cue
to social attention, which is used to detect others’ focus of interest
in the environment and infer others’ intentions.

A basic but omnipresent element of social synchronization
is constituted by the process of joint attention (Emery, 2000):
Seeing someone directing his/her attention to an environmental
object induces a shift of attention in the observer, resulting in the
alignment of both subjects’ attention onto the same object. This

attentional shift is automatic insofar as it cannot be suppressed by
instructing the observer to ignore the seen eye gaze or by notifying
that the eye gaze is most likely to cue an irrelevant space loca-
tion (for review, see Frischen et al., 2007). The shift of attention
induced by others’ gaze can occur overtly – it is then accompa-
nied by an eye movement of the observer toward the object – or
covertly – no eye movement occurs and the observer’s attention is
covertly aligned onto the object gazed at by a fellow (for a recent
review, see Shepherd, 2010).

With the exception of a few exemplary recent studies (Red-
cay et al., 2010; Saito et al., 2010; Pönkänen et al., 2011), joint
attention has typically been studied in task manipulating comput-
erized face and gaze stimuli. Yet, joint attention is a fulcrum of
everyday social interactions; it plays a pivotal role in our ability
to understand others, to infer their intentions, desires, thoughts,
and beliefs (Baron-Cohen, 1995). It is a social act that involves a
triadic and dynamic relation between two agents and an external
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object (Emery, 2000; Grossmann et al., 2007), implying mutual
attentiveness as well as coordination – two core elements of rap-
port (Tickle-Degnen and Rosenthal, 1990; Tickle-Degnen, 2006).
Joint attention also implies a dynamic perception-action coupling
between interacting agents, and it has been proposed to involve
attention mirroring (Shepherd et al., 2009; Gangopadhyay and
Schilbach, 2012); it may thus also be considered as pertaining to
mimicry behaviors which are thought to involve the mirror neuron
system and are known to play a role in affiliation (Lakin and Char-
trand, 2003; Lakin et al., 2003; Iacoboni, 2009). Thus, altogether,
joint attention may be best captured in online interactions between
two persons, during dynamic sequences of eye movements toward
external objects and gaze following.

Here, we aimed at investigating the oscillatory brain correlates
of joint attention under such real-time, live situation of face-
to-face interaction between two participants. We used a setup
developed and validated in our laboratory that allows seating
two persons face-to-face in a joint attention paradigm, getting
closer to a real-life situation while retaining the advantages of a
laboratory-based experiment (Lachat et al., 2012). We recorded
the brain activity of dyads of participants using dual electroen-
cephalography (dual-EEG; Dumas et al., 2011). This technique
enables the simultaneous recording of the brain activities of two
persons interacting with each other. Recent studies have used such
dual recording with EEG as well as functional Magnetic Reso-
nance Imaging (fMRI), paving the way to the emerging field of
hyperscanning studies for the investigation of embodied, live social
interactions (for a review, see Dumas et al., 2011).

Oscillatory activities centered around 10 Hz constitute promi-
nent rhythms in the EEG power spectrum that have been observed
from the birth of EEG (e.g., Berger, 1929). These oscillatory
activities, measured typically between 8 and 13 Hz, are often des-
ignated as “idling rhythms” as they correspond to a resting state
of the brain, and sensory stimuli typically engender a suppres-
sion of these oscillations in the corresponding sensory area of the
brain (Pfurtscheller et al., 1996, Palva and Palva, 2007). Yet, these
rhythms have been associated with multiple cognitive processes
over the years, and particularly with attentional processes as well
as with the mechanisms of social interaction (e.g., Başar et al.,
1997; Ward, 2003; Klimesch et al., 2007; Palva and Palva, 2007;
Foxe and Snyder, 2011; Perry et al., 2011); they were therefore of
particular interest for the present study.

Oscillations within the 8–13 Hz frequency band have been
described first over parieto-occipital regions. These parieto-
occipital activities are known as the alpha rhythm. This rhythm
is primarily modulated by visual inputs: it is attenuated by visual
stimulation as well as when the eyes are open compared to when
the eyes are closed (Adrian and Matthews, 1934); it is also mod-
ulated by the position of the eyes with the elevation of the eyes
increasing the amplitude of alpha oscillations (Mulholland and
Evans, 1965, 1966, but see Chapman et al., 1970). Moreover, the
parieto-occipital alpha rhythm is held to reflect arousal and atten-
tion mechanisms (Ward, 2003; for reviews see Foxe and Snyder,
2011). Alpha oscillatory activities are reduced under conditions of
high arousal and/or of increased attentiveness as well as enhanced
for stimuli that have to be ignored. The parieto-occipital alpha
rhythm has been proposed to reflect an attentional distractor

suppression mechanism: alpha activity would be invoked in corti-
cal regions processing irrelevant or distracting information during
attention-related tasks, acting as a suppression mechanism for
stimuli or stimulus features that are to be ignored (Foxe and Sny-
der, 2011). In addition, it has been shown that alpha oscillations
may be modulated in relation with gaze perception: in a face-
to-face paradigm, Gale et al. (1972) demonstrated that the alpha
oscillations recorded in an observer were reduced under condition
of gaze contact with an interlocutor, as compared to a condition
of closed eyes or averted gaze of the interlocutor. This result was
interpreted in terms of the arousing value of mutual gaze.

Moreover, Gastaut (1952) and Gastaut and Bert (1954)
described for the first time the Rolandic mu rhythm which occurs
in the same frequency band as the alpha and typically culminates
over centro-parietal regions. The mu rhythm shows a peak in the
8–13 Hz frequency band but it also has a beta band component
(15–25 Hz; for a review see Hari et al., 1997; Pineda, 2005). The
mu rhythm was first associated with the execution of a motor
activity (Pfurtscheller and Berghold, 1989). When a movement is
performed, mu oscillations are reduced as compared to a situa-
tion of no movement (Cochin et al., 1998; Babiloni et al., 1999).
Furthermore, Hari et al. (1998) demonstrated that the oscilla-
tory activities in the 15–25 Hz band over the rolandic region are
modulated by an action performed by the subject or by the obser-
vation of the same action performed by somebody else. Mu rhythm
suppression in the ∼10 Hz band has also been revealed when par-
ticipants observe or imagine a motor action (Pineda et al., 2000;
Perry and Bentin, 2009). These results suggest that decreased mu
signal power may reflect the activity of the human mirror system
(Muthukumaraswamy and Johnson, 2004, for a review see Pineda,
2005). Recent studies further proposed a more specific role of mu
rhythm as an electrophysiological signature of social skills: signal
power modulations in the mu frequency band have been linked
to the perception of socially relevant stimuli and the processing
of social interactive situations (Oberman et al., 2007; Perry et al.,
2011), to empathy and the representation of others’ pain (Cheng
et al., 2008; Perry et al., 2010), to the social perceptive component
of theory of mind (Pineda and Hecht, 2009), to the processing of
social context, and to the interindividual coordination of action
(Naeem et al., 2012). Tognoli et al. (2007) proposed that a partic-
ular oscillatory component within the alpha and mu frequency
band, the so-called phi complex (9–11 Hz), recorded over the
lateral centro-parietal regions of the scalp, would be specific to
the social coordination of movements. More recently, inter-brain
phase synchronizations have been observed in the same frequency
range between pairs of subjects engaged in spontaneous reciprocal
imitation (Dumas et al., 2010).

It is worth noticing that except the studies of Tognoli et al.
(2007), Dumas et al. (2010) and Naeem et al. (2012), the mu
rhythm has only been investigated with participants facing com-
puterized stimuli rather than during live interactions with a
human partner. Yet, recent studies have emphasized the impor-
tance to use natural settings to investigate human social cognition
(Kingstone et al., 2003; Zaki and Ochsner, 2009; Schilbach, 2010;
Wilms et al., 2010). Moreover, to our knowledge, the oscillatory
correlates of joint attention remain unexplored. Since oscilla-
tory activities in the alpha and mu frequency band have been
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associated with attention processes as well as with social interac-
tion and coordination processes, they should be good candidates
as electrophysiological correlates of joint attention.

The aim of our study was to investigate the influence of
joint attention on oscillatory activities within the 8–13 Hz fre-
quency band. As detailed above, joint attention is a fulcrum
of social interaction and interindividual synchronization. It is a
social act that takes place in the online interaction between two
social agents. Jointly attending to the same object with a physi-
cally present partner requires interpersonal coordination, mutual
attentiveness as well as attentional mirroring mechanisms. These
multiple processes associated with joint attention predict a wide-
spread decrease of alpha and mu signal power over centro-parietal
and parieto-occipital scalp regions, in comparison with situation
matched for their motor component but involving no-joint atten-
tion. To test this hypothesis, we set up a live joint attention para-
digm, where dyads of participants seating face-to-face had to direct
attention to the same or opposite objects (color light-emitting
diodes, LEDs) during different blocks of trials. In addition, we
manipulated task instruction: The participants were either explic-
itly told to follow each other’s gaze or instructed to look at a given
color LED so that joint attention was then color-driven rather
than socially driven. This aimed at examining whether alpha or
mu activities may be more strongly influenced by joint atten-
tion processes when the alignment of attention of the participants
resulted from explicit gaze following. On one hand, it could be pre-
dicted that alpha and mu modulations by joint attention should be
enhanced under the gaze following instruction compared to the
color-driven instruction, because more social coordination and
enhanced mutual attentiveness may be elicited in the former case.
On the other hand, the presence of a partner may be very diffi-
cult to ignore during a face-to-face, live paradigm, and this may
dampen the observation of differences between the socially driven
and the color-driven joint attention processes. Oscillatory activi-
ties were analyzed during the time periods where both participants
focused on the same or different LEDs (i.e., after having moved
their eyes toward the LEDs). Although the time period of the sub-
jects’ eye movement following the lighting of the LEDs was of
potentially great interest, reflecting overt and dynamic attention
orienting processes, it was very transient and heavily contaminated
by task-related ocular activities. By contrast, we were interested in
the sustained states of joint attention associated with the periods
of gaze focus on the LEDs; these should induce sustained feelings
of mutual attentiveness and shared attention that should be strong
enough to be observed over the whole time period during which
both subjects gazed at the same LED.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-two healthy volunteers took part in the experiment (16
female, mean age = 23.5 ± 3.5 years). They provided informed
written consent and were paid for their participation. All pro-
cedures were approved by the local ethics committee (CPP No.
07024). All participants were right-handed and had normal or
corrected-to-normal vision. None of the participants had a his-
tory of neurological or psychiatric illness. All participants were
in the normal range of the Autism-Spectrum Quotient (AQ;

Baron-Cohen et al., 2001; mean score = 16.5 ± 1) as well as of
the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965; mean
score = 21 ± 0.6). These questionnaires were given to the partic-
ipants because previous studies have suggested an influence of
self-esteem and autistic traits on the sensitivity to gaze cues in
attention orienting paradigms (Bayliss et al., 2005; Wilkowski et al.,
2009). Furthermore, 1–8 months before the dual-EEG experiment,
every participant took part in a behavioral experiment consisting
in a face-to-face paradigm of attention orienting induced by gaze
(Lachat et al., 2012). This allowed assessing the gaze cueing effect
in each participant (mean gaze cueing effect, expressed as the reac-
tion time difference between the detection of targets cued by gaze
versus the detection of targets not cued by gaze = 17 ± 4 ms). We
then distributed the participants into 16 unisex dyads where the
participants were matched on age, AQ, RSES score, and gaze cue-
ing effect (in this order of priority), for the dual-EEG study. In
each dyad, the participants had never met, except for 4 dyads in
which the subjects had occasionally come across each other in the
past yet not within the last 6 months. We excluded three subjects
from the analyses due to excessive eye blinks or muscle artifacts
in the analyzed time intervals. Thus, we here report the data of 29
subjects (15 female, mean age = 24 ± 1 years).

APPARATUS
The experiment was conducted in a dimly lit, electrically shielded
room. Our experimental device was placed on a table in the middle
of the room. It consisted of two identical black wooden rectangle
boards (100 cm × 70 cm) bound together. The device was pierced
in its center by a circle hole (30 cm diameter). Four LEDs (5 mm
diameter) were fixed on the edge of the hole, symmetrically to the
right and left borders, the first two at the level of its horizontal
diameter and the other two 45˚ below (Figure 1A). These LEDs
were composed with two filaments, one lighting in green and the
other one lighting in red. An orange color was obtained by light-
ing the two filaments simultaneously. The LEDs could be switched
on in red, green, or orange via the parallel port of a computer.
Their luminance was calibrated by using a variable serial resis-
tance (mean = 111 ± 0.4 Cd/m2 for green and red, and 236 ± 4
for orange).

EXPERIMENTAL DESIGN AND TASK PROCEDURE
For each dyad, the participants were introduced to each other
when they arrived at the laboratory for the EEG recording session.
The installation of the EEG cap took place in the experimental
room for the two participants at the same time – it was performed
by two experimenters. The participant interacted with each other
during this period. Then, at the beginning of the experiment, the
two participants sat face-to-face on each side of the device so that
they could see each other through the device hole as well as see
the four LEDs on the hole border. Both subjects sat at 40 cm from
the center of the device with their eyes at the level of the “upper”
LEDs, resulting in a 21˚ of visual angle for every LED.

The experiment consisted in a two-by-two factorial design
where we manipulated two conditions of joint attention (Joint
attention/No-joint attention) as well as the task instructions
that led to these joint-/no-joint attention situations (Social
instruction/Color instruction; Figure 1B). The resulting four
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FIGURE 1 | Dual-EEG setup and experimental conditions. (A) Photograph of the device, with two LEDs turned on, and two participants facing each other.
(B) The four experimental conditions are illustrated on a view of the device. The arrows represent the gaze direction of subject A (in pink) and subject B (in blue).

experimental conditions were passed in separate blocks. In the
joint attention blocks, both subjects had to look at the same LED
across a series of trials; in the no-joint attention block, the subjects
had to look at opposite LEDs. In the Social instruction condi-
tion, joint attention situations were socially driven: one subject
was instructed to randomly choose the LED at which he looked
on every trial, whereas the other subject was requested to look
at either the same LED as his/her partner (in the joint attention
blocks) or at the opposite one (in the no-joint attention blocks).
Each subject endorsed the driver and follower role alternatively, in
different blocks. By contrast, in the Color instruction condition,
the LED to be gazed at was indicated to each subject by its color
(green or red), with either both subjects having to look at the same
color LED (joint attention blocks) or one subject instructed to look
at the green LED and the other one instructed to look at the red
LED (no-joint attention blocks). Thus, joint attention situations
were here externally driven.

In every block, each trial started by a 2–3 s period of mutual gaze
(where the subjects looked at each other) with all LEDs switched
off. Then, two LEDs (one on each side of the subjects) turned on:
one LED switched on in red, and the other one in green. The sub-
jects looked at the same or opposite LED as fast and accurately as
possible according to the instruction they had received for a given
block. After 3.5 s, both lighted LEDs changed their color to orange.
They remained orange for 3 s; the subjects were allowed to blink
during this period. Finally, the LEDs switched off again; both par-
ticipants moved their eyes back to the center of the device to look
at each other, and a new trial started. Every block comprised 34
trials preceded by two baseline periods of 6 trials each. During the
baselines, a black opaque cardboard with only small holes at its
outer boarder was placed on the device so that the subjects could
still see the LEDs but could not see each other anymore. During
the baseline periods, the timing of the trials (the LEDs switching
on and off) was exactly the same as during the experimental block.
In the first baseline period, the subjects were asked not to move

their eyes and keep looking straight at the center of the cardboard
throughout the six trials. This baseline period could not be ana-
lyzed due to excessive eye blinks in the time intervals of interest.
During the second baseline period, the subjects were requested to
move their eyes toward the red or green LED as during the exper-
imental blocks, except that they could not see each other. For this
baseline, the subjects were given written directives, so that the sub-
jects did not know the directive given to his/her partner. At the end
of the baselines, the cardboard was removed, and the directives for
the experimental block (Joint/No-Joint attention under Social or
Color instruction) were given orally to both subjects.

The EEG recording session comprised 12 experimental blocks
distributed across the 4 experimental conditions: socially driven
joint attention, color-driven joint attention, socially driven no-
joint attention, and color-driven no-joint attention. The order
of the blocks was randomized for each dyad. The experimental
blocks were preceded by a small block of training to each possible
experimental condition.

EEG DATA ACQUISITION
Electroencephalography data from both participants were
recorded simultaneously using two identical actiCaps (Brain Prod-
ucts GmbH, Munich) with 60 active electrodes each, placed
according to the international extended 10/10 system. Ground
electrodes were placed on the right shoulder of each participant.
Continuous EEG was recorded with respect to a nose reference, at a
sampling rate of 500 Hz. The signal was amplified and band-pass
filtered online between 0.16 and 250 Hz. Electrode impedances
were maintained below 10 kΩ. We used four bipolar derivations
to monitor eye movements: two electrodes were placed above and
below the dominant eye for the vertical eye movements, and two
electrodes were placed at the outer canthi of the eyes for the
horizontal movements. The data acquisition from each cap was
performed using two identical Brainamp MR amplifiers (Brain
Products GmbH, Munich), which were connected to the same
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computer and recorded through the same software interface to
ensure synchronous acquisition of both EEG data sets.

DATA ANALYSIS
On every trial and for each participant, we ensured that the partici-
pant had moved his/her eyes to the LED by placing a“post-saccade”
marker about 200 ms after the end of the saccade that followed the
lighting of the LEDs (see Figure 2).

First, we evaluated the saccadic response times of participants
under each condition of joint attention and instruction by mea-
suring the mean time interval between the LEDs turning on and
the post-saccade marker under each experimental condition for
every participant.

Second, for time-frequency analysis, we focused on the period
where both participants fixated the same or opposite, red or green
LED. We took the latest of the two participants’post-saccade mark-
ers as our time reference landmark for each trial in order to analyze
the time periods where the participants’ attention was aligned
onto the same or opposite objects (Figure 2). Trials containing eye
blinks, muscle artifacts, or other artifacts (>50 μV) were removed.
This led to a mean trial rejection rate of 20.4 ± 2.9% (on average,
7 out of 34 trials per block) across participants. After rejection,
the number of trials taken into account did not significantly differ
between our experimental conditions. A time-frequency wavelet
transform was applied from −0.1 s before to 2 s after this time
reference landmark, for each trial, at each EEG sensor. We used
a family of complex Morlet wavelets, with a m parameter of 10
and a Blackman window of 300 ms, resulting in an estimate of

FIGURE 2 |Time course of an example trial illustrated on the vertical

electrooculograms of a participant dyad. The upper and lower time
courses represent the vertical EOGs of the subjects A and B of a given
dyad. Every trial started by a period of mutual gaze for 2–3 s. Then, two
LEDs turned on (one in green, the other one in red) and both subjects
moved their eyes to one LED, according to the directives for this block.
After 3.5 s, the LEDs turned orange and the subjects were allowed to blink.
Post-saccade markers were manually inserted after the saccade onto the
LED for both subject A (post A) and B (post B). The gray rectangle
represents the time window of analysis; the dark gray border corresponds
to the 300 ms Blackman window used for the time-frequency transform,
which was excluded from measurement, resulting in a 1.5 s time window of
analysis (shaded in light gray).

signal power at each time sample and at each frequency between 4
and 120 Hz, with a frequency step of 1 Hz (for details and review,
see Tallon-Baudry and Bertrand, 1999). The time-frequency trans-
formed data were then averaged across trials for each experimental
block and for each subject, separately for the baseline trials and
the face-to-face trials. The obtained signal power data were then
averaged over a 1.5 s time interval between +0.2 and +1.7 s tak-
ing into account the Blackman window, for each frequency (see
Figures 3A,B). An index of signal power, defined at each frequency
as the log-transformation of the ratio between the mean signal
power for face-to-face trials and the mean signal power for baseline
trials was then computed, for each block. The log-transformation
of the data was used to approach a normal distribution. Finally
the data were averaged along the 4 conditions of interest: socially
driven joint attention, color-driven joint attention, socially driven
no-joint attention, and color-driven no-joint attention, for each
subject and for the grand mean of the 29 subjects.

STATISTICAL ANALYSIS
First, we analyzed the saccadic response times of the participants.
A first ANOVA was performed with Attention (Joint/No-Joint
attention) and Instruction (Social/Color) as within-subject fac-
tors. A second ANOVA was restricted to the conditions of socially
driven instructions and included Attention (Joint/No-Joint atten-
tion) and Participant status (Driver/Follower) as within-subject
factors.

For oscillatory activities, our main interest was in the modula-
tion of alpha and mu rhythms; we thus focused on the 8–13 Hz
frequency range. A first ANOVA performed at each electrode and
for each frequency, with Attention (Joint/No-Joint attention) and
Instruction (Social/Color) as within-subject factors did not reveal
any effect in the lower alpha and mu frequency range (8–10 Hz).
Thus, we averaged the data in the higher alpha and mu band,
between 11 and 13 Hz, and reported the result of statistical analyses
in this frequency band. Furthermore, under the social instruction,
the status of the participant as the driver or follower of his/her
partner’s attention was a factor of interest. We thus performed an
ANOVA restricted to the conditions of socially driven instructions
with Attention (Joint/No-Joint attention) and Participant status
(Driver/Follower) as within-subject factors.

Since our analyses involved multiple comparisons (over elec-
trodes and frequencies), we used a statistical threshold of 0.01 and
checked that at least three electrodes yielded a p < 0.001 in the
identified clusters.

In addition, in order to test whether any other frequency
band yielded some significant effects, we performed an additional
ANOVA on every electrode and every frequency between 4 and
120 Hz. This analysis did not reveal any other significant effect
besides the identified 11–13 Hz band modulation (Figure 3C).

Finally, in order to test the lateralization of the effect obtained
in the 11–13 Hz band and to investigate whether a dissociation
between the centro-parietal and parieto-occipital regions could
emerge, we performed an ANOVA upon four right and left clus-
ters composed of six electrodes each (see Muthukumaraswamy
et al., 2004 for a similar approach). For the left centro-parietal
cluster we considered the electrodes C5, C3, C1, CP5, CP3, and
CP1. For the right parieto-occipital cluster we considered the

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 156 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lachat et al. Oscillatory correlates of joint attention

FIGURE 3 | Overall view of the EEG power spectrum and of the

time-frequency analysis of the data. (A)Time-frequency plot representing
the power of oscillatory activities between 4 and 120 Hz across time
(between 0.2 and 1.7 s, before the averaging of data over this 1.5 s period);
the grand mean of the data, averaged across conditions, are represented on
a selected electrode (C3). (B) EEG power spectrum between 4 and 40 Hz,
averaged over the 1.5 s time interval, on the same electrode. This illustrates
the peak of oscillatory activities obtained in the 10 Hz frequency band. (C)

Result of the overall ANOVA performed on every electrode (in ordinate) and
every frequency between 4 and 120 Hz (in abscissa). p-Values obtained for
the main effect of Joint versus No-Joint attention are shown. This analysis
did not reveal any other significant effect – with at least three electrodes
reaching p < 0.001 – besides the identified 11–13 Hz band modulation.

electrodes P5, P3, P1, PO7, PO3, and O1. The symmetrical elec-
trodes were taken into account for the right centro-parietal and
the right parieto-occipital clusters. We averaged the log of the
power ratio in the 11–13 Hz band over the electrodes in each clus-
ter and we performed an ANOVA with Hemisphere (Left/Right),
Cluster (Centro-Parietal/Parieto-Occipital), Attention (Joint/No-
Joint attention), and Instruction (Social/Color) as within-subject
factors.

RESULTS
First, we analyzed the saccadic response times of the partic-
ipants. A first ANOVA with Attention (Joint/No-Joint atten-
tion) and Instruction (Social/Color) as within-subject factors
showed a main effect of Instructions [F(1,28) = 113.6,p < 0.0001]
reflecting faster saccades under the color-driven (mean response
time = 445 ± 18 ms) than under the socially driven instructions
(mean response time = 577 ± 12 ms). There was also a main
effect of Attention [F(1, 28) = 5.2, p < 0.05] demonstrating faster
saccades to the LEDs in the joint attention (mean reaction
time = 496 ± 19 ms) than in the no-joint attention conditions
(mean reaction time = 526 ± 12 ms). The interaction between
Attention and Instruction was not significant (F < 1). In addition,
under the social instruction situations, the status of the participant
as the driver or follower of his/her partner’s attention was a poten-
tial factor of interest. Note that this factor could only be analyzed
under the socially driven attention conditions, since under the
color-driven attention conditions the participants were instructed
to attend to the LEDs according to their colors and there was nei-
ther a driver or a follower of attention that was designated. Thus,
we performed a second ANOVA restricted to the social instruction
conditions, with Attention (Joint/No-Joint attention) and par-
ticipant’s Status (Driver/Follower) as within-subject factors. This
confirmed the effect of Attention [F(1, 28) = 11.3, p < 0.005] and
showed a massive effect of participant’s status [F(1, 28) = 467.9,
p < 0.0001]: the response times under the socially driven attention
conditions were shorter for the participant who was designated as
the driver of attention as compared to the participant who had to
follow his/her partner’s gaze. This demonstrates that the partici-
pants complied to the gaze following instruction. The interaction
between Joint attention and Status did not reach significance [F(1,
28) = 3.7, p > 0.05].

We then turned to the analysis of oscillatory activities. The
two-by-two ANOVA performed on the 11–13 Hz frequency band
showed a significant effect of Attention (Joint versus No-Joint
attention) over a large set of left centro-parietal electrodes extend-
ing to occipital electrodes (Figure 4; Table 1): the mean 11–13 Hz
signal power was reduced in the joint relative to the no-joint
attention condition. This effect was not influenced by the socially
driven versus color-driven instructions: There was no signifi-
cant interaction between joint attention condition and instruction
(Figure 4), and t -tests contrasting joint and no-joint attention
conditions under each type of instruction showed that the effect
of joint attention on 11–13 Hz oscillatory activities was signifi-
cant both when joint attention resulted from the social, explicit
gaze following instruction and when it resulted from the color-
related instruction (Figure 5; Table 1). There was not any sig-
nificant main effect of the type of instruction (Figure 4). Fur-
thermore, we checked whether there was any difference in the
power of alpha and mu oscillations during socially induced joint
versus no-joint attention conditions that depended on the role
of the subject as the driver or the follower of his/her partner’s
attention. The ANOVA restricted to the social instruction condi-
tions with joint/no-joint attention conditions and driver/follower
status as within-subject factors did not reveal any significant
difference induced by the participant’s status in the 11–13 Hz
frequency band.

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 156 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lachat et al. Oscillatory correlates of joint attention

FIGURE 4 |The effects of joint attention and instruction. (A) Main effect of
Joint attention: Maps of the mean signal power (log ratio) between 11 and
13 Hz under the Joint attention and the No-joint attention conditions are
represented together with the corresponding difference map between Joint
and No- joint attention conditions. The grand mean signal power within the
11–13 Hz frequency band is represented on a top view of the head. (B) Main
effect of Instruction: Maps of the mean signal power (log ratio) between 11
and 13 Hz under the Social and the Color instructions are represented
together with the corresponding difference map between Social and Color
instruction. The grand mean signal power within the 11–13 Hz frequency band

is represented on a top view of the head. (C) Results of the two-by-two
ANOVA with Joint attention and Instruction as within-subject factors. The
maps (top views of the head) of the p-values for the main effects of Joint
attention and of Instruction are represented, as well as the map of the
p-values for the interaction between Joint attention and Instruction. For (A,C),
electrodes for which the p-value was beyond 0.01 (p < 0.01) are represented
in white.There was not any electrode yielding a significant effect of Instruction
or an interaction between Joint attention and Instruction. (D) Illustration of the
main effect of Joint attention in five example subjects. Difference maps
between Joint and No- joint attention conditions are represented.

Altogether, these results showed that jointly attending to the
same object reduced oscillatory activities recorded in the 11–13 Hz
frequency band on centro-parietal as well as parieto-occipital
regions. These effects did not depend significantly on the type of
instruction (whether joint attention periods were socially driven
or color-driven; Table 1). In order to further check the lateral-
ization of the effect obtained in the 11–13 Hz band and to verify
if a dissociation between the centro-parietal and parieto-occipital
regions could emerge, we performed an additional analysis based
on an electrode clustering approach. Thus we defined four right
and left, centro-parietal and parieto-occipital clusters centered on
scalp regions where alpha and mu oscillatory activities have clas-
sically been reported (see Materials and Methods). The ANOVA
with Hemisphere (Left/Right), Cluster (Centro-Parietal/Parieto-
Occipital), Attention (Joint/No-Joint attention), and Instruction
(Social/Color) as within-subject factors confirmed the main effect
of Attention [F(1, 28) = 12.21, p < 0.005, η2

p = 0.30]; this effect
was significant under both the social and the color instructions

[F(1, 28) = 4.6, p < 0.05, η2
p = 0.14 and F(1, 28) = 5.7, p < 0.05,

η2
p = 0.17 respectively; no significant interaction between Instruc-

tion and Attention: F < 1]. Moreover, this ANOVA revealed an
interaction between Hemisphere and Attention [F(1, 28) = 5.61,
p < 0.01, η2

p = 0.17]. The effect of Attention was present in the left

hemisphere only [F(1, 28) = 20.82, p < 0.0001, η2
p = 0.42]. There

was not any significant effect of Cluster (F < 1), and the joint ver-
sus no-joint attention effect was highly significant in the two left
hemisphere clusters [Centro-parietal: F(1, 28) = 20.47, p < 0.001,
η2

p = 0.42; Parieto-occipital: F(1, 28) = 16.5, p < 0.0001, η2
p =

0.37]. This demonstrated that online joint attention was associated
with both alpha and mu suppressions.

DISCUSSION
The aim of this study was to investigate whether oscillatory
activities in the alpha and mu frequency band may constitute
electrophysiological correlates of joint attention in a face-to-face,
online interaction paradigm. We showed that oscillatory activities
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FIGURE 5 | Maps of the signal power in the 11–13 Hz frequency band

under each experimental condition. Maps (top views of the head) of the
grand mean of the signal power between 11 and 13 Hz are represented
under the Joint attention (left column) and the No-joint attention (middle
column) conditions for the Social (upper row) and the Color (lower row)
instructions. The difference maps corresponding to the grand mean
difference in 11–13 Hz signal power for the Joint versus the No-joint
attention conditions, under the Social and the Color instruction respectively,
are represented in the rightmost column. The white dots on the maps
represent the electrodes on which the t -tests revealed a significant
difference between Joint and No-joint attention conditions (p < 0.01) for the
socially driven and color-driven instructions respectively.

between 11 and 13 Hz were modulated by joint attention over a
large set of left centro-parieto-occipital electrodes, with a decrease
in the 11–13 Hz signal power during the periods where partici-
pants’ attention was aligned onto the same object as compared to
the periods where subjects looked at opposite objects. These effects
were found both when participants’ attention was socially driven
and when it was color-driven.

To our knowledge, this study is the first to associate joint atten-
tion with alpha and mu rhythm modulations. Our finding can
be interpreted in the framework of the functional roles that have
been proposed for parieto-occipital alpha and centro-parietal mu
rhythms.

Indeed, first, mu rhythm suppression has been associated with
the mirroring of action and the activation of human mirror sys-
tem (Muthukumaraswamy and Johnson, 2004; Perry and Bentin,
2009; for a review see Pineda, 2005). Furthermore, Shepherd et al.
(2009) have proposed that gaze following and attention orienting
induced by gaze would involve a mechanism of attention mirror-
ing, subtended by a mirror-like neuron system in the posterior
parietal cortex of macaque monkeys. Although the identification
of the brain regions involved was beyond the scope of the present
study and cannot be inferred from scalp data only, our finding of
a modulation of mu rhythm by joint attention over a large set of
centro-parietal electrodes fits with Shepherd’s view of joint atten-
tion as involving an attention mirroring mechanism (for review,
Shepherd, 2010).

Moreover, mu rhythm suppression has been linked to social
interactions, and particularly to interindividual coordination
processes. More precisely, mu rhythm modulation has been

implicated in the processing of socially relevant stimuli and in the
undertaking of social interactive situations. For instance, using a
computerized ball throwing game, Oberman et al. (2007) showed
a decrease of the mu rhythm according to the level of involve-
ment of the participant in the game: the more the participant was
involved (i.e., received the ball from the on-screen players), the
more mu oscillatory activities were reduced. More recently, Perry
et al. (2011) found a similar result with participants viewing or
playing a game of Rock-Paper-Scissors. In line with these studies,
our results suggest that sharing an object of attention with another
fellow elicited greater engagement of the participants in the social
interaction than did the no-joint attention conditions where the
participants attended to different objects. This may be particu-
larly true in the live, face-to-face joint attention paradigm that we
used, which promoted a naturalistic – although very basic – social
interaction between the participants. It is however interesting to
note that the effect of Joint attention was not modulated by the
factor of Instruction. This raises some questions about the pre-
cise functional nature of our mu modulation. Pineda and Hecht
(2009) demonstrated that mu rhythm is involved in the social per-
ceptive component of theory of mind, which implies in particular
the processing of social signals conveyed by faces, and they further
suggested that it correlates with the inference made by partici-
pants about person-object interactions in a theory of mind task.
Following this study, it may be suggested that the joint attention
conditions in our experiment engaged more strongly these com-
ponents of theory of mind, as compared to the no-joint attention
conditions. However, if such proposal was true, one would have
expected greater mu suppression under the socially driven than
under the color-driven instructions, because the socially driven
instruction required the processing of person-object interactions
to greater extent than the color-driven instruction did. Yet, our
results did not support this view. Rather, the same level of mu
reduction under joint relative to no-joint attention conditions
was observed for both types of instructions. Thus, our results
are more in line with studies that have associated mu oscillatory
activities with the interpersonal coordination component of social
interactions. In particular, our finding is reminiscent of the result
of Naeem et al. (2012) based on another modality, namely fin-
ger movements. These authors showed that the coordination of
movements between two participants modulated the power of
mu oscillations with a relative synchronization in the 10–12 Hz
frequency band observed when participants moved their finger
independently from each other and a decrease of these oscillatory
activities when they moved in coordination (see also Tognoli et al.,
2007). Our results extend these findings to gaze following, and
support the view that the joint attention conditions elicited more
coordination of the participants’ action than the no-joint atten-
tion condition as reflected by signal power reduction in the high
(11–13 Hz) mu frequency band. This interpersonal coordination
component of joint attention may have been recruited to the same
extent under both the socially and the color-driven instructions,
as discussed in detail below.

In addition, the modulation of oscillatory activities in the 11–
13 Hz extended onto posterior, parieto-occipital electrodes, where
visual alpha rhythm is classically measured. This supports the
view that parieto-occipital alpha rhythm is also involved in joint
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attention. The modulation of alpha rhythm was historically firstly
associated with visual processing (Adrian and Matthews, 1934).
Later, the alpha rhythm has been associated with arousal as well
as attentional mechanisms (Ray and Cole, 1985). Both types of
mechanisms may have contributed to our results. Indeed, Gale
et al. (1972) demonstrated that alpha oscillations were reduced
under a condition of gaze contact between a participant and a
physically present experimenter as compared to situations where
the experimenter displayed closed eyes or averted gaze. This was
interpreted as reflecting an arousal increase induced by mutual
attention. Under this view, the reduction of alpha signal power may
reflect a greater component of mutual attentiveness in the joint
attention than in the no-joint attention condition. This mutual
attentiveness component of joint attention (Emery, 2000) would
induce a higher arousal during joint than no-joint attention con-
ditions. This interpretation also fits with the Striano et al. (2006)
finding that the mid-latency negative component (Nc) of event-
related potentials in response to objects – associated with attention
and arousal – was enhanced in a live joint attention context (as
compared to a non-joint attention context), in an infant study.
Likewise, alpha rhythm has been related to attentional suppres-
sion mechanism (for a review, see Worden et al., 2000; Sauseng
et al., 2005; Foxe and Snyder, 2011). In this latter framework, it
may be suggested that the modulation of alpha activity that we
observed reflected a process of attentional suppression of the gaze
of others and/or of the object of the other’s attention under the
condition where subjects had to attend different objects (no-joint
attention condition) as compared to the condition of attention
alignment onto the same object (joint attention condition).

It has to be noted that our effect on alpha band cannot be
construed as reflecting the difficulty of the task (i.e., reduced
alpha signal power being related to greater task difficulty) since
if anything, the more difficult condition in our paradigm was
the no-joint attention condition, as reflected by the slower sac-
cadic response times in this condition than in the joint attention
condition. Indeed, jointly attending with someone to the same
object is easier as it is more natural and automatic than look-
ing at different objects, which requires the inhibition of the trend
to follow the other’s gaze. Yet, the no-joint attention conditions
elicited increased alpha oscillatory activities as compared to the
joint attention conditions.

We did not find any effect on alpha or mu rhythms of the roles
played in turn by each participant of the dyads as the driver or
the follower of gaze in the social instruction. This may be due to
our choice of the window for time-frequency analysis: we chose to
analyze the time period in which the attention of both participants
was settled either onto the same LED or onto opposite LEDs. This
might not have favored the capture of the physiological responses
associated with the driver versus follower roles.

Interestingly, the reduction of oscillatory activities in the alpha
and mu frequency band in the joint versus no-joint attention
conditions was observed under both the socially driven and the
color-driven instructions. This may seem at odd with the fact that
to perform the task under the color instruction, the participants
did not need their partner. Thus, it may have been expected that
the color instruction conditions required less social coordination
and mutual attentiveness than the social instruction conditions.

Yet, the analysis of saccadic responses times showed that although
participants were faster under the color than the social instruc-
tions, responses times were overall shorter in the joint than in
the no-joint attention conditions, and there was not any signifi-
cant interaction between Attention and Instruction. This reveals
an influence of the partner’s behavior on participant’s perfor-
mances that did not seem to depend on the type of instruction,
corroborating the finding of an overall decrease of alpha and
mu rhythms under joint relative to no-joint attention conditions.
Altogether, these results are likely to be explained by our setup:
the participants sat face-to-face, being in physical co-presence,
and they shared periods of mutual gaze in between every trial
of all experimental blocks. In this condition, the presence of a
partner may have always been relevant to the participants, empha-
sizing joint attention-related processes under both types of task
instructions.

The modulation of alpha and mu rhythms was restricted to the
left scalp regions. This left lateralization of our results may not be
straightforwardly related to a preferential left hemisphere involve-
ment as such interpretation would require source localization. Yet,
this aspect of our findings deserves discussion because it stands in
contrast with the studies that have reported right-lateralized brain
responses in social interaction paradigms, whether in fMRI data
or in scalp EEG data (Tognoli et al., 2007; Dumas et al., 2010; Red-
cay et al., 2010). In a recent fMRI study using a live joint attention
paradigm similar to ours, Saito et al. (2010) found that following
a partner’s gaze toward object elicited activation in the left intra-
parietal sulcus. They suggested that this region may be specifically
involved in shared attention mechanisms, encoding dyadic rela-
tions – between the partner and the object, and between the self
and the object– during attention orienting and gaze following.
Thus the activation of such mechanism may explain the left lateral-
ization of our results. In addition, it has been proposed that in tasks
involving perspective taking during the performance (or imag-
ination) of action, the hemispheric lateralization of the regions
involved in processing first- versus third-person perspective, par-
ticularly in the temporo-parietal regions, may critically depend on
the actual context of the task at hand (Vogeley and Fink, 2003).
For example, a study reported left hemisphere activations specific
of first-person perspective in a task of action simulation (Ruby
and Decety, 2001). Another study reported left-lateralized acti-
vations during imitation relative to observation of action as well
as under first- relative to third-person perspective (Jackson et al.,
2006). Left-lateralized activation of the temporo-parietal region
was also reported in a task involving perspective taking with the
participants facing a human figure opposite to them (Zacks et al.,
1999). It is thus possible that the balance between first- and third-
person perspective taking involved in our experiment under joint
versus no-joint attention conditions favored the observation of
left-lateralized effects.

In line with the program of cognitive ethology (Kingstone et al.,
2003), we designed an ecological setup to study joint attention in a
face-to-face situation, which we combined with dual-EEG record-
ing. This allowed us to investigate the oscillatory brain correlates
of live joint attention processes. In our design, we wanted to get as
close as possible of the real-life joint attention phenomenon and
therefore designed a paradigm where patients were dynamically
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engaged in alternating periods of joint attention and mutual gaze
subtended by eye movements. Under this design, we chose to
focus our analysis on the time period during which both par-
ticipants’ attention were aligned onto the same object, with the
hypothesis that this should elicit a sustained state of joint atten-
tion with maintained associated feelings of mutual attentiveness
and rapport (Tickle-Degnen and Rosenthal, 1990). We showed
that joint attention periods (relative to no-joint attention periods)
yielded a decrease in the 11–13 Hz frequency band over a large
set of left-lateralized centro-parieto-occipital electrodes. This can
be interpreted as reflecting the processes of attention mirroring,
social coordination, and mutual attentiveness associated with the

time periods where participants’ attention was aligned onto the
same object. It is the first time that alpha and mu oscillatory
activities are demonstrated to be electrophysiological correlates
of joint attention. In order to make the best out of the dual-EEG
technique, it will be interesting in future studies to examine the
modulation of these oscillatory activities by joint attention at an
interindividual level.
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