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The 1000 Functional Connectomes Project is a collection of resting-state fMRI datasets
from more than 1000 subjects acquired in more than 30 independent studies from around
the globe. This large, heterogeneous sample of resting-state data offers the unique
opportunity to study the consistencies of resting-state networks at both subject and study
level. In extension to the seminal paper by Biswal et al. (2010), where a repeated temporal
concatenation group independent component analysis (ICA) approach on reduced subsets
(using 20 as a pre-specified number of components) was used due to computational
resource limitations, we herein apply Fully Exploratory Network ICA (FENICA) to 1000
single-subject independent component analyses. This, along with the possibility of using
datasets of different lengths without truncation, enabled us to benefit from the full
dataset available, thereby obtaining 16 networks consistent over the whole group of 1000
subjects. Furthermore, we demonstrated that the most consistent among these networks
at both subject and study level matched networks most often reported in the literature,
and found additional components emerging in prefrontal and parietal areas. Finally, we
identified the influence of scan duration on the number of components as a source of
heterogeneity between studies.
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INTRODUCTION
Since the seminal report by Biswal et al. (1995), low-frequency
spontaneous fluctuations (in the range of 0.01–0.1 Hz) of blood
oxygen level dependent (BOLD) signal in the brain have con-
sistently been found in the absence of task-induced activity.
Research in this area has increasingly gained momentum during
the last years, from both a methodological perspective (Margulies
et al., 2010) and a neuroscientific point of view (Raichle and
Snyder, 2007). Even beyond the original finding of the motor
network by Biswal et al. (1995), an increasing number of other
networks have consistently been reported, and these are now
referred to as resting state networks (Fox and Raichle, 2007).
Most commonly, networks related to motor function, visual pro-
cessing, executive function, auditory processing, memory, as well
as the default-mode network have been named in this con-
text (Damoiseaux et al., 2006; Robinson et al., 2009; Schöpf
et al., 2010). However, variability in the exact extent of networks
reported as well as the total number of resting-state networks and
their possible subdivisions still exist today (Leech et al., 2011),
and a quantification of variability of number and type of resting-
state networks identified in the data of different centers has not
yet been performed.

In the most general terms, the concept of brain networks is
based on the measure of functional connectivity, defined as tem-
poral coherence between the low-frequency (< 0.1 Hz) BOLD

signal of spatially remote brain regions (Richiardi et al., 2011).
This functional connectivity is commonly calculated using a seed-
based analysis approach, where temporal correlation is calculated
with respect to a seed voxel or region. Consequently, a clear-cut
distinction of the networks is limited by the fact that a single brain
region can be involved in several networks (Joel et al., 2011), e.g.,
the lateral parts of the parietal lobes that are associated with both
the default-mode network and the frontoparietal (working mem-
ory) network (Corbetta and Shulman, 2002). Additionally, the
detection of previously unknown networks and the identification
of unexpected properties are hampered by the inherent neces-
sity for a priori selection of seed regions rendering seed-based
functional connectivity an inherently parametric approach.

Non-parametric methods have been used to overcome this
limitation, among them clustering and pattern-recognition algo-
rithms, but it is independent component analysis (ICA)—or,
more specifically, spatial ICA, as opposed to temporal ICA—that
has emerged as the most successful method to identify spatially
independent brain networks, as witnessed by a large number of
influential studies (Damoiseaux et al., 2006; Smith et al., 2009;
Biswal et al., 2010; Allen et al., 2011). The capability of ICA
to identify neuroscientifically meaningful effects is corroborated
by the similarity of results from ICA of resting state fMRI data
and from ICA of electrophysiology data acquired using mag-
netoencephalography (MEG) (Brookes et al., 2011). In contrast
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to seed-based analysis, though, ICA offers no canonical method
for group comparison, and multiple solutions have been put
forward to address this question, including, among others, time-
concatenated ICA (Calhoun et al., 2001), i.e., time concatenation
of individual-subject time series before ICA analysis, tensor-based
ICA, tensor-based probabilistic ICA (Damoiseaux et al., 2006),
probabilistic ICA (PICA) (Luca et al., 2006), and self-organizing
group ICA (sogICA) (van de Ven et al., 2008). Earlier studies
relying on these methods have found varying numbers of inde-
pendent components based on automated dimension estimation,
ranging from 5 (Luca et al., 2006) to about 12 (Damoiseaux et al.,
2006; Robinson et al., 2009), while more recently, the use of a pre-
specified number of components has become more widespread,
using either a low model order with about 20 components (Smith
et al., 2009; Biswal et al., 2010) or a high model order with about
75 components (Allen et al., 2011), different choices of model
order of course leading to the identification of different networks
or subdivisions of networks.

The variability of results depending on model order has been
investigated by Abou-Elseoud et al. (2010), who found that low
model order ICA results had highest repeatability, while higher
model orders lead to the identification of finer subdivisions of the
networks, up to a model order of about 100—beyond that value,
repeatability only declined without any additional benefits. Model
order is not the only source of variability in the results of ICA
studies, though. A certain amount of inconsistency between stud-
ies is due to random variability between samples, which, due to
practical limitations, often comprise only 20–30 subjects. Finally,
some divergence between results can be attributed to method-
ological issues: for once, there is the inherent stochasticity of
the fastICA algorithm, the basis for most ICA implementations
currently employed (Himberg et al., 2004) and additional vari-
ability may be introduced by the heterogeneity of preprocessing
strategies (Weissenbacher et al., 2009).

Evaluation of between-subject variability of group compo-
nents can be undertaken from two directions. Back reconstruc-
tion algorithms (Biswal et al., 2010; Allen et al., 2011, 2012) start
with group components and evaluate how consistent the connec-
tivity of these group components is on the single-subject level.
In this study, we opted for the opposite direction—starting with
individual-subject components and evaluating the variability of
components between subjects—and chose fully exploratory net-
work ICA (FENICA), proposed by Schöpf et al. (2010), as a means
for combining single-subject results at group level. FENICA is a
group ICA method that, based on single-subject ICA, calculates
each group component as the mean of the most similar com-
ponents, one of each individual-subject ICA. This in turn allows
for the group components to be directly related to single-subject
ICA components and thus to gain a more immediate view on
the differences of ICA components across subjects. In addition,
the averaging of components from multiple ICA runs in FENICA
helps to increase stability of group results and limits the effects
of the stochasticity of fastICA (Himberg et al., 2004), though
some caution in this respect is still advisable when interpreting
individual single-subject components.

It must be noted, though, that the heterogeneity of pop-
ulations investigated by different studies leads to inter-study

variability near-impossible to overcome within the scope of a
single study. A comprehensive exploratory analysis should there-
fore neither take into account only a single population nor a
single setup of scanner hardware but rather combine a large num-
ber of different datasets from different studies. A meta-analytic
approach using individual-subject data therefore seems most
promising to summarize available evidence about resting-state
networks and to assess heterogeneity between datasets of differ-
ent origin (Huf et al., 2011). The 1000 Functional Connectomes
Project (Biswal et al., 2010), a collection of resting-state fMRI
datasets from over 30 international centers encompassing more
than 1000 different subjects, provided us with the opportunity
to perform precisely this kind of analysis on a suitably broad
basis for approaching the question of consistent networks on a
large scale.

METHODS
The entirety of the dataset of the 1000 Functional Connectomes
Project (Biswal et al., 2010) directly available at its webpage
was downloaded (see http://www.nitrc.org/projects/fcon_1000).
To avoid the most important sources of heterogeneity as well as
complications due to non-independence, subjects with more than
one run in the dataset were excluded from the analysis. The final
sample consisted of 1000 subjects (age 28 ± 13, 561 females; see
Table 1) randomly sampled from the remainder of the dataset
consisting of 33 independent samples originating from 26 centers
in North America (15), Europe (8), Asia (2), and Australia (1).
The original scans were performed using echo planar imaging
(EPI) during resting-state with variable scanning parameters and
brain coverage at 1.5 T, 3 T, and 4 T, with a duration between 216
and 590 s.

Due to the post-hoc nature of the 1000 Functional
Connectomes dataset’s formation by merging independent,
non-coordinated individual studies, between-study heterogeneity
is an important issue to clarify before analyzing this dataset. The
original analysis by Biswal et al. (2010) has, as one of its main
results, established the feasibility of using the dataset as a whole
with a reasonable expectation to obtain homogeneous results,
even for studies using scanners with different magnetic field
strength. Further attempts to include estimated study quality,
e.g., for weighting purposes, are discouraged in the meta-analytic
setting due to possible bias introduced by such procedures (Huf
et al., 2011), and are thus not part of our analysis.

Preprocessing of the resting-state fMRI data was performed
according to Weissenbacher et al. (2009) by first applying
motion correction and spatial smoothing using an 8 mm FWHM
Gaussian kernel followed by correction for mean cerebro-spinal
fluid (CSF), white matter (WM) and gray matter signals as well as
motion parameters. Subsequently, time series were filtered using
a bandpass of the interval 0.01–0.1 Hz, and ICA was calculated on
the resulting time series using FSL MELODIC (Smith et al., 2004)
with the dimension estimation criterion LAP, yielding a number
of components in the range of typical low model order stud-
ies. Automated model order estimation rather than fixed model
order was chosen to allow for a comparison of model order esti-
mates between subjects and between the datasets of the individual
studies, as well as for an estimation of the variability of these
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Table 1 | Demographic statistics of the sample analyzed.

Study N % Male Mean age SD age Voxel size TR Volumes Duration Components

1 AnnArbor_a 25 88.0 21.0 7.4 35.4 1.00 295 295.0 17

2 AnnArbor_b 36 47.2 NA NA 37.8 1.00 395 395.0 19

3 Atlanta 28 46.4 30.9 9.9 47.3 2.02 205 414.1 16

4 Baltimore 23 34.8 29.3 5.5 21.3 2.50 123 307.5 15

5 Bangor 20 100.0 23.4 5.3 27.0 2.00 265 530.0 20

6 Beijing 198 38.4 21.2 1.8 35.2 2.00 225 450.0 17

7 Berlin 26 50.0 29.8 5.2 36.0 2.30 195 448.5 19

8 Cambridge 198 37.9 21.0 2.3 27.0 3.00 119 357.0 17

9 Cleveland 31 35.5 43.5 11.1 16.0 2.80 127 355.6 17

10 Dallas 24 50.0 42.6 20.1 47.3 2.00 115 230.0 13

11 ICBM 86 47.7 44.2 17.9 27.0 2.00 192 384.0 12

12 Leiden_2180 12 100.0 23.0 2.5 40.7 2.18 215 468.7 19

13 Leiden_2200 19 57.9 21.7 2.6 40.7 2.20 215 473.0 19

14 Leipzig 37 43.2 26.2 5.0 36.0 2.30 195 448.5 20

15 Milwaukee_a 18 NA NA NA 84.4 2.00 175 350.0 22

16 Milwaukee_b 46 32.6 53.6 5.8 56.2 2.00 175 350.0 16

17 Munchen 16 62.5 68.4 4.0 43.0 3.00 72 216.0 11

18 Newark 19 47.4 24.1 3.9 59.1 2.00 135 270.0 14

19 NewHaven_a 19 52.6 31.0 10.3 70.9 1.00 249 249.0 13

20 NewHaven_b 16 50.0 26.9 6.3 65.0 1.50 181 271.5 18

21 NewYork_a 25 80.0 35.0 9.6 27.0 2.00 192 384.0 13

22 NewYork_a 84 51.2 24.4 10.1 27.0 2.00 192 384.0 13

23 NewYork_b 20 40.0 29.8 9.9 36.0 2.00 175 350.0 13

24 Ontario 9 NA NA NA 64.0 3.00 105 315.0 15

25 Orangeburg 20 75.0 40.6 11.0 61.2 2.00 165 330.0 12

26 Oulu 103 35.9 21.5 0.6 70.4 1.80 245 441.0 15

27 Oxford 22 54.5 29.0 3.8 31.5 2.00 175 350.0 17

28 PaloAlto 17 11.8 32.5 8.1 57.9 2.00 235 470.0 20

29 Pittsburgh 17 58.8 37.9 9.0 31.3 1.50 275 412.5 13

30 Queensland 19 57.9 25.9 3.9 46.5 2.10 190 399.0 17

31 SaintLouis 31 45.2 25.1 2.3 64.0 2.50 127 317.5 17

32 Taipei_a 13 NA NA NA 56.3 2.00 295 590.0 25

33 Taipei_b 8 NA NA NA 47.3 2.00 175 350.0 17

Mean and standard deviation of age are given in years, voxel size in mm3, TR in seconds; the column Volumes lists the number of volumes (or time points) scanned

for every subject in the study, the column Duration lists scan duration in seconds and the column Components contains the median number of ICA components

identified for the subjects of this study.

estimates. Finally, preprocessing was concluded by normalization
to MNI 152 standard space and re-sampling to 3 mm isotropic
voxels to enable group level analyses. All preprocessing steps
were computed using AFNI (Cox, 1996), second-level analyses
were performed in R 2.13.1 (R Development Core Team, 2012),
using specialized packages for fMRI analysis, parallelization, and
handling of large data (Tabelow et al., 2011; Boubela et al., 2012).

Following this preprocessing, individual-subject ICA results—
one z-map for each component—were combined using the
FENICA algorithm proposed by Schöpf et al. (2010). Briefly, the
algorithm aims at exploratorily finding components consistent
over a population of subjects and is composed of three stages: (1)
identification of pairs of matching maps, (2) building of candidate
average maps, and (3) selection of final average maps.

To allow for automated and thus reproducible exploratory
selection of parameters of the algorithm, two modifications to

the algorithm as originally described (Schöpf et al., 2010) have
been made to adapt it to the necessities of the large dataset while
minimizing the influence of observer bias (Boubela et al., 2012).
First, identification of eligible pairs was set to match the number
of original components. Second, the similarity threshold (Schöpf
et al., 2010) to discard average components similar to at least one
other component with a higher t-sum was chosen as the lowest
value that produced a number of final components corresponding
to the median number of components of the individual-subject
results. Related groups of final components were defined by
spatially clustering the components using hierarchical cluster-
ing with centroid distance between clusters (Mangiameli et al.,
1996) using Kolmogorov–Smirnov distance (Kolmogorov, 1933)
between z-values of components as the distance between maps.

Consistency across subjects was assessed for each resulting
component by calculating the correlation of the original pairwise
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average map that was used as the candidate for the generation of
the group map with each subject’s respective best matching com-
ponent. The distribution of these correlation coefficients was then
used to evaluate the consistency of each component.

An assessment of spectral characteristics of group networks
was performed by computing individual-subject power spectra
for each group network using a back reconstruction algorithm.
The individual-subject spectra were averaged to determine power
spectra at group level. From these, the dynamic range (i.e., the
difference between the power at the peak of the spectrum and
the minimum power of frequencies higher than this peak) and
the power ratio (i.e., the ratio between the integral of the power
of the frequencies below 0.1 Hz and the integral of the power of
the frequencies higher than 0.15 Hz) are computed for each of the
group components identified (Robinson et al., 2009).

In addition, the whole computation was performed separately
for the subset of subjects of each individual study to determine
consistency of components across studies. Group components
were considered to be present in an individual study sample
if and only if there was a component in the individual study
results that could be partner-matched (Wang and Peterson, 2008)
to that group component, i.e., if the group component had
highest spatial correlation among all group components to the
individual-study component in question and vice versa.

To assess the relationship between scan duration and number
of components found at individual-subject level, a least-squares
regression as well as a robust MM-estimator (Koller and Stahel,
2011) were fitted.

RESULTS
At single-subject level, the number of ICA components was sym-
metrically distributed with a mean and median number of com-
ponents both equal to 16 ± 3.5 (SD) (cf. the bar plot in Figure 1).
In total, there were 16,365 individual-subject components from
which the same number of candidate pairs of components were
selected for calculation of average maps.

At group level, 16 group components were identified for a
similarity threshold of 0.75, chosen to produce a number of
components corresponding to the median number of individual-
subject components as detailed above. Of these components,
13 can be described as gray matter networks (shown in Figure 2,
using an arbitrary thresholded at t999 = 18, p = 1.6 · 10−57 FWE
corrected for displaying purposes), and 3 show consistent activ-
ity mainly located in voxels outside the gray matter (components
C.05, C.15 and C.16, see Figure 3) and will therefore be referred
to as (consistent) artifact components from here on.

Gray matter networks, designated C.01 to C.16 in descend-
ing order of their voxelwise sum of t-values, can be described
as follows (for correspondence to known resting-state networks
cf. Discussion). Component C.01 corresponds mainly to the
occipital lobe. Component C.02 includes the posterior cingu-
late cortex and precuneus. Component C.03 shows activation in
ventral medial prefrontal, posterior cingulate, and lateral pari-
etal cortex as well as hippocampus and, to a lesser extent, the
inferior temporal lobe. Component C.06 is situated in ventral
and dorsal medial prefrontal cortex, posterior cingulate cortex
and, to a lesser extent, lateral parietal cortex. Thus, these two
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FIGURE 1 | Bar plot of the distribution of the number of components

in the individual-subject ICA results.

components correspond to regions commonly identified as part
of the default-mode network, with component C.03 more focused
in the posterior, and component C.06 in the anterior parts. C.04
is centered on the posterior cingulate cortex and precuneus, with
co-activations in the dorsolateral prefrontal cortex. Components
C.07 and C.09 are strongly lateralized, situated in the ventral and
dorsal lateral prefrontal cortex, lateral parietal cortex and supe-
rior temporal lobe—predominantly right for component C.07,
and left for component C.09—as well as the respective contralat-
eral part of the cerebellum. Component C.10 and C.12 encompass
dorsal parietal, precentral, as well as occipitotemporal (BA 37)
areas, with C.10 being more focused on the ventral parts and
C.12 more strongly involved in the dorsal parts of these areas, in
particular the precentral areas. Component C.08 covers the pre-
and postcentral gyri and can be described as a sensory-motor
network, C.11 is focused on the anterior cingulate cortex, with
co-activations in the dorsolateral prefrotal, orbitofrontal as well
as posterior cingulate cortex. Finally, components C.13 and C.14
are located on the temporal lobes.

Clustering results of the networks are presented as a den-
drogram in Figure 4, along with boxplots of the distribution of
the correlation coefficients between candidate pairwise average
maps and best matching components of each subject, showing
inter-subject consistency of the final component maps. It can
be noted that the gray matter components (shown in green),
whose correlation coefficients are mostly around 0.3–0.4, are
generally more consistent than the components identified as arti-
facts (shown in gray), with correlation coefficients of around 0.2.
Still, there is also a number of gray matter components (C.06,
C.12–C.14) which show lower consistency, comparable to that
of the artifact components. In addition, on the left side of the
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FIGURE 2 | Consistent gray-matter networks from 1000 resting-state

datasets. Results are presented as t-values, thresholded at t999 = 18
(p = 1.6 · 10−57, FWE-corrected), each row corresponding to one network
showing nine representative slices spaced 15 mm in z direction. Red color
represents highest t-values, images are shown in radiological convention
(the right side of the brain is displayed on the left). Color bar shown for
t-values between 18 and 36 (bottom).

dendrogram in Figure 4, one can find the least consistent com-
ponents (C.12–C.16) situated quite apart from the components
with higher consistency (including C.05, the most consistent of
the three artifact components).

The spectral characteristics of the networks indicate that the
artifact components have lower power ratio between high and low
frequencies as well as lower dynamic range (see Figure 5): both
values are lowest for components C.15 and C.16, while compo-
nent C.05 shows higher values than the two least consistent gray
matter components C.13 and C.14, but still lower than the other
components. Indeed, the difference in the spectra for the compo-
nents C.15 and C.16 is evident at the first glance (see Figure 6),
while the spectrum of C.05 seems more similar to the spectra of
the gray matter components. It is noteworthy here that the spec-
tral characteristics of this occipital component can be related to an

FIGURE 3 | Artifact components consistent in 1000 resting-state

datasets. Results are presented as t-values, thresholded at t999 = 18
(p = 1.6 · 10−57, FWE-corrected), each row corresponding to one
component showing nine representative slices spaced 15 mm in z
direction. Red color represents highest t-values, images are shown in
radiological convention (the right side of the brain is displayed on the left).
Color bar shown for t-values between 18 and 36 (bottom).

observation by Birn et al. (2008), where a medial occipital com-
ponent was found to at least partly reflect respiratory-induced
changes. One possible interpretation put forward by Birn et al.
was that the component might be a mixture of gray matter and
respiratory signal, which is consistent with our observation of the
spectrum being more similar to gray matter component spectra
than the other two artifact components.

At study level, Figure 7 shows comparisons between the com-
ponents in the individual FENICA component sets of all sites
analyzed separately with the group components from the analysis
of the whole sample presented in Figures 2 and 3. The most con-
sistent components (i.e., C.01, C.03, C.07–C.09) are characterized
by the existence of a successful match in almost all individ-
ual sites as well as high spatial correlation of the best matching
components with the group component.

Of note, it can be seen that while on the one hand there are
some components that can be found in almost all component
sets of single studies analyzed separately (C.01, C.03, C.07–C.09),
other components appear only in the single-study results of about
half of the studies included in the 1000 Functional Connectomes
dataset (C.02, C.12–C.16). Still, even the most consistent group
components do not exhibit uniformly high spatial correlation
with their matching components or fail to bidirectionally match
with a component from each set of single-study components.
Component C.08, for instance, has a partner-matched compo-
nent in every single study, yet spatial correlations with its matched
components are as low as 0.12 for the dataset Ann Arbor b, 0.39
for Milwaukee a and 0.46 for München. Conversely, there is a
generally low consistency of some studies with all group results
(the maximum correlations of a component of the three exam-
ple studies mentioned above with a group component are 0.65,
0.7, and 0.62, respectively). On the other extreme, there are some
group components which could not be unambiguously matched
to only one component in a given study despite there being a
component with high spatial correlation. This is an indication
that there might be a second equally well matching component
in this study’s dataset, probably due to a division of the network
into subcomponents.
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FIGURE 4 | Clustering and consistency of results. On top, a dendrogram
represents results of hierarchical clustering using complete linkage distance
between clusters. Below, boxplots of correlation coefficients illustrate the
consistency of components between subjects. Boxes for gray matter

components are drawn in green, artifacts are drawn in dark gray. It can be
seen that the clusters with lower consistency (i.e., C.12–C.16) are quite
distinct from a more homogeneous cluster of higher consistency
components.
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FIGURE 5 | Power ratio and dynamic range of the components

identified. Gray matter components are shown in green, artifact
components in red. Both power ratio and dynamic range are highest for
gray matter networks and lower for artifactual components, though with
some overlap since the most consistent of the artifact components, C.05,
has higher power ratio and dynamic range than the two least consistent
gray matter components, C.13 and C.14.

The components can thus be divided in three categories. First,
there are components with high consistency at both single-subject
and study level; these include C.01, C.03, C.04, and C.07–C.11.
The second group of components can be characterized as those
least consistent at both levels, notably C.12–C.16. As a third
group, some components show differences in these two metrics:
C.02 is about as consistent as other gray matter components at
single-subject level, but can be found in only half of the single-
study samples, C.05 and C.06 are among the less consistent com-
ponents at single-subject level, but show average consistency at
study-level. Figure 8 illustrates this relationship between subject
level and study level consistency.

Finally, single-subject results show systematic variation of the
number of components, identified by MELODIC using the LAP
criterion, depending on the study of origin of the individual-
subject dataset (see Figure 9). In particular, there is a significant
correlation between the median number of components found
in the subjects of a study with the duration of the scans of that
study, with longer scans being associated with larger number of
components. The robustness of this finding is corroborated by the
observation that the application of a robust methods of moments
regression leads to the same result.

DISCUSSION
In this study we analyzed a publicly available dataset of 1000 sub-
jects’ resting-state scans using the exploratory analysis method
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FIGURE 6 | Spectra of all components. All single-subject spectra were
drawn as black lines, and the mean spectrum of each component is displayed
as a red line. The artifact components C.15 and C.16 have markedly different

spectra than the other components, the third artifact C.05 is more similar to
the gray matter components in that it has higher power in lower frequency
bands, but its decline in power after the peak is less steep.

FENICA (Schöpf et al., 2010; Boubela et al., 2012). Our goal was
to examine the consistency of resting-state networks identified
in previous, smaller studies in a very large sample originating
from multiple, international centers, and to assess heterogeneity
of results between studies.

Altogether, we identified 16 consistent components. Among
them, 13 can be regarded as neuroscientifically meaningful gray
matter components, while the remaining three may be attributed
to consistent artifacts. The latter mostly correspond to ventric-
ular/CSF regions, the most consistent of the three components
being situated mainly in the occipital CSF. The consistency values
of these artifacts, in particular the inter-subject spatial correlation
coefficient of these component maps of around 0.2, can be seen

as a reference to which the consistency of gray matter components
can then be related.

Indeed, the consistency values of most gray matter networks
are markedly higher than those of all artifact components. Many
of the gray matter networks identified in this study correspond to
networks as previously published (Damoiseaux et al., 2006; Smith
et al., 2009; Biswal et al., 2010; Allen et al., 2011). The occipi-
tal visual network (C.01), the sensory-motor network (C.08) as
well as the dorsal parietal network (C.10) have been reported
in most fMRI studies on the resting brain. This study adds
a quantification of the consistency of these networks, showing
that the visual (C.01) and the sensory-motor networks (C.08)
can be found in almost all single-study samples (85% for C.01

Frontiers in Human Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 301 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kalcher et al. FENICA of the 1000 functional connectomes

Individual Study Components Matching to Group Components

Group Components

86
44
64
92
84
94
93
91
88
87
89
91
91
78
54
76
26
85
75
92
86
92
88
62
87
93
84
84
85
93
90
75
87
87
87
87

70
65
86
60
76
95
64
70
90
86
78
84
84
78
38
79
36
64
74
60
54
67
63
73
72
68
86
70
87
74
72
71
59
59
59
59

90
53
73
91
81
96
94
95
90
85
94
90
91
94
20
83
56
92
82
88
83
96
91
84
78
96
64
81
76
92
92
80
86
86
86
86

88
41
75
92
81
96
90
93
85
70
92
77
75
90
46
70
58
80
57
78
75
95
90
74
70
92
80
86
77
82
89
75
65
65
65
65

72
55
82
69
87
62
89
93
92
55
58
67
71
79
62
66
58
85
76
67
79
88
78
40
46
69
79
85
77
63
78
83
65
65
65
65

78
38
41
76
73
83
86
94
73
71
83
66
82
88
43
63
70
69
64
74
86
85
77
55
56
93
64
79
75
79
85
78
51
51
51
51

90
14
75
91
79
97
94
98
92
73
83
86
92
95
30
90
55
83
71
90
87
84
82
73
73
92
81
92
76
92
94
58
80
80
80
80

85
12
62
82
69
95
90
96
88
78
94
86
87
92
39
85
46
83
69
85
90
94
62
57
74
80
81
86
68
89
89
69
79
79
79
79

74
30
52
74
79
89
83
86
86
86
63
77
88
89
45
77
59
70
63
86
77
86
49
58
70
93
72
78
61
83
91
79
72
72
72
72

89
14
79
76
80
81
93
96
74
62
92
86
85
80
52
60
51
79
70
81
81
85
61
43
54
48
77
57
57
87
87
75
80
80
80
80

88
55
75
68
53
90
74
97
71
73
85
64
70
86
60
49
49
59
73
55
73
90
79
44
45
80
70
70
78
74
85
71
75
75
75
75

71
19
70
68
54
73
78
70
73
80
61
62
64
66
62
79
67
67
41
70
78
82
66
62
53
46
72
66
58
68
70
61
56
56
56
56

55
46
60
40
79
84
54
50
71
51
53
42
41
64
30
61
25
78
50
73
64
88
54
22
71
73
59
78
59
60
53
74
66
66
66
66

62
37
65
20
48
71
34
14
54
63
61
24
21
33
45
59
49
53
54
66
65
70
72
35
42
58
70
65
23
68
27
65
43
43
43
43

69
14
24
44
22
88
55
66
28
67
78
71
70
50
50
44
40
49
24
77
68
82
79
49
73
80
53
72
35
14
51
36
36
36
36
36

46
43
43
48
33
48
39
71
34
26
47
40
41
29
38
54
37
37
44
35
48
55
39
50
57
36
64
36
35
26
33
35
55
55
55
55

C
.0

1

C
.0

2

C
.0

3

C
.0

4

C
.0

5

C
.0

6

C
.0

7

C
.0

8

C
.0

9

C
.1

0

C
.1

1

C
.1

2

C
.1

3

C
.1

4

C
.1

5

C
.1

6

6
12
6
5
3
7
5
4
4
4
2
1
2
6
2
1
2
5

12
8
6
7
0
3
6
4
6
5
9
3
6
9
3

+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   
+   

Taipei_b
Taipei_a

SaintLouis
Queensland

Pittsburgh
PaloAlto

Oxford
Oulu

Orangeburg
Ontario

NewYork_b
NewYork_a
NewYork_a

NewHaven_b
NewHaven_a

Newark
Munchen

Milwaukee_b
Milwaukee_a

Leipzig
Leiden_2200
Leiden_2180

ICBM
Dallas

Cleveland
Cambridge

Berlin
Beijing
Bangor

Baltimore
Atlanta

AnnArbor_b
AnnArbor_a

FIGURE 7 | Matrix of bidirectional 1-to-1 matching of components in

individual-study analyses compared to group results from the whole

dataset comprising 1000 subjects. Each field contains the spatial
correlation coefficient (multiplied by 100 for readability) between the group
component and the best matching individual-study component. White fields
indicate a bidirectional match with a spatial correlation of at least 0.75, gray
fields indicate bidirectional matches with lower spatial correlation, and black

fields indicate the absence of a bidirectional match (note that the spatial
correlation to the best matching component can nonetheless be high in some
cases). To the right of each row, the number of other components found in
the individual-study analysis which do not bidirectionally match any of the
group components is listed. At the bottom of each column, a bar plot
indicates the study-level consistency of each component, counting the
number of studies in which a bidirectional match was found.

and 100% for C.08), and the dorsal parietal network (C.10)
appears in two-thirds of these samples. The components C.07 and
C.09, encompassing the regions associated with memory func-
tion in dorsolateral prefrontal and lateral parietal cortex, are both
also among the most consistent networks identified (94% and
97%, respectively), highlighting the lateralized subdivision of the
working memory network.

We found two networks associated with regions of the default-
mode network of the brain (C.03 and C.06), with the posterior of
the two (C.03) being one of the most consistent networks iden-
tified, appearing in 94% of single study results, and the anterior
(C.06) being found in 79% of the study samples. The anterior
default mode component, however, exhibits lower spatial corre-
lation both between the group component map and study-level
components as well as between the group component map and
single-subject component maps. This supports the hypothesis of
a functional segregation of the default-mode network (Kim and
Lee, 2011), with one part particularly involved in the prefrontal

regions, and the other part dominating in the posterior cingulate
cortex, the parietal cortex, and the hippocampus. This division
into anterior and posterior parts of the default-mode network,
although not a novel concept, is not yet fully embraced in the
literature (Buckner et al., 2008).

In contrast to the high consistency in the subdivision of the
working memory networks in a left and right part, there are subtle
differences in the results relating to the division of the default-
mode network between Biswal et al. (2010) and this paper: here,
the subcomponent focused on the medial prefrontal cortex (C.06)
shows less activation in the posterior cingulate and parietal parts
of the network than the corresponding component found by
Biswal et al., while the posterior component with the main activa-
tion in the posterior cingulate cortex shows a marked coactivation
in the medial prefrontal cortex, where the corresponding com-
ponent found by Biswal et al. has very little coactivation. This
variation in the spatial segregation of overlapping networks by
spatial ICA can be attributed to methodological differences, in

Frontiers in Human Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 301 | 8

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kalcher et al. FENICA of the 1000 functional connectomes

FIGURE 8 | Comparison of subject level consistency based on spatial

correlation of single subject component maps with study level

consistency based on identification of maps in individual-study

results. Ordinary least squares (OLS; p = 0.002) and robust MM-estimator
(p < 10−4) illustrate the relationship between the two measures. The
shaded area corresponds to a 95% confidence interval for the OLS
estimator.

particular due to the fact that spatial ICA intrinsically guarantees
spatial independence of components and thus enforces a more or
less arbitrary delineation of borders between possibly intermin-
gled networks. Temporal ICA might resolve this issue but, due to
its computational demands and the low number of time points in
most experiments, is not yet widely used in fMRI research. With
current multi-band acquisition protocols and their high temporal
resolution, resulting in more time points without increasing scan
duration, temporal ICA becomes an increasingly viable approach
(Smith et al., 2012).

Altogether, the networks identified in this study correspond
well to networks already found in the literature. For example,
in Damoiseaux et al. (2006), network A corresponds well to our
network C.01, B to C.03, C to C.09, D to C.07, H to C.10, I
to C.13, and K to C.06. Note in particular that, despite the low
model order of 10, Damoiseaux et al. found a segregation of both
the default-mode network and the auditory network into two
subcomponents, though their split of the auditory network was
different than the one identified in our study, highlighting the
apparent heterogeneity in this area. As another example, Smith
et al. (2009) also found components matching our components
rather closely: their component 120 corresponds to C.02, 220 to
C.01, 320 to C.10, 420 to C.03, 620 to C.08, 720 to C.13, 820 to C.11,
920 to C.07 and 1020 to C.09. Networks C.04 and C.12 have no
immediate counterparts in these two studies, though component
C.04 can at least to some extent be related to components in high
model order studies, e.g., to component 50 in Allen et al. (2011).

FIGURE 9 | Scatterplot showing a linear relationship between scan

duration in seconds and median number of components per subject

identified in each individual study using LAP criterion in FSL MELODIC.

Note that both ordinary least squares (OLS) and the robust MM-estimator
identify the same relationship, highlighting the robustness of this ratio
(p < 10−4 for both estimators). The shaded area corresponds to a 95%
confidence interval for the OLS estimator.

C.12, being among the less consistent components in our sample,
might be regarded as spurious unless it can be corroborated in
future studies.

On the other hand, our study did not find some components
otherwise typically found in resting-state ICA studies. First, we
found fewer artifactual components than most previous stud-
ies, with the lack of a WM component being the most obvious;
this might be due to different preprocessing strategies. Second,
we found no basal ganglia component, which has been found in
many (e.g., Robinson et al., 2009; Smith et al., 2009; Biswal et al.,
2010), but not all (e.g., Damoiseaux et al., 2006) resting state ICA
studies. Finally, our results did not include a separate cerebellar
component, and instead included some cerebellar activity into the
lateralized fronto-parietal components. One reason for this might
lie in the differences in field of view between studies, with differ-
ent coverage of the cerebellum, but other aspects of data quality
(scanner performance, noise, motion, physiological effects) also
introduce variability between the data of different studies.

This between-study variability leads to one of the main limi-
tations of the FENICA method. Since it implicitly assumes that
the group components appear in every subject (the assump-
tion lies in the fact that the best matching component of
every subject is averaged for the final group component maps),
the algorithm is less likely to detect components that are
not present in every subject, for example a cerebellar com-
ponent if the cerebellum is not wholly within the field of
view of all studies included in the analysis. This is corrobo-
rated by Biswal et al. (2010) who, using a different method
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for the group ICA, identified a cerebellar network on data from
the 1000 Functional Connectomes database. On a related note,
in the short duration of a typical fMRI resting-state scan, it is
possible that not all networks show a distinguishable activity pat-
tern in all subjects to be discerned by ICA methods, which might
also account for some between-subject variability in the networks
identified. This fact is also a useful reminder that there are limits
in the interpretability of individual ICA components (Moser and
Ranjeva, 2010).

Another confounding effect could be the influence of motion
on the component map estimation, as highlighted by Power et al.
(2012), which could also generate some between-subject and even
between-study heterogeneity if subjects of different studies dif-
fered in their head motion in the scanner. However, as Power
et al. (2012) also pointed out, the motion effects they described
are only of limited magnitude in adults, and a specific correction
for these effects seems only necessary in studies with children or
adolescents.

This work presents the largest exploratory fMRI study to date,
including 1000 single subjects simultaneously, made possible due
to new computational methods implemented in an R frame-
work (R Development Core Team, 2012; Boubela et al., 2012).
In Biswal et al. (2010), group ICA as the most complex of the
computational tasks involved was performed separately on mul-
tiple subsets of 306 subjects due to computational limitations
preventing simultaneous analysis of the whole sample. The exten-
sive work of the R community in the handling of large datasets
and parallel computing, including computation on graphics pro-
cessing units (GPUs), provides the tools for analyses previously
prohibitive from a computational point of view and accelerates

the emergence of data driven discovery science in the field of neu-
roimaging. For instance, the exploratory approach used in this
work allows for the unbiased drawing of an overall picture of
the substantial amount of data acquired in 33 studies performed
by 26 centers worldwide, while still keeping the total processing
time under a week. The most important addition to the cur-
rent knowledge made possible by the computational techniques
employed, however, is the assessment of heterogeneity of result-
ing components with respect to the entire sample, both at the
level of single subjects and of individual studies. As a result, an
overview on networks more commonly found in individual stud-
ies as well as an assessment of divergence between the sets of
networks intrinsically emerging from the data of different cen-
ters has been presented, possibly providing some guidance for
the interpretation of variability in resting-state networks obtained
in past and future studies. This paper shows the richness of evi-
dence present in the 1000 Functional Connectomes dataset, but
ultimately only scratches the surface of what can be examined
and opens a host of new questions to be answered in future
analyses.

ACKNOWLEDGMENTS
We want to thank all investigators contributing data to the 1000
Functional Connectomes project, without whom this analysis
could not have been performed. This study has been supported by
funds of the Oesterreichische Nationalbank (Anniversary Fund,
project numbers: 13890, 13903, and 12982), by the Austrian
Science Fund (FWF) as part of the Special Research Program
35 (SFB-35) and by the Institute for the Study of Affective
Neuroscience (ISAN).

REFERENCES
Abou-Elseoud, A., Starck, T., Remes,

J., Nikkinen, J., Tervonen, O., and
Kiviniemi, V. (2010). The effect
of model order selection in group
PICA. Hum. Brain Mapp. 31,
1207–1216.

Allen, E. A., Erhardt, E. B., Damaraju,
E., Gruner, W., Segall, J. M., Silva,
R. F., et al. (2011). A baseline
for the multivariate comparison of
resting-state networks. Front. Syst.
Neurosci. 5:2. doi: 10.3389/fnsys.
2011.00002

Allen, E. A., Erhardt, E. B., Wei, Y.,
Eichele, T., and Calhoun, V. D.
(2012). Capturing inter-subject
variability with group independent
component analysis of fMRI data:
a simulation study. Neuroimage 59,
4141–4159.

Birn, R. M., Murphy, K., and
Bandettini, P. A. (2008). The
effect of respiration variations on
independent component analysis
results of resting state functional
connectivity. Hum. Brain Mapp. 29,
740–750.

Biswal, B., Yetkin, F. Z., Haughton,
V. M., and Hyde, J. S. (1995).
Functional connectivity in the

motor cortex of resting human
brain using echo-planar MRI.
Magn. Reson. Med. 34, 537–541.

Biswal, B. B., Mennes, M., Zuo, X.-N.,
Gohel, S., Kelly, C., Smith, S. M.,
et al. (2010). Toward discovery
science of human brain function.
Proc. Natl. Acad. Sci. U.S.A. 107,
4734–4739.

Boubela, R. N., Huf, W., Kalcher, K.,
Sladky, R., Filzmoser, P., Pezawas,
L., et al. (2012). A highly par-
allelized framework for computa-
tionally intensive MR data analysis.
MAGMA 25, 313–320.

Brookes, M. J., Woolrich, M., Luckhoo,
H., Price, D., Hale, J. R., Stephenson,
M. C., et al. (2011). Investigating the
electrophysiological basis of resting
state networks using magnetoen-
cephalography. Proc. Natl. Acad. Sci.
U.S.A. 108, 16783–16788.

Buckner, R. L., Andrews-Hanna, J. R.,
and Schacter, D. L. (2008). The
brain’s default network: anatomy,
function, and relevance to disease.
Ann. N.Y. Acad. Sci. 1124, 1–38.

Calhoun, V. D., Adali, T., Pearlson,
G. D., and Pekar, J. J. (2001). A
method for making group infer-
ences from functional MRI data

using independent component
analysis. Hum. Brain Mapp. 14,
140–151.

Corbetta, M., and Shulman, G. L.
(2002). Control of goal-directed
and stimulus-driven attention in
the brain. Nat. Rev. Neurosci. 3,
201–215.

Cox, R. W. (1996). AFNI: software
for analysis and visualization of
functional magnetic resonance neu-
roimages. Comput. Biomed. Res. 29,
162–173.

Damoiseaux, J. S., Rombouts, S. A.
R. B., Barkhof, F., Scheltens, P.,
Stam, C. J., Smith, S. M., et al.
(2006). Consistent resting-state
networks across healthy subjects.
Proc. Natl. Acad. Sci. U.S.A. 103,
13848–13853.

Fox, M. D., and Raichle, M. E. (2007).
Spontaneous fluctuations in brain
activity observed with functional
magnetic resonance imaging. Nat.
Rev. Neurosci. 8, 700–711.

Himberg, J., Hyvärinen, A., and
Esposito, F. (2004). Validating the
independent components of neu-
roimaging time series via clustering
and visualization. Neuroimage 22,
1214–1222.

Huf, W., Kalcher, K., Pail, G., Friedrich,
M.-E., Filzmoser, P., and Kasper,
S. (2011). Meta-analysis: fact or
fiction? How to interpret meta-
analyses. World J. Biol. Psychiatry 12,
188–200.

Joel, S. E., Caffo, B. S., van Zijl, P. C. M.,
and Pekar, J. J. (2011). On the rela-
tionship between seed-based and
ICA-based measures of functional
connectivity. Magn. Reson. Med. 66,
644–657.

Kim, D.-Y., and Lee, J.-H. (2011).
Are posterior default-mode net-
works more robust than anterior
default-mode networks? Evidence
from resting-state fMRI data
analysis. Neurosci. Lett. 498,
57–62.

Koller, M., and Stahel, W. (2011).
Sharpening wald-type inference in
robust regression for small sam-
ples. Comput. Stat. Data Anal. 55,
2504–2515.

Kolmogorov, A. N. (1933). Sulla deter-
minazione empirica di una legge di
distribuzione. Giorn. Ist. Ital. Attuar.
4, 83–91.

Leech, R., Kamourieh, S., Beckmann,
C. F., and Sharp, D. J. (2011).
Fractionating the default mode

Frontiers in Human Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 301 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kalcher et al. FENICA of the 1000 functional connectomes

network: distinct contributions of
the ventral and dorsal posterior cin-
gulate cortex to cognitive control.
J. Neurosci. 31, 3217–3224.

Luca, M. D., Beckmann, C. F., Stefano,
N. D., Matthews, P. M., and Smith,
S. M. (2006). fMRI resting state
networks define distinct modes
of long-distance interactions in
the human brain. Neuroimage 29,
1359–1367.

Mangiameli, P., Chen, S. K., and West,
D. (1996). A comparison of SOM
neural network and hierarchical
clustering networks. Eur. J. Oper.
Res. 93, 402–417.

Margulies, D. S., Böttger, J., Long, X.,
Lv, Y., Kelly, C., Schäfer, A., et al.
(2010). Resting developments: a
review of fMRI post-processing
methodologies for spontaneous
brain activity. MAGMA 23,
289–307.

Moser, E., and Ranjeva, J.-P. (2010).
In vivo MR imaging of brain
networks: illusion or revolution?
MAGMA 23, 275–277.

Power, J. D., Barnes, K. A., Snyder,
A. Z., Schlaggar, B. L., and Petersen,
S. E. (2012). Spurious but system-
atic correlations in functional con-
nectivity MRI networks arise from
subject motion. Neuroimage 59,
2142–2154.

R Development Core Team. (2012).
R: A Language and Environment
for Statistical Computing. Vienna,
Austria: R Foundation for Statistical
Computing. ISBN: 3-900051-07-0.

Raichle, M. E., and Snyder, A. Z. (2007).
A default mode of brain function:
a brief history of an evolving idea.
Neuroimage 37, 1083–1090. discus-
sion: 1097–1099.

Richiardi, J., Eryilmaz, H., Schwartz, S.,
Vuilleumier, P., and Van De Ville,
D. (2011). Decoding brain states
from fMRI connectivity graphs.
Neuroimage 56, 616–626.

Robinson, S., Basso, G., Soldati, N.,
Sailer, U., Jovicich, J., Bruzzone, L.,
et al. (2009). A resting state net-
work in the motor control circuit
of the basal ganglia. BMC Neurosci.
10:137. doi: 10.1186/1471-2202-10-
137

Schöpf, V., Kasess, C. H., Lanzenberger,
R., Fischmeister, F., Windischberger,
C., and Moser, E. (2010). Fully
exploratory network ICA (FENICA)
on resting-state fMRI data.
J. Neurosci. Methods 192, 207–213.

Smith, S. M., Fox, P. T., Miller, K. L.,
Glahn, D. C., Fox, P. M., Mackay,
C. E., et al. (2009). Correspondence
of the brain’s functional architec-
ture during activation and rest.
Proc. Natl. Acad. Sci. U.S.A. 106,
13040–13045.

Smith, S. M., Jenkinson, M., Woolrich,
M. W., Beckmann, C. F., Behrens,
T. E. J., Johansen-Berg, H., et al.
(2004). Advances in functional and
structural MR image analysis and
implementation as FSL. Neuroimage
23(Suppl. 1), S208–S219.

Smith, S. M., Miller, K. L., Moeller,
S., Xu, J., Auerbach, E. J.,

Woolrich, M. W., et al. (2012).
Temporally-independent functional
modes of spontaneous brain activ-
ity. Proc. Natl. Acad. Sci. U.S.A. 109,
3131–3136.

Tabelow, K., Clayden, J. D.,
de Micheaux, P. L., Polzehl, J.,
Schmid, V. J., and Whitcher, B.
(2011). Image analysis and statisti-
cal inference in neuroimaging with
R. Neuroimage 55, 1686–1693.

van de Ven, V., Bledowski, C.,
Prvulovic, D., Goebel, R.,
Formisano, E., Salle, F. D., et al.
(2008). Visual target modulation
of functional connectivity net-
works revealed by self-organizing
group ica. Hum. Brain Mapp. 29,
1450–1461.

Wang, Z., and Peterson, B. S. (2008).
Partner-matching for the automated
identification of reproducible ICA
components from fMRI datasets:
algorithm and validation. Hum.
Brain Mapp. 29, 875–893.

Weissenbacher, A., Kasess, C., Gerstl,
F., Lanzenberger, R., Moser, E.,
and Windischberger, C. (2009).
Correlations and anticorrela-
tions in resting-state functional
connectivity MRI: a quantitative
comparison of preprocess-
ing strategies. Neuroimage 47,
1408–1416.

Conflict of Interest Statement:
Siegfried Kasper has received
grant/research support from Eli
Lilly, Lundbeck, Bristol-Myers Squibb,

GlaxoSmithKline, Organon, Sepracor,
and Servier; has served as a con-
sultant or on advisory boards for
AstraZeneca, Bristol-Myers Squibb,
GlaxoSmithKline, Eli Lilly, Lundbeck,
MSD, Pfizer, Organon, Schwabe,
Sepracor, Servier, Janssen, and
Novartis; and has served on speak-
ers’ bureaus for AstraZeneca, BMS,
Angelini, Eli Lily, Lundbeck, Schwabe,
Sepracor, Servier, Pfizer, Pierre Fabre,
and Janssen. All other authors declare
that their research was conducted in the
absence of any commercial or financial
relationships that could be construed
as a potential conflict of interest.

Received: 20 July 2012; accepted: 19
October 2012; published online: 06
November 2012.
Citation: Kalcher K, Huf W, Boubela
RN, Filzmoser P, Pezawas L, Biswal B,
Kasper S, Moser E and Windischberger C
(2012) Fully exploratory network inde-
pendent component analysis of the 1000
functional connectomes database. Front.
Hum. Neurosci. 6:301. doi: 10.3389/
fnhum.2012.00301
Copyright © 2012 Kalcher, Huf,
Boubela, Filzmoser, Pezawas, Biswal,
Kasper, Moser and Windischberger.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and repro-
duction in other forums, provided the
original authors and source are credited
and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Human Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 301 | 11

http://dx.doi.org/10.3389/fnhum.2012.00301
http://dx.doi.org/10.3389/fnhum.2012.00301
http://dx.doi.org/10.3389/fnhum.2012.00301
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Fully exploratory network independent component analysis of the 1000 functional connectomes database
	Introduction
	Methods
	Results
	Discussion
	Acknowledgments
	References


