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Synchronization of neural activity is considered essential for information processing in the
nervous system. Both local and inter-regional synchronization are omnipresent in different
frequency regimes and relate to a variety of behavioral and cognitive functions. Over
the years, many studies have sought to elucidate the question how alpha/mu, beta, and
gamma synchronization contribute to motor control. Here, we review these studies with
the purpose to delineate what they have added to our understanding of the neural control
of movement. We highlight important findings regarding oscillations in primary motor
cortex, synchronization between cortex and spinal cord, synchronization between cortical
regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions.
The interpretation of synchronization patterns benefits from combining results of invasive
and non-invasive recordings, different data analysis tools, and modeling work. Importantly,
although synchronization is deemed to play a vital role, it is not the only mechanism for
neural communication. Spike timing and rate coding act together during motor control and
should therefore both be accounted for when interpreting movement-related activity.
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INTRODUCTION
Oscillatory activity in the human cortex has been a focus of
research ever since Hans Berger observed a strong alpha rhythm
that modulates with opening and closing of the eyes or, more
general, with visual attention (Berger, 1929). It soon was discov-
ered that this rhythm originates from the occipital lobes (Adrian
and Matthews, 1934a) and can be dissociated from another alpha
rhythm close to the central sulcus, where also strong beta oscilla-
tions can be found that show suppression upon tactile stimulation
(Jasper and Andrews, 1938). Later studies would reveal that these
Rolandic rhythms also modulate with passive, voluntary and
imagined movements (Jasper and Penfield, 1949; Gastaut, 1952;
Chatrian et al., 1959). These observations prompted the by now
traditional classification of frequency bands and the search for a
relation with human functioning.

Oscillations picked up via EEG or MEG represent syn-
chronous activity of many thousands of anatomically aligned
neurons. Much work has been done to reveal the mecha-
nisms underlying this synchronized, oscillatory firing (Adrian
and Yamagiwa, 1935; Freeman, 1975; Hogan and Fitzpatrick,
1988; Lopes Da Silva, 1991; Basar, 1998). Cortico-thalamic loops
(Lopes Da Silva et al., 1974; Steriade et al., 1990; Lumer et al.,
1997a,b; Hughes and Crunelli, 2005), as well as the interplay
between inhibitory interneurons and pyramidal cells (Lytton and
Sejnowski, 1991; Cobb et al., 1995; Whittington et al., 1995;
Buzsáki, 2006), proved to be crucial factors in this regard. In
fact the mere anatomical architecture can yield self-sustaining
rhythmic activity, i.e., neural oscillations in the absence of any
(non-constant) input, which triggered the idea that alpha and

beta oscillations act as an “idling” rhythm (Adrian and Matthews,
1934b; Pfurtscheller et al., 1996). It is currently believed, how-
ever, that the amplitude of the alpha rhythm signifies the degree
of cortical inhibition (Klimesch et al., 2007), and there are indi-
cations for a similar role for the beta rhythm (Engel and Fries,
2010).

Oscillations may not only change locally due to an altered
amplitude of (de-)synchronization within a population, but also
display distinct patterns of synchronization with distant popula-
tions. It has been suggested that these long-range synchronization
patterns contribute to the solution of the so-called “binding prob-
lem”: neural activity must be synchronized or “bound” so that
their integration can represent a “gestalt” or pattern (Eckhorn
et al., 1988; Gray et al., 1989; see also Singer and Gray, 1995 for an
overview). For example, neural populations in visual cortex dis-
tinctively respond to features like color, shape, and motion. These
features need to be integrated in order to form a compound per-
cept, which, supported by various invasive recordings, is achieved
through synchronization between neurons that encode different
features of the same percept (Eckhorn et al., 1988; Engel et al.,
1991; Kreiter and Singer, 1996; Fries et al., 1997). Precise timing of
action potentials ensures maximal impact on a target population
when its fluctuations in membrane potential reach a depolarized
state. Input outside this time window is less effective. It may there-
fore yield a selection mechanism for competing oscillatory input
(Roelfsema et al., 1996; Womelsdorf et al., 2007). For inter-areal
distances longer than 2 mm, oscillations may have an impor-
tant role in establishing in-phase synchronization (Konig et al.,
1995).
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While the relevance of synchronized oscillations for feature
binding can be readily extended from visual processing to other
sensory modalities like the olfactory (Freeman, 1978) or the
auditory system (Aertsen et al., 1991; Vaadia et al., 1991), for
the motor system this seems less obvious. One may view tem-
poral binding as a more gestalt-like definition of motor pro-
grams, represented through cell assemblies (Wickens et al., 1994;
Hommel, 2004). Alternatively, oscillations in the motor cortex
may just modulate with attention to fine-tune sensorimotor con-
trol (Murthy and Fetz, 1992; Farmer, 1998). In either case, suc-
cessful motor functioning depends on the interactions between
multiple regions, including frontal, parietal, cerebellar, and sub-
cortical areas, as well as the spinal cord. Proper timing of these
interactions may well be critical. If synchronization is indeed an
effective means for neural communication (Varela et al., 2001),
then one can expect that also the motor system capitalizes on this
capacity (Singer, 1994). In fact, alpha/mu, beta, and gamma oscil-
lations do show strong movement-related modulations in large
parts of the motor system (see, e.g., Ohara et al., 2001; Gross et al.,
2005; Pollok et al., 2005; Cheyne et al., 2008; Houweling et al.,
2008; van Wijk et al., 2012).

What do these modulations tell us about motor control? How
do they lead to coordinated movements? How is information
transferred to the spinal cord? The aim of this review is to answer
these questions by offering a comprehensive but not necessarily
complete overview of experimental results and to discuss what
we believe are current key findings. Previous reviews focused
primarily on more isolated aspects of synchronization in the
motor system, for instance, the communication between senso-
rimotor cortex and spinal cord (Brown, 2000; Salenius and Hari,
2003; Baker, 2007), the role of beta oscillations (Engel and Fries,
2010; Jenkinson and Brown, 2011), physiological and patholog-
ical tremor (Schnitzler et al., 2006), and other disease states
(Brown, 2007). By contrast, we here intend to cover the entire
functional spectrum of synchronization in motor control. For
this we integrate findings from multiple recording techniques, fre-
quency bands, and (sub-)cortical regions of the motor system. We
sketch these studies in light of current debates and methodolog-
ical challenges regarding the interpretation of movement-related
synchronization patterns.

M1 OSCILLATIONS
The threshold for evoking movements by electrical stimulation is
lowest in the primary motor cortex (Brodmann’s area 4 or sim-
ply M1) (Fritsch and Hitzig, 1870; Penfield and Boldrey, 1937).
Mapping studies have revealed a somatotopical organization in
M1 with projections to either a single motor unit pool or a group
of muscles, and functionally related pyramidal tract neurons
(PTNs) that appear to be organized in small clusters (Asanuma
et al., 1979). The encoding of movement patterns occurs via
intricate connections within and between cortical modules, of
which PTNs only form a minority of cells (Keller, 1993). Here, we
focus in particular on empirical evidence for a possible relation
between oscillatory activity observed in M/EEG and the activ-
ity of PTNs (targeting the spinal cord). Can oscillations encode
movement parameters like force and velocity and bind them in
the generation of movement trajectories?

TASK-DEPENDENT MODULATIONS OF ERD AND ERS
The amplitude of M1 oscillations decreases in mu (8–13 Hz)
and beta (13–30 Hz) bands prior to and during movement, fol-
lowed by a post-movement rebound that exceeds the resting state
level (Pfurtscheller and Lopes Da Silva, 1999). The time course
of this event-related desynchronization (ERD) and synchroniza-
tion (ERS) relates to several movement parameters. More forceful
movements are accompanied by stronger mu and beta desynchro-
nization (Stancak and Pfurtscheller, 1996; Stancak et al., 1997;
Mima et al., 1999) and longer ERS (Stancak et al., 1997). The type
of movement seems not to influence beta ERD but increases ERS
when more muscle mass is involved, as demonstrated by stronger
ERS for wrist compared to finger movement (Pfurtscheller et al.,
1998) and shoulder compared to finger movement (Stancak et al.,
2000). Movement duration has little to no effect on both ERD
and ERS (Stancak and Pfurtscheller, 1996; Cassim et al., 2000).
However, with increasing movement frequency the beta ERD
becomes stronger and the ERS becomes less pronounced until
the ERD and ERS peaks become almost indistinguishable (Toma
et al., 2002; Houweling et al., 2010a). Also, ERD increases with
complexity of sequential finger movements (Manganotti et al.,
1998; Hummel et al., 2003).

Differences in mu and beta activation patterns imply that the
two rhythms are independent, at least to a certain degree, and may
thus have distinct functional relevance. During the early stages of
movement execution especially mu desynchronization is spatially
diffuse and only becomes somatotopically more focused when
movements are sustained (Crone et al., 1998b). Compared to
mu activation, beta suppression is more spatially focused (Crone
et al., 1998b) and starts a little earlier, usually ending in a quicker
and more noticeable ERS (Salmelin and Hari, 1994; Pfurtscheller
et al., 1996; Alegre et al., 2003; Erbil and Ungan, 2007). Mu
and beta modulations are also likely to originate from distinct
sources located in postcentral (somatosensory) and precentral
(motor) cortex, respectively (Salmelin and Hari, 1994; Salmelin
et al., 1995; Cheyne et al., 2003; Ritter et al., 2009). Furthermore,
mu synchronization and beta synchronization with motoneurons
(MNs) in the spinal cord are clearly separate, as will be outlined
below.

Event-related beta desynchronization already starts 2 s before
movement in M1 contralateral to the active hand, and becomes
bilateral during movement. As the pre-movement ERD is rel-
atively unrelated to movement parameters, it has often been
ascribed to an unspecific, general state of movement preparation
(Neuper and Pfurtscheller, 2001). A lateralized ERD occurs when
information is available which hand to move (Doyle et al., 2005;
van Wijk et al., 2009). This is expressed by stronger power sup-
pression over the hemisphere contralateral to the response hand,
which is also accompanied by faster reaction times compared
to a non-lateralized ERD. However, only in the final 100 ms the
pre-movement preparation appears accompanied by increased
corticospinal excitability (Chen et al., 1998; Leocani et al., 2000).
Using transcranial magnetic stimulation, Chen et al. (1998) found
a decrease in corticospinal excitability around the time of ERS.
This is in keeping with the proposed movement inactivation func-
tion of ERS to recover from previous activation (Pfurtscheller
et al., 1996).
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Elevated beta activity is also present during tonic muscle
contractions and disappears during movement. This led to the
hypothesis that beta synchrony plays a role in stabilizing current
motor output and, by the same token, in preventing initiation of
new movements. A causal relation between increased beta oscil-
lations and movement suppression was shown by Pogosyan et al.
(2009) who entrained cortical beta oscillations with a transcra-
nial alternating-current stimulation at 20 Hz. During episodes of
stimulation, fast goal-directed movements were executed slower,
while reaction time remained unaffected. This effect is specific
to the beta band and does not occur for entrainment with 5 Hz
oscillations. A similar slowing occurs when movements are initi-
ated during spontaneous bursts of beta-frequency oscillations in
the ongoing resting-state activity (Gilbertson et al., 2005). An up-
regulation of beta synchrony is also used as an active mechanism
to suppress unwanted motor output when subjects need to antici-
pate an upcoming perturbation of finger position (Androulidakis
et al., 2007). Another example is the increased beta synchrony in
a go/no-go task when movement needs to be withdrawn (Alegre
et al., 2004; Zhang et al., 2008; Swann et al., 2009). These stud-
ies indicate that also an up-regulation of beta synchrony can be
exploited in a behaviorally relevant way.

NEURONAL ACTIVITY UNDERLYING POPULATION OSCILLATIONS
In view of the binding-by-synchrony hypothesis, the just-
discussed M1 power modulations in mu and beta bands may
appear somewhat counterintuitive since synchronized firing in
M1 disappears as soon as movements are executed. One may
indeed expect a larger impact on MNs in the spinal cord when
corticospinal inputs arrive simultaneously. Invasive recordings in
the macaque motor cortex have been very helpful in tackling this
issue because they highlight the spiking behavior of individual
PTNs during oscillations of the M1 population.

Spikes of single neurons are phase-locked to the beta oscilla-
tions in the local field potentials (LFP) during periods in which
beta oscillations are well pronounced (Murthy and Fetz, 1996b;
Baker et al., 1997; Denker et al., 2007), though more variable rela-
tions have also been observed (Donoghue et al., 1998). While the
spiking of individual PTNs may be only weakly coherent with the
local LFP, summing over a population of PTNs strongly increases
the phase locking to the LFP oscillations (Baker et al., 2003). More
subtle synchronization between PTNs occurs between cell pairs
that project to the same muscle fields as opposed to cell pairs
with non-overlapping fields (Jackson et al., 2003). In particular
the latter indicates that coordinated activity patterns are func-
tionally organized and that synchronization may be important for
individual neurons to cooperate.

The spiking activity of PTNs during movement execution,
when both LFP beta power and synchrony with individual spiking
neurons drop, strongly increases and shows a distinct inverse rela-
tion with LFP beta power (Baker et al., 2001; Spinks et al., 2008).
The increase in firing rate reaches towards or into the gamma
range (>30 Hz) (Baker et al., 2001; Grammont and Riehle, 2003).
Although the inverse relation with LFP beta power emerges on a
broad time span and does hence not reflect an instantaneous cou-
pling (Spinks et al., 2008), it still suggests that an increased firing
rate constitutes a prime mechanism to initiate changes in muscle

activity. Interestingly, this may link to visual attention for which
Bressler (1990) suggested that the attentional decrease in alpha
and increase in gamma oscillations might both be distinct aspects
of a shift in firing rate towards the gamma range, which might be
a generic information-carrier across the cortex.

INCREASED GAMMA BAND OSCILLATIONS AROUND
MOVEMENT ONSET
Invasive, single unit recordings are not the only means to
measure an increase in firing rate of PTNs into the gamma
range during movement execution. ECoG, EEG, and MEG have
revealed bursts of gamma activity, peaking just before move-
ment onset (Pfurtscheller et al., 1993), around movement onset
(Pfurtscheller and Neuper, 1992), or slightly after it (Ohara
et al., 2001; Pfurtscheller et al., 2003; Cheyne et al., 2008;
Muthukumaraswamy, 2010), and they re-appear around move-
ment offset (Szurhaj et al., 2005; Ball et al., 2008). Gamma bursts
are only present in the hemisphere contralateral to movement
where they have a focal somatotopic representation (Crone et al.,
1998a; Szurhaj et al., 2005; Miller et al., 2007). Crone et al. (1998a)
made a distinction between low (35–50 Hz) and high (75–100 Hz)
gamma synchronization. Low-gamma ERS starts after move-
ment onset and is sustained during almost the entire movement,
whereas high-gamma ERS starts slightly earlier but is much more
transient. Interestingly, the amplitude of the movement-related
gamma increase may vary with movement direction, as observed
in LFP (Rickert et al., 2005) and ECoG (Leuthardt et al., 2004; Ball
et al., 2009) recordings. These studies provide support for a pos-
itive correlation between cortical gamma activity and movement
execution. While tonic muscle contractions are promoted by beta
oscillations, changes in motor output require gamma activity to
arise.

CORTICO-SPINAL SYNCHRONIZATION
Synchronized activity in M1 is modulated in the mu, beta, and
gamma frequency bands during various stages of movement plan-
ning and execution. Are these oscillations also used to transfer
motor commands to the spinal cord? Or framed differently, does
synchronization occur between M1 and MN activity? And, if so,
does it follow the same modulations as seen in the cortex or is it
more than just a consequence of cortical drive?

RHYTHMIC ACTIVITY OF MOTONEURONS
A prerequisite for corticospinal synchronization is the presence
of oscillatory MN activity. The firing of a single MN leads to a
motor unit action potential (MUAP) that induces muscle fiber
contraction. For an effective muscle contraction sequential stim-
ulation is necessary to build up force. As a consequence, the
firing rate of MNs determines motor unit output and ranges
from 6 Hz in rest to 35 Hz during forceful isometric contrac-
tions. During faster contractions the firing rate may increase up
to transient high-frequency bursts (80–120 Hz) as in the case of
very rapid, ballistic movements (Freund, 1983). We note that sin-
gle MUAPs can be recorded intramuscularly using wire-EMG,
whereas surface-EMG captures summed MUAPs. The EMG sig-
nal is often rectified prior to estimating its spectral density to
augment power related to MN firing rate (Myers et al., 2003). This
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information is contained primarily in frequencies below 40 Hz
and the spectrum approaches the MUAP spectrum for higher fre-
quencies. For these low frequencies, invasive recordings revealed
synchronized spiking activity between pairs of motor units, which
are likely caused by a common, central input (Farmer et al., 1993;
Marsden et al., 1999; Kim et al., 2001; Kilner et al., 2002). This
synchronization is not confined to motor units within the same
muscle, but can also be observed between different muscles of
the same limb (Kilner et al., 1999; Boonstra et al., 2008), as
well as homologous muscles of the other limb (Boonstra et al.,
2007b, 2008, 2009). With MN firing rate being such an important
modulator of muscle activity, it might be entrained by cortical
oscillations.

TASK-DEPENDENT MODULATIONS IN CORTICOSPINAL
SYNCHRONIZATION
M1 and contralateral muscle activity are weakly but significantly
synchronized. This is most prominent in the beta frequency
range during weak tonic muscle contractions (Conway et al.,
1995; Salenius et al., 1997; Halliday et al., 1998; Gross et al.,
2000) and disappears during movement (Baker et al., 1997; Kilner
et al., 2000). Occasionally, significant mu synchronization can be
detected but is less consistent over subjects (Salenius et al., 1997;
Mima et al., 1999). Beta band corticospinal coherence is increased
for isometric muscle contractions at moderate force levels (Witte
et al., 2007; Chakarov et al., 2009). During (nearly) maximal
force production the peak frequency shifts into the gamma range
(Brown et al., 1998; Mima et al., 1999). Likewise, gamma corti-
cospinal synchronization arises when rapid adjustments in force
output in response to visual information are needed (Schoffelen
et al., 2005; Andrykiewicz et al., 2007; Omlor et al., 2007).
Furthermore, without visual input, gamma synchronization dur-
ing phasic muscle contractions has been observed between ECoG
and EMG (Marsden et al., 2000).

Both cortical power and corticospinal coherence in the beta
band are enhanced when generated muscle force is kept con-
stant around a certain target level with high precision (Kristeva
et al., 2007; Witte et al., 2007). By contrast, coherence drops
when attention is divided between the motor task and a simulta-
neously performed mental arithmetic task (Kristeva-Feige et al.,
2002; Safri et al., 2007; Johnson et al., 2011). An up-regulation of
corticospinal beta synchronization can be used to facilitate action
selection by inhibiting the non-selected response hand (van Wijk
et al., 2009). In sum, these results show that the role of beta oscil-
lations in stabilizing motor output is not limited to the cortical
level but extends to the spinal cord.

Remarkably, the strength of corticospinal synchronization
depends on recent motor engagement. Larger digit displace-
ment during a hold-ramp-hold task significantly increases beta
corticospinal coherence (Riddle and Baker, 2006). Likewise,
Omlor et al. (2011) showed that beta corticospinal coherence
is strongly increased during isometric muscle contractions fol-
lowing a period of dynamic force production compared to after
rest. Producing dynamic force that is unpredictable even fur-
ther enhances coherence afterwards. The increase in coherence
and the preceding cortical beta desynchronization were negatively
correlated, while differences in accuracy of task performance

were absent (Omlor et al., 2011). This suggests that after larger
motor-related neural processing a stronger corticospinal synchro-
nization is required to establish stable force production.

IS CORTICOSPINAL SYNCHRONIZATION INDEPENDENT FROM
MODULATIONS IN CORTICAL POWER?
The task-dependent modulations of corticospinal synchroniza-
tion often coincide with similar changes in spectral power
in motor cortex and in muscle activity. The question arises
whether corticospinal synchronization is an independent, func-
tional mechanism or merely a consequence (or by-product) of
local synchronization. We note that if corticospinal synchroniza-
tion is estimated using measures that explicitly depend on spectral
power (e.g., coherence), the changes in power will certainly reflect
on corticospinal synchronization estimates. Despite such tech-
nical caveats, there seems to be experimental support for the
independence of power and corticospinal synchrony as they can
be modulated separately.

In a study by Baker and Baker (2003), subjects performed a
simple hold-ramp-hold task after administration of diazepam,
a benzodiazepine that enhances inhibitory post-synaptic poten-
tials via GABAA receptors. While the amplitude of EEG beta
power doubled in size, corticospinal coherence remained unaf-
fected and even showed a slight decrease. In a subsequent study
it was shown that the antiepileptic drug carbamazepine has an
opposite effect: corticospinal synchronization is boosted while
cortical power remains unaffected (Riddle et al., 2004). However,
in this case the EMG power was also increased, which according
to the authors might have occurred due to altered properties of
muscle spindle afferents.

Whether or not corticospinal synchronization can be modu-
lated independently of spectral power under natural conditions
remains to be seen (see Figure 1). Given the time-locked firing
of PTNs during episodes of increased beta oscillations, one may
expect a strong dependence of corticospinal synchronization on
cortical power. Then, synchronization readily occurs when MNs
respond to the oscillatory input they receive. As outlined in more
detail below, however, we consider this view an oversimplification
because the contribution of afferent pathways is ignored.

MERE ENTRAINMENT OR INTERACTION VIA AFFERENTS?
Corticospinal synchronization can emerge through a uni-
directional coupling from cortex to spinal cord. Such synchro-
nization implies that MN activity is entrained by efferent cortical
activity. On the other hand, cortical motor areas do receive strong
input from the periphery either via the somatosensory cortex
or projections from thalamic nuclei (Lemon and Vanderburg,
1979). This information may be used to adjust the cortical drive
depending on the current motor state. Hints at a more involved
mechanism of corticospinal synchronization can be obtained by
estimating the according phase delay. In the case of a sole effer-
ent drive, a fixed delay should be present that corresponds to the
time it takes for an action potential to travel from the cortex to its
target MN. This means that the phase delay would increase lin-
early with frequency. Although some experimental findings favor
this view (Gross et al., 2000), the phase delay in question has
been found to be too short compared to physiological conduction
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FIGURE 1 | Evidence for independent modulations in cortical power and

corticospinal synchronization? EEG and hand muscle EMG were recorded
during a pre-cued reaction time task with either the left or right hand as
response hand (van Wijk et al., 2009). During the interval between pre-cue
and stimulus, which required static force production, significant beta band
coherence between the EMG and sensors overlying the contralateral motor
cortex was observed (left panels). The same electrodes showed a brief
cue-related drop in spectral power (middle panels). Looking at the different
time courses for power, corticospinal coherence, and corticospinal relative
phase uniformity [also referred to as “phase-locking index” (Mardia, 1972;

Lachaux et al., 1999)], the modulations in the pre-cue–stimulus interval could
be decomposed into a slow, sustained modulation and the linearly
superimposed brief cue-related drop (right panels). Remarkably, corticospinal
phase uniformity only showed a sustained modulation, suggesting that the
cue-related drop was not transferred to the spinal cord. On the other hand,
corticospinal coherence explicitly depends on spectral power and was hence
unable to discriminate between the different modulations in cortical and
corticospinal synchronization. Alternatively, the cue-related drop might
originate from nearby cortical sources that do not have projections to the
spinal cord. For more details, see van Wijk et al. (2008).

times (Salenius et al., 1997; Brown et al., 1998; Mima et al.,
2000b; Riddle and Baker, 2005; Houweling et al., 2010b), to con-
tain both leading and lagging features relative to cortical activity
(Muthuraman et al., 2008; Williams et al., 2009), or to be constant
(Halliday et al., 1998; Riddle and Baker, 2005).

This mishmash is not the only reason that to date there is no
real consensus about the contribution of afferent pathways to cor-
ticospinal synchronization. Support for a role of afferent feedback
comes from a study by Riddle and Baker (2005), which showed
that increasing corticospinal conduction times induced via arm
cooling resulted in a decrease in corticospinal coherence that can-
not be explained by a change in efferent drive only. The reported
additional time delay between cortex and spinal cord due to arm
cooling was twice the conduction time in one direction, suggest-
ing that bi-directional pathways contributed to the generation of
coherence. In contrast, Gerloff et al. (2006) ruled out any con-
tribution from sensory pathways in a patient population with
interhemispheric reorganization of motor areas due to pyramidal
tract lesions. In these patients, the other hemisphere had substi-
tuted the function of M1 in the affected hemisphere, but not that
of S1. Due to the clear spatial separation between S1 and M1, the
origin of corticospinal coherence could be pinpointed to M1.

The direction of information flow between cortex and spinal
cord can also be inferred using directionality measures like
Granger causality and the directed transfer function (for alterna-
tive measures see, e.g., Nolte et al., 2008; Muskulus et al., 2009).
Mima et al. (2001) found the efferent coherence from cortex to
spinal cord to be larger than in the opposite direction, although
afferent coherence was still significant (Tsujimoto et al., 2009).
Witham et al. (2011) even reported a stronger coherence in the
afferent direction in a subpopulation of subjects. Gross et al.
(2002) looked at the directionality of synchronization between
sensorimotor cortex and the EMG for the 6–9 Hz discontinuities
that can be observed during smooth movements. Using source
analysis, they showed that the sign of directionality reversed
around the central sulcus, with predominantly efferent coupling
for the motor cortex and afferent coupling for the somatosensory
cortex. Oscillatory activity also appears to be present in the fir-
ing of group Ia afferents that carry information about changes
in muscle fiber length (Baker et al., 2006). Brovelli et al. (2004)
reported directional beta band coherence from somatosensory
cortex to primary motor cortex. These mechanisms could in fact
serve to close the feedback loop to the motor cortex and allow
for sensorimotor integration. If so, corticospinal synchronization
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constitutes an intricate mechanism for improving motor perfor-
mance by means of a bi-directional coupling between cortex and
spinal cord rather than a mere reflection of an efferent drive.

CORTICO-CORTICAL SYNCHRONIZATION
Obviously, contralateral primary motor cortex is not the only
brain region that is involved in motor control. Depending on
the task at hand, premotor, parietal, subcortical, and cerebellar
areas are active in both contra- and ipsilateral hemispheres. Given
the abundant evidence for synchronization between motor cor-
tex and spinal cord, it can be expected that similar mechanisms
also mediate communication between these areas. Studying these
mechanisms is a challenge: whereas the distance between motor
cortex and limb muscles is large enough to avoid interference of
neural activity in the recorded signals, the activity of different
brain regions is more difficult to discriminate with non-invasive
techniques.

NON-INVASIVE STUDIES
Several EEG and MEG studies have shown cortico-cortical syn-
chronization patterns indicating distinct forms of neural com-
munication. Beta band coherence between motor and visual
cortex is increased when subjects perform a visuomotor tracking
task and decreased when the visual stimulus is a mere distrac-
tor (Classen et al., 1998). Interhemispheric beta band coherence
between motor areas arises during both unimanual and bimanual
rhythmic movements (Mima et al., 2000a; Gross et al., 2005), and
increases with task complexity (Gerloff et al., 1998; Manganotti
et al., 1998; Gross et al., 2005). Conflicting results have been found
regarding the effect of movement rate on interhemispheric coher-
ence (Serrien and Brown, 2002; Toma et al., 2002). In line with
the involvement of SMA in self-initiated movements, coherence
between sensorimotor cortex and mesial premotor areas is larger
for internally compared to externally paced movements (Gerloff
et al., 1998; Serrien, 2008). During auditory-cued finger tapping,
Pollok et al. (2005) found an extensive network of activated brain
regions including M1, SMA, premotor cortex, posterior parietal
cortex, auditory cortex, thalamus, and cerebellum. Across these
areas significant coherence could be observed, mainly in the alpha
band. In a similar study, inter-cerebellar coherence was found
to be increased for bimanual synchronous finger tapping (Pollok
et al., 2007).

Learning a complex motor task can alter cortico-cortical syn-
chronization. Andres et al. (1999) trained subjects to integrate
two unimanual tapping sequences into a new, bimanual sequence.
Initially, interhemispheric mu and beta band coherence between
sensorimotor areas increased during the training period. After
successful learning of the bimanual sequence the interhemi-
spheric coherence was decreased again. Hence, when a biman-
ual skill has been acquired, less interhemispheric interaction is
needed to perform the task. Similar decreases in interhemispheric
coherence were obtained by Serrien and Brown (2003), along with
a strong initial increase in interhemispheric gamma coherence
between pre-frontal areas. The latter may reflect an increased cog-
nitive demand needed to learn a novel motor task. Also perceptual
learning of a tactile discrimination task may alter functional con-
nectivity between sensorimotor areas (Freyer et al., 2012). In

addition to cortical interregional synchronization, motor learn-
ing is also associated with changes in spectral power (Boonstra
et al., 2007a; Houweling et al., 2008) and synchronization between
motor cortex and spinal cord (Houweling et al., 2010b). These
findings suggest that neural activation patterns do not only relate
to movement execution but also to one’s familiarity with or exper-
tise in the motor task. That is, movement-related synchronization
patterns are not permanently configured but can be “reshaped”
dynamically with experience.

SYNCHRONIZATION OR VOLUME CONDUCTION?
A major obstacle in studying cortico-cortical synchronization
using non-invasive recording techniques is the presence of vol-
ume conduction. Because of the distance between the recording
sites and the cortical tissue, activity of a single dipole source will
be picked up by multiple electrodes/sensors. Furthermore, the
conductivity properties of different tissues between cortex and
recording sites lead to a blurring of electric potentials on the scalp.
The latter affects EEG, whereas the distance between sensors and
cortex is larger for MEG. As a result, the activity of neighboring
recording sites is highly coherent with a zero-lag phase differ-
ence. Due to this effect, Srinivasan et al. (2007) estimated that the
coherence between EEG electrodes separated by less than 10 cm is
considerably elevated, as well as a small effect for widely separated
electrodes (>20 cm). For MEG, substantial field-spread effects on
the coherence estimates occur for sensors separated by less than
15 cm. As two underlying sources may show genuine in-phase
locking, it becomes very difficult if not impossible to distinguish
true in-phase synchronization from volume conduction artifacts
(see Figure 2).

Another consequence of volume conduction is a bias in
both amplitude and relative phase estimates of two sources, as
demonstrated by Tognoli and Kelso (2009). Due to the super-
position of activity from multiple sources at the sensor level,
the amplitude of anti-phase coupled oscillators is diminished
and amplified for in-phase coupled oscillators. Moreover, the
relative phase between oscillators at the source level coupled
with a phase lag other than zero will appear more in-phase
synchronized at the sensor level. This implies that the synchro-
nization patterns observed in EEG/MEG recordings might not
reflect the amplitude and phase coupling between sources. The
authors further show that a “waxing and waning” pattern, as
can be observed in occipital alpha activity, can result from two
non-interacting oscillators that periodically approach an in-
or anti-phase phase relation. On the whole, the superposition
of source activity complicates interpretation of non-invasively
observed synchronization patterns to say the least.

Attempts to circumvent the volume conduction problem
involve the use of different measures of functional connectivity
that either look at phase synchronization that is not centered
around zero or ±180◦ (Nolte et al., 2004; Stam et al., 2007), or
try to decompose the sensor signal into separate sources while
preserving the interactions among them (Meinecke et al., 2005;
Gomez-Herrero et al., 2008; Marzetti et al., 2008). Although these
methods are effective in diminishing volume conduction effects
(the first two are in fact fully invariant against zero-lag volume
conduction), they are also very conservative as all true in- or
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FIGURE 2 | Volume conduction complicates the interpretation of

connectivity patterns estimated from MEG or EEG recordings. Data were
recorded using MEG with axial gradiometers and group results for the beta
band (20–25 Hz) are shown (see also, van Wijk et al., 2012). Top row: activity
during bimanual force production alone is not very informative. Neighboring
sensors show strong relative phase uniformity as they pick up activity of
common sources. Second row: contrasting movement with resting state
yields the characteristic movement-related power decrease over motor
cortices. In addition, two clusters of increased connectivity are evident that
seem to be located in between the locations with largest power suppression.
However, the phase lag index reveals that all pair-wise connections with

non-zero or non-pi phase difference are distributed randomly over the scalp.
Hence, one cannot rule out that the increased local connectivity is caused by
volume conduction. Third row: for unimanual movement there even seems
to be increased interhemispheric coupling. But again it is difficult to discern
whether these connections express true in-phase synchronization. Bottom

row: by contrast, a transformation to planar gradients reveals a strong
decrease in connectivity overlying motor areas that coincides with a drop in
power. This means that, due to less beta activity, the estimated relative
phase uniformity between neighboring sensors is weaker compared to
resting state. Increases in power and connectivity are indicated in red,
decreases in blue. Only the strongest connections are shown.

anti-phase synchronization is ignored. Applying inverse methods
to estimate synchronization on the source level does not solve the
problem (Schoffelen and Gross, 2009). Probably the best way to
avoid spurious synchronization from volume conduction effects
is to record brain activity invasively.

INTRACRANIAL STUDIES
LFP recordings in the macaque revealed episodes of synchronous
beta oscillations. Murthy and Fetz (1996a) reported synchronous
oscillations between sites within motor areas, between pre- and
post-central sites and occasionally also between bilateral motor
areas. Oscillations occurred more often and were stronger dur-
ing exploratory movements compared to rest but seemed unre-
lated to specific movement phases. More systematic modulations
in relation to movement have also been found for intra- and
inter-hemispheric synchronization. Synchronization within and
between primary motor cortex and premotor areas is present in
the time period before movement and ceases prior to movement
initiation (Sanes and Donoghue, 1993). The activity of bilat-
eral M1s shows a larger correlation around movement onset of
synchronous bimanual movements compared to asynchronous
bimanual and unimanual movements (de Oliveira et al., 2001).

In contrast, the period during movement execution is character-
ized by a decrease in interhemispheric correlation. In addition, an
in-phase synchronization in the 10–40 Hz range can be observed
during isometric contractions between deep cerebellar nuclei and
bilateral M1s (Soteropoulos and Baker, 2006).

In humans, Ohara et al. (2001) found an increased coherence
for frequencies <50 Hz around movement onset between S1 and
M1 within the same hemisphere. They also observed increases in
predominantly mu band coherence between S1/M1 and SMA that
started almost 1 s before movement onset and peaked after move-
ment. The time course of coherence, however, did not fully agree
with changes in spectral power, which started earlier and were
maximal for higher frequencies. The data were obtained from
ECoG recordings in epilepsy patients during self-paced brisk fin-
ger extension. For the majority of subjects, synchronized regions
showed a phase lag close to zero.

One is tempted to conclude that true in-phase synchrony
is present across the cortex and is modulated in service of
motor function. If so, the synchrony should have the capacity
to carry information relevant for motor performance and/or its
control. In fact, first evidence for information carried in syn-
chronized neural activity comes from the study of Stark et al.
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(2008), who recorded single- and multi-unit activity in premo-
tor areas of two monkeys. The monkeys performed a prehension
task with a short delay period within which information about
reach direction and grip type (precision or opposition) had to
be memorized. During this period, most single and multi-unit
activity recorded showed a preference for reach direction and,
to a lesser extent, grip type but not so much for their combi-
nation. However, pair-wise cross-correlation between multi-unit
activity revealed specificity to the combination of reach direction
and grip type. This information was not apparent from single-
unit recordings but only in the averaged activity of small groups
of neurons and the synchronization did not have an oscillatory
nature.

ABNORMAL SYNCHRONIZATION PATTERNS IN
MOTOR DYSFUNCTION
Altered synchronization patterns due to disease states that give
rise to motor impairment can provide important insight into acti-
vation patterns underlying healthy motor functioning. We here
sketch some seminal examples.

PARKINSON’S DISEASE
The bradykinesia seen in Parkinson’s disease is intimately related
to excessive beta oscillations in the basal ganglia (for a review,
see Brown, 2007; Hammond et al., 2007). Both treatment with
dopaminergic drugs and high frequency deep brain stimulation
(DBS) in the subthalamic nucleus (STN) or globus pallidus leads
to suppression of the excessive beta activity (Brown et al., 2001,
2004; Priori et al., 2004; Wingeier et al., 2006). Moreover, the
degree of suppression in STN correlates with clinical improve-
ment (Kuhn et al., 2006, 2008, 2009; Weinberger et al., 2006; Ray
et al., 2008). The effect of DBS depends on the frequency of stim-
ulation. In contrast to high frequency stimulation (100–180 Hz),
stimulation of the STN with 20 Hz slows movement execution
(Chen et al., 2007), suggesting a causal relation between the exces-
sive oscillations and bradykinesia. Interestingly, the phase pattern
of stimulation also modifies effects of DBS as phase resetting is
known for its capacity to desynchronize oscillatory neural pop-
ulations (Tass, 1999, 2002; Hauptmann et al., 2009). Although
resting state oscillatory activity in M1 seems hardly affected in
Parkinson’s disease (Brown, 2007; but see Goldberg et al., 2002;
Vardy et al., 2011), movement-related ERD is delayed and lower in
amplitude compared to healthy controls while ERS is diminished
(Defebvre et al., 1998; Wang et al., 1999; Magnani et al., 2002;
Devos et al., 2003a,b). In addition, corticospinal beta synchro-
nization levels are reduced in untreated state, while corticospinal
synchronization for lower frequencies associated with tremor is
enhanced (Salenius et al., 2002). Cortico-cortical beta synchro-
nization is elevated in untreated state as well (Silberstein et al.,
2005). Levodopa administration and DBS also restores these
patterns towards normal levels.

ESSENTIAL TREMOR
One of the most prevalent movement disorders is essential tremor
(Lorenz and Deuschl, 2007). It is characterized by a bilateral
action tremor in arms and hands of around 6–12 Hz. Its ori-
gin lies in the central nervous system but cannot be pinpointed

to a single area. Instead, a network of regions is believed to be
involved in its generation, including the inferior olive, cerebel-
lum, thalamus, and motor cortex (Raethjen and Deuschl, 2012).
Schnitzler et al. (2009) reported coherent activity among these
regions at the tremor frequency and its harmonics. This activity
is propagated to the spinal cord as revealed by significant corti-
cospinal coherence at the tremor frequency (Hellwig et al., 2001).
However, despite the tremor being quite steady over time, the
corticospinal coherence appears intermittently (Raethjen et al.,
2007). This may hint at the involvement of other (sub)cortical
regions within the identified network in the propagation of
oscillatory activity to the spinal cord. It has been submitted
that abnormal synchronization patterns within similar networks
might also underlie other types of tremors (Schnitzler et al.,
2009). In healthy subjects, one can observe a physiological tremor
in the same frequency range as the essential tremor but it typ-
ically has much smaller EMG amplitude. Physiological tremor
occurs during smooth continuous movements and appears coher-
ent with contralateral M1 (Gross et al., 2002). A reason that these
oscillations are only small under normal circumstances might be
that circuits in the spinal cord counteract the descending 10 Hz
drive from the brain through phase cancellation (Williams et al.,
2010).

MIRROR MOVEMENTS
Unilateral movements may evoke unintended muscle activity of
the passive limb. In healthy subjects, mirror movements are more
frequently seen in young children, whose corpus callosum is not
yet fully myelinated, and in elderly, who undergo atrophy of
white matter pathways. In both cases they are expressed more
when fatigued (Duque et al., 2005). The cause for the emer-
gence of mirror movements might be either uncrossed ipsilateral
corticospinal pathways or improper suppression of interhemi-
spheric crosstalk (Shibasaki and Nagae, 1984; Britton et al., 1991;
Daffertshofer et al., 1999, 2005). Still, the contribution of ipsilat-
eral and bilateral activation pathways is under debate (for review
see Addamo et al., 2007). In line with the bilateral activation the-
ory, Huo et al. (2011) showed ipsilateral gamma synchronization
around unimanual movement onset in children, the incidence
of which declined with age. Such ipsilateral activity is absent
in adults. Mirror movements may also occur under pathologi-
cal conditions and they are particularly pronounced in the case
of callosal damage (Dennis, 1976; Bonzano et al., 2008). A case
study of a patient suffering from congenital mirror movements
showed significant corticospinal coherence for the passive hand
with the ipsilateral but not with the contralateral motor cortex
(Pohja et al., 2002). Equivalent results were found for two patients
with X-linked Kallmann’s syndrome, a third patient showed
coherence with bilateral motor cortices (Farmer et al., 2004). In
these cases, mirror movements are likely to arise from uncrossed
pathways. These examples demonstrate that the origin of mir-
ror movements could be inferred by looking at synchronization
patterns.

DISCUSSION
Causal relations between encephalographic signals and motor
behavior are difficult to demonstrate and synchronization can be
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epiphenomenal to power changes for a variety of reasons. There
are, however, several findings that refute the latter possibility.
For instance, the aforementioned study by Pogosyan et al. (2009)
showed a slowing of movements with experimentally entrained
beta oscillations. Also, DBS studies in patients with Parkinson’s
disease revealed that stimulation at 20 Hz deteriorates motor
function (Chen et al., 2007), whereas higher stimulation fre-
quencies yield a break-down of abnormal synchronization pat-
terns and, in consequence, result in clinical improvement (Kuhn
et al., 2006, 2008, 2009; Weinberger et al., 2006; Ray et al.,
2008). Admittedly, corticospinal synchronization values are typ-
ically low albeit significant and therefore seem to be of little
functional relevance. Modeling work suggests that the impact
of corticospinal synchronization might be masked by the non-
linear properties of MNs (Williams and Baker, 2009; Negro
and Farina, 2011). Also, a true effect of synchronization often
becomes only apparent on a population level as the activity of
single neurons might be only weakly correlated to the ensem-
ble average (Baker et al., 2003). Oscillatory activity in single
neurons can be difficult to detect but it is apparent when sum-
ming over multiple neurons (Donoghue et al., 1998). We note,
however, that the neurons of isolated pair-wise interactions are
always embedded in a network of numerous interacting neu-
rons, i.e., a neural population. It is therefore fair to assume
that a functional role of synchronization lies in its capacity
for population coding rather than its impact on single neuron
activity.

We further note that the aforementioned representation of
motor programs via (temporally bound) cell assemblies (Wickens
et al., 1994; Hommel, 2004) is in line with the concept of
population coding. Assemblies may be formed across spatially
distributed sites that functionally contribute to the same move-
ment feature. They form small networks that show coordinated
(sequential) activity when their movement feature is expressed.
Interestingly, Brown and Marsden (2001) reported coherence
between the cortical representations of wrist flexion and exten-
sion when they act in unison, compared to no such binding
when the muscle contractions were executed separately. Neurons
may be part of multiple assemblies encoding different move-
ment features and may shape new assemblies during motor
learning.

Despite the omnipresence of synchronized neural activity
across the brain, some skepticism about its role as information
carrier persists (Shadlen and Movshon, 1999). In many cases, it is
difficult to distinguish synchronization from rate coding, in which
the discharge frequency of neuronal populations conveys task-
related information. An example of rate coding is the so-called
population vector for movement direction in M1 (Georgopoulos
et al., 1986). In fact, synchronization and rate coding often cor-
relate. The reason for this might be trivial as a higher spike rate
increases the probability of detecting coinciding spikes that will
be labeled as synchronized. This confounder should be taken into
account in determining significance of synchronization though
temporal variations in spike rate do complicate a clear-cut sepa-
ration of true synchronization and spike rate modulations. There
is even experimental evidence in favor of a role of rate covari-
ation, rather than synchronization, as a binding mechanism in

the visual system (Nirenberg et al., 2001; Golledge et al., 2003;
Roelfsema et al., 2004). Also in the motor cortex synchronization
has been found to provide no additional information on move-
ment direction compared to spike frequency (Oram et al., 2001).
Evidently, synchronization between neuronal populations might
not be the only way in which brain regions communicate.

Importantly, rate coding and synchronization are not mutu-
ally exclusive mechanisms but may operate cooperatively.
Synchronous discharges between cell pairs in M1 may show direc-
tional specificity different from their directional tuning curves
based on firing rate (Hatsopoulos et al., 1998). Also, synchroniza-
tion may arise both with and without alterations in neural firing
rate. Grammont and Riehle (2003) showed that the time course
of spike coincidence and firing rate display different modula-
tions during movement preparation and execution. Episodes of
increased spike coincidence mainly occur at the end of the prepa-
ration period, without an obvious relation to firing rate. During
movement execution however, synchronization drops while fir-
ing rate strongly increases. Moreover, synchronization that is not
accompanied by alterations in firing rate is associated with the
processing of internal cognitive events and the concurrent mod-
ulation of synchronization and firing rate with external events
(Riehle et al., 1997). Hence spike timing might not act alone
in transferring information but might have an ally in firing rate
modulations.

Inter-regional synchronization is usually studied using linear
measures of interdependencies like cross-correlation, coherence,
or iso-frequency (1:1) phase locking. However, given the com-
plex behavior of small neural circuits, additional information
might be contained in non-linear coupling, also on larger scales.
On the single neuron level, more complex types of correlations
than spike coincidence, like long-range correlations and common
patterns of spikes might occur that are ignored with commonly
used synchronization measures (Latham and Nirenberg, 2005).
On a population level, coupling between frequency bands might
occur. Measures of non-linear-interdependencies are more ade-
quate in capturing these types of interactions. This includes cross-
frequency (n:m) phase locking (Tass et al., 1998), bi-coherence,
synchronization in state-space and information theoretic mea-
sures like mutual information (for an overview of commonly used
linear and non-linear measures see Pereda et al., 2005). Only few
studies have investigated non-linear interactions in the motor sys-
tem (Calmels et al., 2008; Darvas et al., 2009; Muskulus et al.,
2009; Chen et al., 2010; Jin et al., 2010). Interestingly, Chen et al.
(2008) were able to detect interactions between bilateral motor
areas and between muscle activity and ipsilateral motor cortex
using cross mutual information but not with standard coherence
analysis. By looking at non-linear brain interactions, future stud-
ies will certainly advance our understanding of neural activity
accompanying motor control.

CONCLUSION
Synchronization seems to be an integral part of the neural con-
trol of movement. Throughout the motor system, regional and
inter-regional synchronization patterns display task-related mod-
ulations. In order to understand how these activity patterns
may possibly yield motor behavior, it is necessary to employ
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multiple recording techniques, data analysis tools, and modeling
approaches. The paradoxical beta power decrease in M1 during
movement can only be explained by the increased firing rates of
the PTNs, hence boosting output to the spinal cord. This also
underscores that neural communication is not solely achieved
by synchronization. Rate coding and spike timing act conjointly

during motor control. It is this combination that is pivotal for
interpreting synchronization patterns.
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