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A recurring question in neuroimaging
studies of spoken language is whether
speech is processed largely bilaterally, or
whether the left hemisphere plays a more
dominant role (cf., Hickok and Poeppel,
2007; Rauschecker and Scott, 2009).
Although questions regarding underly-
ing mechanisms are certainly of interest,
the discussion unfortunately gets side-
tracked due to the imprecise use of the
word “speech” by being more explicit
about the type of cognitive and linguis-
tic processing to which we are referring it
may be possible to reconcile many of the
disagreements present in the literature.

LEVELS OF PROCESSING DURING
CONNECTED SPEECH COMPREHENSION
A relatively uncontroversial starting point
is to acknowledge that understanding a
spoken sentence requires a listener to
analyze a complex acoustic signal along
a number of levels, listed schematically
in Figurel. Phonemes must be distin-
guished, words identified, and grammat-
ical structure taken into account so that
meaning can be extracted. These processes
operate in an interactive parallel fashion,
and as such are difficult to fully disentan-
gle. Such interdependence also means that
as researchers we often use “speech” as a
term of convenience to mean:

1. Amplitude-modulated noise or spec-
tral transitions, as might be similar to
aspects of spoken language;

2. Phonemes (“b”), syllables (“ba”), or
pseudowords (“bab”);

3. Words (“bag”);

Phrases (“the bag”);

5. Sentences (“The bag of carrots fell to
the floor”) or narratives.

~

Uncluding me.

Naturally, because different types of
spoken language require different cog-
nitive mechanisms—spanning sublexical,
lexical, and supralexical units—using an
unqualified term such as “speech” can lead
to confusion about the processes being dis-
cussed. Although this point might seem
obvious, a quick review of the speech lit-
erature demonstrates that many authors
have at one time or another assumed their
definition of “speech” was obvious enough
that they need not give it, leaving readers
to form their own opinions.

Below I will briefly review literature in
relation to the neural bases for two types of
spoken language processing: unconnected
speech (isolated phonemes and single
words) and connected speech (sentences
or narratives). The goal is to illustrate that,
within the context of a hierarchical neu-
roanatomical framework, there are aspects
of “speech” processing that are both bilat-
eral and lateralized.

UNCONNECTED SPEECH IS
PROCESSED LARGELY BILATERALLY

IN TEMPORAL CORTEX

The first cortical way station for acous-
tic input to the brain is primary auditory
cortex: not surprisingly, acoustic stimuli
activate this region robustly in both hemi-
spheres, whether they consist of pure tones
(Belin et al., 1999; Binder et al., 2000)
or amplitude-modulated noise (Giraud
et al.,, 2000; Hart et al., 2003; Overath
et al, 2012). Although there is specu-
lation regarding hemispheric differences
in specialization for these low level sig-
nals (Poeppel, 2003; Giraud et al., 2007;
Obleser et al., 2008; McGettigan and Scott,
2012), for the current discussion, it is

sufficient to note that both left and right
auditory cortices respond robustly to most
auditory stimuli, and that proposed differ-
ences in hemispheric preference relate to a
modulation of this overall effect?.

Beyond low-level acoustic stimulation,
phonemic processing requires both an
appropriate amount of spectral detail and
the relationship to a pre-existing acoustic
category (i.e., the phoneme). The process-
ing of isolated syllables results in activity
along the superior temporal sulcus and
middle temporal gyrus, typically on the
left but not the right (Liebenthal et al.,
2005; Heinrich et al., 2008; Agnew et al.,
2011; DeWitt and Rauschecker, 2012).
Although this may suggest a left hemi-
sphere specialization for phonemes, listen-
ing to words (which, of course, include
phonemes) reliably shows strong activ-
ity in bilateral middle and superior tem-
poral gyrus (Price et al., 1992; Binder
et al., 2000, 2008). In addition, stroke
patients with damage to left temporal cor-
tex are generally able to perform rea-
sonably well on word-to-picture match-
ing tasks (Gainotti et al., 1982); the same
is true of healthy controls undergoing a
Wada procedure (Hickok et al., 2008).
Together these findings suggest that the
right hemisphere is able to support at
least some degree of phonemic and lexical
processing.

That being said, there are also regions
that show increased activity for words
in the left hemisphere but not the right,
particularly when pseudowords are used
as a baseline (Davis and Gaskell, 2009).
Both pseudowords and real words rely on
stored representations of speech sounds
(they share phonemes), but real words

2In fact, the term “lateralization” is also used to variously mean (a) one hemisphere performing a task and the other not being involved, or (b) both hemispheres
being engaged in a task, but one hemisphere is doing more of the work or being slightly more efficient, potentially compounding the confusion.
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FIGURE 1 | The cortical regions involved in processing spoken language
depend in a graded fashion on the level of acoustic and linguistic
processing required. Processing related to amplitude modulated noise is
bilateral (e.g., Giraud et al., 2000), shown at top. However, as the
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requirements for linguistic analysis and integration increase, neural
processing shows a concomitant increase in its reliance on left hemisphere
regions for words [see meta-analysis in Davis and Gaskell (2009)] and
sentences [see meta-analysis in Adank (2012)].

also involve consolidated lexical and/or
conceptual information (Gagnepain et al.,
2012). Left-hemisphere activations likely
reflect the contribution of lexical and
semantic memory processes that are
accessed in an obligatory manner dur-
ing spoken word recognition. Within the
framework outlined in Figure1l, spoken
words thus lie between very low level
auditory processing (which is essen-
tially bilateral) and the processing of
sentences and narratives (which, as I
will discuss below, is more strongly left
lateralized).

Processing of phonemes and single
words therefore appears to be mediated in
large part by both left and right tempo-
ral cortex, although some indications of
lateralization may be apparent.

CONNECTED SPEECH RELIES ON A
LEFT-LATERALIZED FRONTOTEMPORAL
NETWORK

In addition to recognizing single words,
comprehending connected speech—such
as meaningful sentences—depends on

integrative processes that help determine
the syntactic and semantic relationship
between words. These processes rely not
only on phonemic and lexical informa-
tion, but also on prosodic and rhythmic
cues conveyed over the course of several
seconds. In other words, a sentence is not
simply a string of phoneme-containing
items, but conveys a larger meaning
through its organization (Vandenberghe
et al., 2002; Humphries et al, 2006;
Lerner et al., 2011; Peelle and Davis,
2012). In addition to providing content
in and of itself, the syntactic, seman-
tic, and rhythmic structure present in
connected speech also supports listen-
ers’ predictions of upcoming acoustic
information.

An early and influential PET study of
connected speech by Scott et al. showed
increased activity in the lateral aspect
of left anterior temporal cortex for spo-
ken sentences relative to unintelligible
spectrally-rotated versions of these sen-
tences (Scott et al., 2000). Subsequent
studies, due in part to the use of

a greater number of participants, have
typically found intelligibility effects bilat-
erally, often along much of the length of
superior temporal cortex (Crinion et al.,
2003; Friederici et al., 2010; Wild et al,,
2012a). In addition, a large and grow-
ing number of neuroimaging experiments
show left inferior frontal involvement for
intelligible sentences, either compared to
an unintelligible control condition (Rodd
et al.,, 2005, 2010; Awad et al., 2007;
Obleser et al., 2007; Okada et al., 2010;
Peelle et al, 2010a; McGettigan et al.,
2012; Wild et al., 2012b) or parametri-
cally correlating with intelligibility level
(Davis and Johnsrude, 2003; Obleser and
Kotz, 2010; Davis et al., 2011). Regions
of left inferior frontal cortex are also
involved in processing syntactically com-
plex speech (Peelle et al., 2010b; Tyler
et al., 2010; Obleser et al., 2011) and in
resolving semantic ambiguity (Rodd et al.,
2005, 2010, 2012; Snijders et al., 2010).
In most of these studies activity in right
inferior frontal cortex is not significant,
or is noticeably smaller in extent than
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activity in the left hemisphere. These func-
tional imaging studies are consistent with
patient work demonstrating that partici-
pants with damage to left inferior frontal
cortex have difficulty with sentence pro-
cessing (e.g., Grossman et al., 2005; Peelle
et al.,, 2007; Papoutsi et al., 2011; Tyler
etal., 2011).

Processing connected speech thus relies
more heavily on left hemisphere language
regions, most obviously in inferior frontal
cortex. The evidence outlined above sug-
gests this is largely due to the increased lin-
guistic demands associated with sentence
processing compared to single words.

THE IMPORTANCE OF STATISTICAL
COMPARISONS FOR INFERENCES
REGARDING LATERALITY

In many of the above papers (and in my
interpretation of them) laterality was not
statistically assessed, but inferred based on
the presence or absence of an activation
cluster in a particular brain region. That
is, seeing a cluster of activation in left infe-
rior frontal gyrus but not the right, and
concluding that this particular task has a
“left lateralized” pattern of neural activ-
ity. However, simply observing a response
in one region, but not another, does not
mean that these regions significantly dif-
fer in their activity (the “imager’s fallacy”;
Henson, 2005). This is a well-known sta-
tistical principle, but one that can remain
difficult to follow in the face of compelling
graphical depictions of data (Nieuwenhuis
etal., 2011).

Nevertheless, for true claims of dif-
ferential hemispheric contributions to
speech processing, the left and right hemi-
sphere responses need to be directly com-
pared. Unfortunately, for functional imag-
ing studies hemispheric comparisons are
not as straightforward as they seem, in part
because our left and right hemispheres are
not mirror images of each other. There are,
however, a number of reasonable ways to
approach this challenge, including:

1. Extracting data from regions of
interest (ROIs), including indepen-
dently defined functional regions
(Kriegeskorte et al., 2009) or proba-
bilistic cytoarchitecture (Eickhoff et al.,
2005), and averaging over voxels to
compare left and right hemisphere
responses. Sometimes these ROIs end

up being large, which does not always
support the specific hypotheses being
tested, and not all regions may be
available. However, this approach is
relatively straightforward to implement
and interpret.

2. Using a custom symmetric brain tem-
plate for spatial normalization (Bozic
et al, 2010). This may result in
less veridical spatial registration, but
enables voxel-by-voxel statistical tests
of laterality by flipping images around
the Y axis, avoiding the problem of ROI
selection (and averaging).

3. Comparing left vs. right hemisphere
responses using a multivariate classi-
fication approach (McGettigan et al.,
2012). Multivariate approaches are
robust to large ROIs, as their perfor-
mance is typically driven by a smaller
(more informative) subset of all vox-
els studied. Multivariate approaches
may be somewhat more challenging to
implement, however, and (depending
on the size of the ROI used) may limit
spatial specificity.

In the absence of these or similar sta-
tistical comparisons, any statements about
lateralization of processing need to be
made (and taken) lightly.

CONCLUSIONS

I have not intended to make any novel
claims about the neural organization
of speech processing, merely to clarify
what has already been shown: phonolog-
ical and lexical information is processed
largely bilaterally in temporal cortex,
whereas connected speech relies on a left-
hemisphere pathway that includes left infe-
rior frontal gyrus. Importantly, the dis-
tinction between unconnected and con-
nected speech is not dichotomous, but fol-
lows a gradient of laterality depending on
the cognitive processes required: lateraliza-
tion emerges largely as a result of increased
linguistic processing.

So, is speech processed primarily bilat-
erally, or along a left-dominant pathway?
It depends on what sort of “speech” we
are talking about, and being more spe-
cific in our characterizations will do much
to advance the discussion. Of more inter-
est will be future studies that continue to
identify the constellation of cognitive pro-
cesses supported by these neuroanatomical
networks.
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