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A complete understanding of the hippocampus depends on elucidating the
representations and computations that exist in its anatomically distinct subfields.
High-resolution structural and functional MRI scanning is starting to permit insights into
hippocampal subfields in humans. In parallel, such scanning has facilitated the use of
multi-voxel pattern analysis (MVPA) to examine information present in the distributed
pattern of activity across voxels. The aim of this study was to combine these two relatively
new innovations and deploy MVPA in the hippocampal subfields. Delineating subregions
of the human hippocampus, a prerequisite for our study, remains a significant challenge,
with extant methods often only examining part of the hippocampus, or being unable to
differentiate CA3 and dentate gyrus (DG). We therefore devised a new high-resolution
anatomical scanning and subfield segmentation protocol that allowed us to overcome
these issues, and separately identify CA1, CA3, DG, and subiculum (SUB) across the
whole hippocampus using a standard 3T MRI scanner. We then used MVPA to examine
fMRI data associated with a decision-making paradigm involving highly similar scenes
that had relevance for the computations that occur in hippocampal subfields. Intra- and
interrater scores for subfield identification using our procedure confirmed its reliability.
Moreover, we found that decoding of information within hippocampal subfields was
possible using MVPA, with findings that included differential effects for CA3 and DG.
We suggest that MVPA in human hippocampal subfields may open up new opportunities
to examine how different types of information are represented and processed at this
fundamental level.
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INTRODUCTION
The hippocampus is composed of a number of subregions which
were named CA1l, CA2, and CA3 by Lorente De No (1934).
These subfields are adjoined by neighbouring areas the dentate
gyrus (DG), the subiculum, presubiculum, parasubiculum, and
entorhinal cortex, to form the extended hippocampal formation
(Amaral and Lavenex, 2007). Studies in rodents (e.g., Kesner et al.,
2004; Leutgeb et al., 2004, 2007; Leutgeb and Leutgeb, 2007;
Alvernhe et al., 2008; Hunsaker and Kesner, 2008; Gilbert and
Brushfield, 2009; Aimone et al., 2011) and computational mod-
els (Marr, 1971; Treves and Rolls, 1994; McClelland et al., 1995;
Rolls, 2010; O’Reilly et al., 2011) suggest that computations that
are key to episodic memory, such as pattern separation and pat-
tern completion, occur in specific regions within the hippocampal
formation. Pattern separation is the process of distinguishing sim-
ilar memories from each other and is thought to occur in DG
and CA3. Pattern completion concerns the retrieval of previously
stored memories from partial cues and is thought to involve CA3.
In humans, examination of these regions in vivo has proved
difficult, but advances in high-resolution structural and func-
tional MRI have begun to make it possible to localise fMRI BOLD

activity to specific hippocampal subfields with greater confidence
(e.g., Zeineh et al., 2000a,b, 2001, 2003; Bakker et al., 2008;
Small et al., 2011; Suthana et al., 2011; Duncan et al., 2012; see
Carr et al., 2010 for a review). fMRI studies published to date
that reported hippocampal subfield findings typically employed
a standard mass-univariate approach to data analysis. In the last
number of years there has been increasing interest in alterna-
tive methods that exploit the intrinsically multivariate nature of
fMRI data. The motivation for this change stems from the belief
that there may be information present in the distributed pattern
of activation across voxels that is missed when looking at each
voxel independently as in the mass-univariate method (Haynes
and Rees, 2006; Norman et al., 2006; Mur et al., 2009; Pereira et al.,
2009; Chadwick et al., 2012; Rissman and Wagner, 2012). This
type of multivariate approach is commonly known as multi-voxel
pattern analysis (MVPA), or “decoding”

It has been possible to decode specific spatial locations within a
virtual environment from patterns of activity across voxels in the
hippocampus (Hassabis et al., 2009; Rodriguez, 2010). Similarly,
Chadwick et al. (2010) were able to predict which episodic
memory participants were recalling from patterns of activity
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across voxels in the hippocampus moreso than neighbouring
entorhinal and parahippocampal cortices, even when memories
were highly overlapping (Chadwick et al., 2011). Because MVPA
allows us to examine individual memory representations, use of
this technique could open up new opportunities to examine hip-
pocampal representations in terms of their content, and how they
might change over time, with aging, and pathology (see Chadwick
et al., 2012 for a review). Given the potential of MVPA and the
importance of understanding the functional contributions of spe-
cific subregions within the hippocampal formation, it would seem
advantageous to combine the two.

In order to do this effectively, we (1) wanted to include the
whole hippocampus and (2) to separate, as far as possible, each
individual subregion from the others, to examine their specific
contributions. (3) While many studies report high in plane res-
olution in their MRI scans (e.g., 0.39 x 0.39 mm—Zeineh et al,,
2000a,b), this is often acquired in thick slices (e.g., 3 mm). The
skewed resolution from non-isotropic voxels distorts delineation
of subfields (making it particularly difficult in anterior hippocam-
pal regions), which cannot be overcome by spatial interpolation.
We therefore wanted to acquire data with isotropic voxels to
circumvent these issues and further minimise resampling arti-
facts when co-registering the datasets. It should also be noted
that in using a searchlight MVPA procedure (as we do here—see
“Materials and Methods”; see also Hassabis et al., 2009; Chadwick
etal., 2010, 2012), the use of unfolding and flat-mapping to visu-
alise activation in the subfields (e.g., Zeineh et al., 2000a) is not
suitable because local patterns of activity among clusters of voxels
get disrupted if data are projected from 3D to 2D flat maps (Carr
et al., 2010).

Examining the literature for methods of delineating subre-
gions of the hippocampal formation, it is surprising how the
criteria outlined above prove difficult to satisfy. Numerous meth-
ods have been described, but none has achieved wide acceptance.
While an exhaustive review of extant methods is beyond the scope
of this paper, we summarize the main issues as they relate to the
aim of our study. First, some methods do not in fact examine the
whole hippocampus. Some restrict their analysis to a few slices of
the hippocampus (Mueller et al., 2007) or just 1 cm of the struc-
ture (e.g., Mueller et al., 2010), others do not delineate subfields
within the head of the hippocampus (Zeineh et al., 2000a,b, 2001,
2003; Eldridge et al., 2005; Ekstrom et al., 2009; Suthana et al.,
2009; Preston et al., 2010), or its tail (Zeineh et al., 2000a,b, 2001,
2003; Eldridge et al., 2005), while others focus only on the body
of the hippocampus (Yushkevich et al., 2010), or on one or two
specific subfields (Moreno et al., 2007; Bartsch et al., 2011).

Second, aside from consideration of whether the whole hip-
pocampus is available for subregion analysis, only two stud-
ies report being able to delineate CA2 (Malykhin et al., 2010;
Yushkevich et al., 2010). In both cases high field scanners were
employed (4T and 4.7T, respectively), thus identifying CA2 with
confidence likely remains beyond the capability of studies using
standard 3T scanners. More seriously, most methods do not have
sufficient resolution or contrast to separate CA3 from DG (e.g.,
Zeineh et al., 2000a; Eldridge et al., 2005; Kirwan and Stark, 2007;
Bakker et al., 2008; Carr et al., 2009; Ekstrom et al., 2009; Cho
et al., 2010; Mueller et al., 2010; Preston et al., 2010). Functional

differentiation within the hippocampus, be that down its long axis
(e.g., Moser and Moser, 1998; Maguire et al., 2000; Fanselow and
Dong, 2010; Poppenk and Moscovitch, 2011), or within the sub-
fields (Marr, 1971; Treves and Rolls, 1994; McClelland et al., 1995;
Leutgeb et al., 2004; Leutgeb and Leutgeb, 2007; Hunsaker and
Kesner, 2008; Gilbert and Brushfield, 2009; O’Reilly et al., 2011)
is well-established. Not being able to examine the anterior and
posterior portions of the hippocampus, or being unable to distin-
guish the roles of CA3 and DG, limits the scope of studies and the
conclusions that can be drawn.

A third issue concerns how delineation is achieved. Most of
the papers cited above manually segmented the subregions. This
is time-consuming and ideally involves at least two operators in
order to test the reliability of segmentation (although many stud-
ies do not report any reliability measures). Two main automated
procedures have been reported. Operating at 4T and with its main
focus the evaluation of clinical scans, Yushkevich et al’s (2010)
segmentation procedure was able to delineate CA1, CA2, CA3,
DG, and subiculum. While seeming to achieve accurate subfield
segmentation, unfortunately, as noted above, it was not possible
to identify subfields in the head and tail of the hippocampus,
only in the body, currently limiting the utility of this approach
outside of the clinical domain. The other automated procedure
for segmenting hippocampal subfields is available as part of the
Freesurfer analysis programme (Fischl et al., 2002, 2004). The ini-
tial development of this procedure (Van Leemput et al., 2009),
and the basis of its current implementation, is the manual subfield
segmentation of the right hippocampi of 10 individuals ranging
in age from 22 to 89 years, where data were acquired at high res-
olution (0.38 x 0.38 x 0.8 mm) and averaged over five scans to
achieve higher signal-to-noise ratio (SNR). The definitions of the
boundaries of the subfields are very different from other proto-
cols (e.g., Carr et al., 2009; Malykhin et al., 2010; Yushkevich et al.,
2010) and do not seem to correspond to delineations from previ-
ous studies or indeed from atlases of hippocampal anatomy (e.g.,
Duvernoy, 2005); instead the delineations were based on geomet-
rical rules. The authors provide no rationale for the use of these
specific boundaries and cite no previous references using a similar
protocol. In addition, how accurately their procedures generalise
to scans acquired with lower resolution and SNR (as in Hanseeuw
et al., 2011; Teicher et al., 2012) is also unknown.

It is evident that delineation of hippocampal formation sub-
regions, a prerequisite for our research question, remains a
substantial challenge (Van Strien et al., 2012). We considered the
automated procedures as yet to incomplete (Yushkevich et al.,
2010) or inexact (Van Leemput et al., 2009) for our purpose.
Instead, we devised the following protocol to achieve our aims:
using a standard clinical 3T whole-body MRI scanner, for each
participant we acquired a set of high-resolution T2-weighted
structural scans (0.5 mm isotropic voxels—see “Materials and
Methods” for details) which allowed us to increase subfield
boundary contrasts, permitted manual subfield segmentation
within the whole hippocampus including head and tail, and the
ability to identify the subiculum, CA1, and separate CA3 from DG
(CA2 could not be separated and was included with CA3) guided
by the Duvernoy (2005) hippocampus atlas and other resources
(see “Materials and Methods”).
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Having established a means of identifying hippocampal sub-
regions that was suitable for our purpose, we next required a
task for participants to perform during high-resolution fMRI.
Bonnici et al. (2012) used MVPA to investigate the role of the
hippocampus in pattern separation and pattern completion in a
simple decision-making task involving two highly similar scenes.
They found that more distinct representations of the scenes were
present in the hippocampus compared to entorhinal and parahip-
pocampal cortices, consistent with its role in pattern separation.
When they examined morphed scenes that spanned a continuum
between the original two scenes, they found evidence for pattern
completion in the hippocampus. These hippocampal findings
clearly prompt further questions about what might be occurring
within hippocampal subfields during this task.

Given that sets of high-resolution T2-weighted structural scans
were available for the participants in the Bonnici et al. (2012)
study, we set out to identify CAl, CA3, DG, and SUB (for con-
venience referred to hereafter as “subfields”) using those scans,
and then re-analyzed the fMRI data from that study this time
focusing our MVPA analyses on the hippocampal subfields. In
so doing, our main aims were to test the viability of our subfield
segmentation procedure and the feasibility of conducting MVPA
analyses in the hippocampal subfields. In this study, therefore, we
were primarily concerned with ascertaining if above-chance lev-
els of decoding were possible within the hippocampal subfields,
and whether findings, if any, were consistent with the mecha-
nisms proposed to be at work there. Specifically, when we are
exposed to a stimulus, pattern separation, purportedly driven by
the DG, leads to the formation of a unique, orthogonalized rep-
resentation within CA3. These distinct traces can be retrieved
when a cue triggers completion of the original CA3 activity pat-
tern (pattern completion), which in turn drives CA1, from where
the entire distributed cortical memory trace can be reactivated
(Marr, 1971; Treves and Rolls, 1994; McClelland et al., 1995; Rolls,
2010; O’Reilly et al., 2011). Thus, we wondered whether decoding
within CA3 and CA1 might feature prominently in our results.

MATERIALS AND METHODS

PARTICIPANTS

There were 16 healthy right-handed participants (8 male, mean
age 24.4 years, SD 2.8, range 21-30) who had taken part in
the Bonnici et al. (2012) study. All had normal or corrected-
to-normal vision. Informed written consent was obtained from
each participant in accordance with the approval of the University
College London research ethics committee, and the Declaration of
Helsinki, and is archived by the authors.

STIMULI AND TASK

Full details are provided in Bonnici et al. (2012), with the key
points reprised here for convenience. Two scenes; scene A and
scene B (Figure 1A), were created using Terragen, version 0.9.43
for Windows (www.planetside.co.uk). Scene A was created first,
and then modified to create scene B. Several phases of piloting
ensured that the two scenes were regarded as highly similar whilst
being distinct and were approximately equated for the number of
constitute elements and overall complexity. Once the two scenes
were created, seven morphed scenes were generated using Morph

Age, version 4 for Mac (www.creaceed.com/morphage). Seven
morphs were generated to proceed in a continuous fashion from
scene A to scene B (70% A and 30% B, 60% A and 40% B, 55% A
and 45% B, 50% A and 50% B, 45% A and 55% B, 40% A and 60%
B, 30% A and 70% B). As the morph levels approached 50%, more
features from the two original stimuli become shared, increasing
the ambiguity (Figure 1B).

Participants were aware that in the experiment they would
receive a monetary reward for their correct answers, while wrong
answers lost money. In a training session prior to scanning, par-
ticipants learnt which action was rewarded (e.g., action A-right
button press) in relation to a given stimulus (i.e., scene A). The
two scenes that were employed (scene A, scene B) were never
labeled as such during the experiment. During this phase, par-
ticipants were presented with scene A or B one at a time each for
2.5s. Allocation of button press was switched for half of the par-
ticipants. In each trial they were given feedback informing them if
their choice was correct or incorrect. To ensure that choice perfor-
mance had stabilized before scanning, each participant performed
at least 20 trials during this phase, although all reached criterion
(10 correct responses in a row) well before this (see “Results”).

In the next phase of the pre-scan training session, the morph
stimuli as well as the original scene stimuli were presented in
pseudo-random order, each scene shown for 2.5 s, and three times
during the course of the training session. Once again partici-
pants were instructed to choose the action most likely to yield
reward given the composition of the scene being viewed; no feed-
back was given. Following each trial they were asked to provide a
confidence rating about the choice they had just made: 1 = not
sure, 2 = fairly sure, and 3 = very sure. After this learning phase
that included the original scenes and the morphs, participants
then repeated phase one, viewing the original two scenes again to
ensure behavioural performance was stabilized before scanning.

During scanning, participants saw the two scenes, 100% A and
100% B, as well as the seven morphed stimuli one at a time in
a pseudo-random order ensuring there were no biases toward
either scene A or B (see example trial timeline in Figure 1C).
Stimuli were presented 40 times each. As before, participants
were instructed to choose the action most likely to yield reward,
given the composition of the scene being viewed, and then to
provide a confidence judgement. No feedback was given dur-
ing the scanning phase of the experiment, although participants
were instructed that they would be paid in proportion to their
performance on the task at the end of the experiment. In the
analysis where the original scenes were compared, trials where
the participant did not make a decision were excluded from the
MVPA analysis, as were decisions that were incorrect, and deci-
sions that were rated as “not sure” (on average 9% of trials were
excluded). In the analysis involving the 50% morph scene, trials
where the participant did not make a decision were excluded from
the MVPA analysis, as were decisions that were rated as “not sure”
(there was no right or wrong answer for the 50% morph scene; on
average 24% of trials were excluded).

After scanning, each participant was debriefed. They were first
asked to perform a probe test, where 40 stimuli were presented
in the same format as the scanning task. Stimuli consisted of 20
scenes based on 100% scene A and 20 based on 100% scene B.
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C Stimulus
Confidence Rating

Confident?

FIGURE 1 | The stimuli and experimental task. (A) The two original
scenes—note they were not labeled A and B in the actual experiment.
(B) The morph continuum proceeding from 100% scene A to 100% scene B.
(C) A timeline of an example single trial with stimulus duration of 2.5's during

50%A 50%B

@

55%B

104 B m

100% B

Stimulus

which the participant registered their decision. Participants then indicated
their confidence in that decision during the next 3 s from a choice of “not
sure,” “fairly sure,” and “very sure” There was a 2 s rest period before the
next trial.

In each case the stimulus was exactly the same as the original
scene, but with successive shifts in view angle of 5°, either to the
right or the left. Altogether there were 10 scene A stimuli shifted
to the right, 10 shifted to the left, and 10 scene B stimuli shifted
to the right, 10 shifted to the left. The aim of this task was to
explore the nature of the strategies used during the discrimina-
tion task. If participants were able to select the correct action in
response to rotated versions of the original scenes this would sug-
gest that behavioral performance was based on view-independent
scene representations, rather than the sampling of individual fea-
tures. Finally, each participant was asked to draw what he/she
could remember of the two scenes (100% A and 100% B).

MRI ACQUISITION

High-resolution structural images were acquired on a 3T whole
body MRI scanner (Magnetom TIM Trio, Siemens Healthcare,
Erlangen, Germany) operated with a radiofrequency (RF) trans-
mit body coil and 32-channel head RF receive coil. Imaging was
limited to a partial volume focused on the temporal lobes. A
single-slab 3D T2-weighted turbo spin echo sequence with vari-
able flip angles (SPACE; Mugler et al., 2000) in combination
with parallel imaging was employed to simultaneously achieve
a high image resolution of ~500 pwm, high sampling efficiency
and short scan time while maintaining a sufficient SNR. After
excitation of a single axial slab the image was read out with
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the following parameters: resolution = 0.52 x 0.52 x 0.5 mm?,
matrix = 384 x 328, partitions = 104, partition thickness =
0.5 mm, partition oversampling = 15.4%, field of view = 200 x
171 mm?, echo time (TE) = 353 ms, repetition time (TR) =
3200 ms, parallel imaging with GRAPPA x 2 in phase-encoding
(PE) direction, bandwidth = 434 Hz/pixel, echo spacing =
4.98 ms, turbo factor in PE direction = 177, echo train duration =
881, averages = 1.9. For reduction of signal bias due to, e.g.,
spatial variation in coil sensitivity profiles, the images were nor-
malized using a prescan and a weak intensity filter was applied as
implemented by the scanner’s manufacturer. To improve the SNR
of the anatomical image, four scans were acquired for each partic-
ipant, co-registered and averaged. It took 12 min to obtain each
scan with a total scanning time of 48 min. In addition, a whole
brain 3D FLASH structural scan was acquired with a resolution
of 1 x 1 x I mm.

High-resolution functional MRI scans were acquired in a par-
tial volume focused on the temporal lobes. A 3T Magnetom
Allegra head only MRI scanner (Siemens Healthcare, Erlangen,
Germany) operated with the standard RF transmit-receive head
coil was used to acquire the functional data with a T2*-weighted
single-shot echo-planar imaging (EPI) sequence (in-plane res-
olution = 1.5 x 1.5 mm?; matrix = 128 x 128; field of view =
192 x 192mm?; 35 slices acquired in interleaved order; slice
thickness = 1.5mm with no gap between slices; TE = 30 ms;
asymmetric echo shifted forward by 26 PE lines; echo spac-
ing =560 us; TR = 3.5s; flip angle a = 90°). All data were
acquired at 0° angle in axial orientation with PE in the anterior—
posterior direction. An isotropic voxel size of 1.5 x 1.5 X 1.5 mm
was chosen for an optimal trade-off between BOLD sensitiv-
ity and spatial resolution. Further, the isotropic voxel dimension
reduced re-sampling artefacts when applying motion correc-
tion. To ensure optimal data quality, images were reconstructed
online and underwent online quality assurance (Weiskopf et al.,
2007). For distortion correction (Hutton et al., 2002), field
maps were acquired with a standard manufacturer’s double echo
gradient echo field map sequence (TE = 10.0 and 12.46 ms,
TR = 1020 ms; matrix size = 64 x 64), using 64 slices cov-
ering the whole head (voxel size 3 X3 x 3mm). Scanning
was performed in a single session and took approximately
45 min.

HIPPOCAMPAL SUBFIELD SEGMENTATION
Manual segmentation of CAl, CA3, DG, and SUB was per-
formed with the ROI module of the Anatomist software (http://
brainvisa.info/index.html) on the averaged T2-weighted high-
resolution structural image of each participant. Segmentation was
performed primarily using the Duvernoy (2005) hippocampus
atlas as a guide, with West and Gundersen (1990) and Mai et al.
(2008) as additional resources. Because these guides describe seg-
mentation with 3 mm thick slices, and our slices were 0.5 mm
thick, post-mortem data described by Yushkevich et al. (2009)
acquired at 9.4T and using slices of ~0.2 mm were used as an
additional reference.

Segmentation was first performed in the coronal view, one
subfield at a time, starting with DG, then CA1, CA3, and finally
SUB (Figure 2). The starting point for segmentation was the slice

Posterior

Superior

Left «—I—r Right
A -

1

Inferior

Anterior

FIGURE 2 | Subfield segmentation in the coronal plane. Coronal
sections through an averaged T2-weighted image of both the left and right
hippocampus of a participant.

where the body emerged from the head of the hippocampus
(anterior, Figure 2), distinguished as the place where the fim-
bria detaches from the head of the hippocampus, as described
in Duvernoy (2005), and working backwards through the body
toward, but not including, the tail of the hippocampus. No
attempt was made to separate the presubiculum and parasubicu-
lum from the SUB proper and so both were included in the SUB
subfield. This region links the hippocampus to the entorhinal
area medially and adjoins to CAl laterally. CA1 continues from
the SUB and ends once the curve (genu) of the Cornu Ammonis
(CA) is reached. The division between CA1 and CA3 was iden-
tified with a narrowing of the CA when viewed coronally. The
hippocampal sulcus provided a distinguishing boundary between
DG and CA1 and CA3.

Once segmentation of the hippocampal body was completed,
segmentation of the head and tail of the hippocampus were
conducted in turn. Coronally, the head of the hippocampus com-
mences with SUB (inferior) and CAl (superior). Progressing
posteriorly, the SUB travels medially, the lateral border between
it and CA1 being oblique in nature (West and Gundersen, 1990).
CA3 and DG appear as segmentation progresses toward the body
of the hippocampus, with two portions of DG initially appearing
due to the folding of the hippocampal head. In line with previ-
ous reports (West and Gundersen, 1990; Amunts et al., 2005), the
hippocampal-amygdaloid transition area (HATA) was treated as
a separate region and was therefore not included in our analysis.
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As described in Duvernoy (2005), when viewed coronally the
beginning of the hippocampal tail resembles the body of the hip-
pocampus, and it is only in the middle portions of the tail that it
first starts to broaden (posterior, Figure 2) and then narrows to
disappear behind the splenium.

After this phase of segmentation was completed, the view was
rotated to the sagittal plane to confirm and refine the segmenta-
tion. In the sagittal view, at the lateral-most edge CAL1 is observed
first. Continuing medially across the hippocampus, CA3 then
appears (superiorly) as well as CA1 (inferiorly), gradually reveal-
ing the DG sandwiched between CA1 and CA3 (Figures 3A,B).
Continuing medially, the SUB finally emerges (Figures 3C,D),
replacing some of CAl in the head and body of the hippocampus.

These manual segmentations (see also Figure4) generated a
set of regions of interest (ROIs) for each participant in each hemi-
sphere: CA1, CA3, DG, and SUB (Figure 5). The average amount
of time taken to segment the subfields of one hippocampus
was approximately two days. Intra-rater and inter-rater reliabil-
ities were calculated using the Dice overlap metric (Dice, 1945),
defined as the volume of overlap between two ROIs, divided by
the mean volume. As in other subfield segmentation studies (Van

DG . SuB

FIGURE 3 | Subfield segmentation in the sagittal plane. (A) Sagittal
section through an averaged T2-weighted image of the hippocampus of a
participant. Blue indicates CA1, red indicates CA3, the DG in green
becoming visible. (B) Proceeding medially through the hippocampus.

(C) The body starts to thin and subiculum (yellow) replaces part of CA1.
(D) Only head and tail remain at the medial end of the hippocampus, with
now most of the subiculum in view.

Leemput et al., 2008; Yushkevich et al., 2009; Malykhin et al.,
2010), five consecutive slices located in the body of the hippocam-
pus were chosen. Intra-rater reliability was assessed by comparing
two sets of segmentations by HMB with a 6 months interval
between segmentations. Inter-rater reliability was assessed by
comparing the segmentations of HMB and MJC. All ROIs used
in the MVPA analysis were delineated by HMB.

IMAGE PREPROCESSING

SPM5 was used for image preprocessing. The first six functional
volumes were discarded to allow for T1 equilibration (Frackowiak
et al.,, 2004). The remaining functional volumes were spatially
realigned to the first image of the series, and distortion correc-
tions were applied based on the field maps using the unwarp
routines in SPM (Andersson et al., 2001; Hutton et al., 2002).
Each participant’s whole brain MT FLASH structural scan was
then co-registered to a mean image of their realigned, distortion-
corrected functional scans. Following this, the high-resolution
T2-weighted averaged structural image was co-registered to the
MT FLASH structural scan, bringing all images into alignment
(this co-registration was performed prior to the manual seg-
mentation of the subfields). Functional data were minimally
smoothed with a 3-mm FWHM Gaussian kernel (as in Bonnici
etal., 2012). Each trial was modeled as a separate regressor, where
the time of display of each stimulus was modeled as an event
and convolved with the canonical hemodynamic response func-
tion. Participant-specific movement parameters were included as
regressors of no interest. Participant-specific parameter estimates
pertaining to each regressor (betas) were calculated for each voxel.
The voxel size used by the classifier was that of the fMRI scans,
namely 1.5 x 1.5 x 1.5 mm?; the mean number of voxels in each
subregion was: CA1l: 267.06 (SE 66.77), CA3: 248.47 (SE 62.12),
DG: 183.16 (SE 45.79), and SUB: 111.13 (SE 27.78).

All data were analyzed in the native space of each partic-
ipant, using the participant-specific ROIs. Normalization was
not required as we did not need to align the subfields across
participants in this MVPA context.

MVPA
There are a number of different methods available for MVPA
(reviewed in Chadwick et al., 2012). Here we used a two-step
procedure incorporating first feature selection and then final
multi-voxel pattern classification (Guyon and Elisseeff, 2003).
The classification procedure involved splitting the fMRI data into
two parts: a “training” set used to train a linear support vec-
tor machine (SVM; Duda et al., 2001) with fixed regularization
hyperparameter (C = 1) in order to identify response patterns
related to the stimuli being discriminated, and a “test” set used
to independently test the classification performance. Trials on
which participants rated their decisions as “fairly sure” and “very
sure” were used for all classifications. Prior to classification, fea-
ture selection was carried out on the data from the training set
only (guaranteeing that the final classification process would be
independent from the feature selection, thus avoiding “double
dipping,” Kriegeskorte et al., 2009).

The purpose of feature selection is to reduce the set of fea-
tures (in this case, voxels) in a dataset to those most likely to
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FIGURE 4 | Summary of the subfield segmentation procedure. (A) An
example coronal slice before segmentation. (B) The same coronal slice with
the subfield boundaries demarcated. (C) The final subfield segmentation of

| DG - SuB

this coronal slice. (D) An example sagittal slice before segmentation. (E) The
same sagittal slice with the subfield boundaries demarcated. (F) The final
subfield segmentation of this sagittal slice.

carry relevant information. This is effectively the same as remov-
ing voxels most likely to carry noise, and is a way of increasing
the SNR. Feature selection was implemented using a multivariate
searchlight strategy (Kriegeskorte et al., 2006), which examines
the information in the local spatial patterns surrounding each
voxel within the search space. Thus, for each voxel within an ROI,
we investigated whether its local environment contained informa-
tion that would allow accurate decoding, for example, of the two
scenes. For a given voxel, we first defined a small sphere with a
radius of three voxels centred on the given voxel. This radius was
chosen because previous demonstrations of hippocampal decod-
ing using the searchlight method used radius three (Hassabis
et al., 2009; Chadwick et al., 2010; Bonnici et al., 2012). Note
that the spheres were restricted so that only voxels falling within
the given region of interest were included. Therefore the actual
shape of the sphere, and the number of voxels within it, varied
depending on the proximity to the region of interest’s borders.
This procedure then allowed the selection of the searchlight voxel
sets that contained the greatest degree of decoding information
within the training dataset, using a k-fold cross-validation proce-
dure, where k equaled the number of experimental trials minus
the trial left out for the final classification. The average number
of voxels selected by the searchlight and used in the SVM for each
subregion was: CA1l: 164.15 (SE 12.63), CA3: 156.58 (SE 12.10),
DG: 132.54 (SE 5.54), and SUB: 81.58 (SE 7.39).

Using the voxel subset obtained from the feature selection
procedure, the SVM classifier was then trained to discriminate
between the two scenes using the training image dataset, and

tested on the independent test dataset. The classification was
performed using the LIBSVM software (Chang and Lin, 2011).

DATA ANALYSIS

The classifier accuracy values for each brain region were com-
pared to chance (50%) using t-tests. Comparisons of clas-
sifier accuracy values between regions were conducted using
repeated measures ANOVAs and any significant effects were fur-
ther interrogated using paired ¢-tests. A threshold of p < 0.05 was
employed throughout.

RESULTS

BEHAVIOURAL DATA

These data are reported in Bonnici et al. (2012) but are sum-
marised here and in Figure 6 for convenience. Prior to scanning,
participants learnt to select the appropriate action for each scene
(A, B), taking an average of 5.5 trials (SD 5.97) to reach criterion
(10 correct responses in a row). To ensure that choice perfor-
mance had stabilized before scanning, each participant performed
atleast 20 trials during this phase. Participants then received prac-
tice on the scene morphs task, in order to familiarize them with
each of the seven morph scenes, and to ensure that behavioral
performance had stabilized before scanning (see “Materials and
Methods”).

During scanning, participants viewed both original scenes
(100% A, B), as well as the seven morph scenes a total of 40
times each, randomly intermixed. Whilst participants were not
provided with feedback during scanning, they were instructed
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FIGURE 5 | An example of subfield segmentation in 3D. (A) The left and
right hippocampus of a participant shown in 3D with the subfields
conjoined. (B) The same left hippocampus is shown with its subfields
separated.

to choose the action most likely to yield reward given the
composition of the scene being viewed, and rate their level of
confidence in their choice. The psychometric function for accu-
racy for the 16 participants showed a sigmoid profile (Figure 6A).
Further, participants were slower and less accurate with increasing
noise in the sensory input (Figure6B), consistent with pre-
vious suggestions that decisions under perceptual uncertainty
reflect the accumulation of evidence toward a threshold (Gold
and Shadlen, 2007). Participants’ pattern of confidence ratings
also followed the expected distribution. Morphs approaching the
two original scenes were afforded higher confidence ratings, and
more ambiguous morphs lower ratings (Figure 6C). Of note, even
when the perceptual input was entirely ambiguous (i.e., 50%
morphs), participants tended to rate their decisions with a mod-
erate degree of confidence (i.e., “fairly sure” or “very sure”), on
average, rather than a subjective sense of guessing. Behavioural
accuracy (p = 0.40), reaction times (p = 0.19), and confidence
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FIGURE 6 | Behavioural data. Means + 1 SE are shown. (A) The
psychometric function for accuracy for the 16 participants showed a
sigmoid profile. (B) Participants were less accurate and slower with
increasing noise in the sensory input. (C) Participants’ pattern of confidence
ratings also followed the expected distribution. Morphs approaching the
two original scenes were afforded higher confidence ratings, and more
ambiguous morphs lower ratings.

ratings (p = 0.35) did not change significantly over the course of
scanning.

Following the scanning session, participants took part in a
post-experimental testing session which provided ancillary infor-
mation concerning the nature of the strategies used during the
discrimination task (see “Materials and Methods”). This revealed
that in general participants were able to select the correct action
in response to rotated versions of the original scenes suggest-
ing that behavioral performance was based on view-independent
scene representations, rather than the sampling of individual fea-
tures (correct scene selection mean: 33/40; SD 5.03). All but two
participants performed significantly above chance on this task.
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When these two participants were removed from the analyses
described below, there was no change to any of the findings. In
addition, all participants were able to draw the main features
of scenes A and B, and could indicate the differences between
the two.

HIPPOCAMPAL SUBFIELD SEGMENTATION

The Dice metric results were generally high, indicating that the
scanning protocol was suited to reliable delineation of the hip-
pocampal subfields. Intra-rater reliability was: 0.86 for CA1, 0.72
for CA3, 0.79 for DG, and 0.7 for subiculum. Inter-rater relia-
bility was: 0.80 for CA1, 0.74 for CA3, 0.80 for DG and 0.57 for
subiculum.

MVPA

Each classifier produced an accuracy value for each region of
interest in each hemisphere in every participant. For every anal-
ysis and region, a comparison between the accuracy values in
the left and right hemisphere was conducted using a one-way
repeated-measures ANOVA. None of these tests demonstrated
any significant hemispheric differences, and therefore all results
reported are collapsed across hemispheres.

We first asked whether patterns of activity in the hippocampal
subfields distinguished between the two original scenes, provid-
ing evidence for the coding of scene-specific information in these
regions. We carried out an MVPA analysis in which a classi-
fier for each ROI was trained on part of the 100% A and 100%
B scene trials, labeled according to participants’ choices. The
classifiers’ performance was then tested on an unseen portion
of trials (see “Materials and Methods”). Each subfield classi-
fier was able to distinguish between the two scenes significantly
above chance [CAL: t(15) = 5.22, p = 0.0001; CA3: t15) = 2.63,
p = 0.019; DG: t(15) = 5.67, p = 0.0001; SUB: t(j5) = 2.17, p =
0.046; Figure 7A]. No significant differences between the sub-
fields were observed [Fs, 36) = 2.638, p = 0.064]. This shows
that information about the scene currently being experienced is
present in all subfields, under conditions of perceptual certainty,
and the above-chance decoding suggests that it is possible to
deploy MVPA in the subfields of the hippocampus.

Given that participants were performing a decision task, a
key question, however, is whether these patterns of activity com-
prise neural representations of the currently viewed scene (i.e.,
scene A), or instead retrieved motor actions (e.g., right button
press). To address this issue, as in Bonnici et al. (2012) we again
trained a classifier in each ROI to distinguish between the 100%
A and 100% B trials, labeled according to participants’ deci-
sions. Once training was complete, the classifier was then tested
on the 50% morph trials, also labeled according to participants’
choices. Thus, the classifier was tested to see if it could distin-
guish between the participants’ decisions on whether the 50%
morph trials were more similar to the 100% A scene or the 100%
B scene. If retrieved motor actions drive the ability of the classi-
fier to decode participants’ decisions in relation to 100% scenes,
one would predict that a classifier trained on 100% scenes would
perform similarly when tested on 50% morph trials. In fact, clas-
sifier accuracies in the subfields were not significantly different
from chance [CALl: t15 = 1.35, p = 0.202; CA3: t(15) = 0.567,
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FIGURE 7 | Classifier performance in hippocampal subfields. Chance
was 50%. Means + 1 SE are shown. All subfield classifier performances
were significantly above chance. The y axis shows the percentage accuracy
of the classifiers (A) under perceptual certainty, when discriminating
between the 100% A and 100% B scenes, and (B) under perceptual
ambiguity, when making decisions about the 50% morphed scenes. Under
perceptual ambiguity classifiers operating on voxels in both CAT and CA3
showed significantly better performance (*p < 0.05) than those operating
on voxels in DG and subiculum.

p = 0.581; DG: t(15) = —1.83, p = 0.091; SUB: t(j5) = —0.008,
p = 0.994], making it unlikely that motor variables contributed
significantly to decoding of the currently viewed scene.

Having obtained evidence that the hippocampal subfields sup-
port distinct scene representations where perceptual input is com-
plete, we next turned our attention to the data during trials where
morph scenes were viewed. We focussed on the 50% morph trials,
where the perceptual properties of the stimulus were equidistant
from both of the original scenes. Behaviourally, the participants
tended to categorise these morphs as scenes A and B equally often
(Figure 6) but interestingly, as noted above, these choices were
accompanied by a relatively high level of confidence in the deci-
sions (i.e., “fairly sure” or “very sure”), suggesting that they were
not merely guesses. This is important, because it permitted us to
investigate whether there was any information in the hippocam-
pal subfields that allowed us to differentiate the decision states
A and B when the visual properties of the stimulus were exactly
matched (i.e., it was always the same 50% morph stimulus). If
there were distinct patterns of activity for these decision states,
then this would provide evidence for a pattern completion pro-
cess, whereby a perceptually ambiguous stimulus was “pattern
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completed” into one of two decision categories, leading to a par-
ticipant confidently asserting that the stimulus belongs to one cat-
egory over the other. A classifier for each ROI was trained on part
of the 50% morph scene trials, which were labeled according to
participants’ choices. The classifier’s performance was then tested
on an unseen portion of 50% morph trials. Each subfield classifier
was able to classify these trials significantly above chance [CA1l:
tas) = 16.352, p = 0.0001; CA3: £(15) = 21.257, p = 0.0001; DG:
tas) = 10.472, p=0.0001; SUB: ts5 = 13.246, p = 0.0001;
Figure 7B].

We also looked for differences between the subfields using
a one-way repeated measures ANOVA and found a significant
regional difference [F3, 36) = 6.842, p = 0.001], where classifi-
cation was significantly more accurate in CAl and CA3 com-
pared with DG and SUB [Figure 7B; CA1>DG: f(15) = 2.385,
p =0.034; CA1>SUB: t@5 = 3.441, p =0.0055 CA3>DG:
tas) = 3.178, p = 0.008; CA3>SUB: t(5) = 4.291, p = 0.001;
CA1>CA3: t5) = 0.609, p = 0.554; DG>SUB: 5, = 0.899,
p =0.386].

DISCUSSION

The aim of this study was to perform MVPA in the hippocam-
pal subfields. In order to do this, we first had to devise a means
of segmenting the subfields, with the provisos that we wanted to
include subfields throughout the whole hippocampus, and to dif-
ferentiate CA3 and DG. Examining fMRI data from an established
paradigm (Bonnici et al., 2012) that had relevance for compu-
tations purported to occur in hippocampal subfields, we found
that it was possible to decode patterns of fMRI activity across
voxels significantly above chance in all subfields (CA1, CA3, DG,
subiculum) and predict which scene stimuli were being perceived,
under conditions of both perceptual certainty and ambiguity. In
the latter case, where pattern completion was dominant, classi-
fiers operating on patterns of voxels across both CA1 and CA3
achieved particularly high accuracy. The good intra- and inter-
rater reliability scores for the segmentation of the subfields from
the high-resolution structural MRI scans, the above-chance fMRI
decoding across subfields, particularly those revealing differential
effects consistent with the mechanisms proposed to be at work
there, suggest MVPA in human hippocampal subfields is possible
and informative.

In order to truly elucidate the role of the hippocampus,
an understanding of the functions of its subfields is required.
Currently, identifying human hippocampal subfields in vivo
from structural MRI scans is a significant challenge, such
that there is no widely agreed method for their segmenta-
tion. In the main, current protocols are limited in the extent
of hippocampal tissue they consider (often ignoring subfield
distinctions in the head and tail, and being unable to dif-
ferentiate between CA3 and DG). Thus, important functional
distinctions within the hippocampus could be missed. To ame-
liorate these problems, for each participant we acquired four
T2-weighted structural MRI scans with 0.5 mm isotropic reso-
lution. The average of these images, with improved SNR, pro-
vided enhanced subfield contrast throughout the whole structure,
and in particular permitted identification of the elusive bound-
ary between CA3 and DG. Subfield delineation was reliable

both within and between the experimenters who performed the
segmentations.

We therefore believe that our scan sequence and resultant sub-
field segmentation protocol represents an improvement on extant
procedures offering, with a standard 3T clinical whole-body MRI
scanner, the opportunity for a more complete investigation of
each of the major subfields separately throughout the whole hip-
pocampus. However, there is also a disadvantage to our approach.
In the first instance, the time taken to acquire the four T2-
weighted structural scans is 48 min per participant. In our experi-
ence, averaging across fewer than four scans adversely affects SNR
and the ability to discern critical subfield boundaries. On top of
this, the manual segmentation of the subfields by an experienced
experimenter takes up to two days per hippocampus. Thus, for
the current study with 16 participants, subfield delineation took
over 2 months for one experimenter, with additional time for the
repeat measurements by this person, and then a further period
of segmentation by the second rater. While this resulted in com-
plete and accurate subfield identification, clearly in studies with
large numbers of participants, this would not be practical. It is
therefore essential that the development of automated subfield
segmentation continue to be pursued, but this must include the
whole hippocampus (not just the body), all major subfields being
delineated separately, and basing the segmentations on well-
established and agreed anatomy of the hippocampal subfields
(e.g., West and Gundersen, 1990; Duvernoy, 2005; Yushkevich
et al., 2009).

Having delineated the hippocampal subfields, we were then
able to deploy MVPA in this context. We used an existing task
that likely had relevance for the computations that operate in
the hippocampal subfields (Bonnici et al., 2012). We found that
information about two highly similar scenes was present in all
of the subfields and this permitted above-chance prediction by
the classifiers of which scene was being perceived. That there was
no significant difference between subfield classifier performances
may initially appear surprising given that the role of the DG and
CA3 in pattern separation is often emphasized (Leutgeb et al.,
2007; Leutgeb and Leutgeb, 2007). However, in our experiment
the participants were familiarized with the scene and morph stim-
uli prior to being scanned (as the MVPA approach we employed
depends on stable representations on a trial-by-trial basis). As
such, while sparse coding in the DG may be an initial step in the
generation of orthogonalised codes, this part of the process was
not scanned here. Instead we observed the subsequent expression
of these pattern-separated representations in successive stages of
hippocampal processing (i.e., in CA3 and then CA1; McClelland
et al., 1995).

In a second analysis we focussed on trials where the per-
ceptual input was equidistance from the two original scenes
(50% morphs). Interestingly, despite the stimuli being identical
on these trials when they occurred throughout the experiment,
behaviourally the participants tended to categorise these morphs
as scenes A and B equally often, and these choices were accompa-
nied by a relatively high level of confidence in the decisions, sug-
gesting that they were not merely guesses. Using the participants’
decisions to label the trials as either scene A or scene B, we again
observed all subfields performing significantly above chance.
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On this occasion, a significant difference in classifier performance
emerged between the subfields, where CA1 and CA3 classifiers
were significantly more accurate than the DG and SUB classi-
fiers. Because of the perceptual uncertainty on these 50% morph
trials, the participants were required to rely on internal repre-
sentations of the original scenes in order to make their decision.
This may require initial retrieval of similar patterns by pattern
completion, which is thought to occur in CA3 (Nakazawa et al.,
2002; Leutgeb et al., 2004; Leutgeb and Leutgeb, 2007; Gilbert and
Brushfield, 2009) and then comparing these internal representa-
tions in order to reach a decision. It has been suggested that this
comparison process may occur in CAl (Kumaran and Maguire,
2007; Chen et al., 2011). Of particular note here is the classi-
fier performance difference between the CA3 and DG subfields.
Although both classifiers produced accuracy results significantly
above chance, the result from the CA3 classifier was significantly
more accurate than that obtained from the DG classifier. To the
best of our knowledge, results showing functional differentiation

between CA3 and DG using fMRI have not been reported, and
our finding underscores the need for future studies to segment
and study these subfields separately.

In conclusion, by using a high-resolution T2-weighted struc-
tural MRI scanning protocol we were able to improve on extant
hippocampal subfield segmentation approaches by delineating
subfields in the whole hippocampus, and separating CA3 from
DG. We hope that this will be useful for those interested in study-
ing the subfields in a range of contexts, in relatively small groups
of participants. We have also shown that MVPA in the subfields
is possible and informative, opening up new opportunities to
examine how different types of information (e.g., spatial, auto-
biographical) are represented and processed at this fundamental
level.
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