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A multivariate autoregressive (MVAR) model with exogenous inputs (MVARX) is developed
for describing the cortical interactions excited by direct electrical current stimulation of
the cortex. Current stimulation is challenging to model because it excites neurons in
multiple locations both near and distant to the stimulation site. The approach presented
here models these effects using an exogenous input that is passed through a bank
of filters, one for each channel. The filtered input and a random input excite a MVAR
system describing the interactions between cortical activity at the recording sites. The
exogenous input filter coefficients, the autoregressive coefficients, and random input
characteristics are estimated from the measured activity due to current stimulation. The
effectiveness of the approach is demonstrated using intracranial recordings from three
surgical epilepsy patients. We evaluate models for wakefulness and NREM sleep in
these patients with two stimulation levels in one patient and two stimulation sites in
another resulting in a total of 10 datasets. Excellent agreement between measured and
model-predicted evoked responses is obtained across all datasets. Furthermore, one-step
prediction is used to show that the model also describes dynamics in pre-stimulus and
evoked recordings. We also compare integrated information—a measure of intracortical
communication thought to reflect the capacity for consciousness—associated with the
network model in wakefulness and sleep. As predicted, higher information integration is
found in wakefulness than in sleep for all five cases.
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1. INTRODUCTION
The remarkable cognitive abilities of the healthy human brain
depend on an exquisite balance between functional specialization
of local cortical circuits and their functional integration through
long-range connections. Hence, there is considerable interest in
characterizing long-range cause and effect or directional interac-
tions in the human brain. Multivariate autoregressive (MVAR)
models, sometimes referred to as vector autoregressive (VAR)
models, have been widely applied to study directional cortical
network properties from both intracranial data (e.g., Bernasconi
and König, 1999; Brovelli et al., 2004; Winterhalder et al., 2005;
Ding et al., 2006; Korzeniewska et al., 2008) and scalp EEG or
MEG (e.g., Babiloni et al., 2005; Malekpour et al., 2012). An
MVAR model describes each signal as a weighted combination
of its own past values and the past values of other signals in
the model—an autoregression—plus an error term. The weights
relating the present of one signal to the past of another cap-
ture the causal or directed influence between signals. A variety
of different metrics for summarizing the directed interactions in
MVAR models have been proposed, including directed transfer
functions (Kamiński and Blinowska, 1991), directed coherence

(Baccalá and Sameshima, 2001), conditional Granger causality
(Geweke, 1984), and integrated information (Barrett and Seth,
2011).

MVAR models assume the data is stationary and of constant
mean. While stationarity and constant mean may be reasonable
assumptions for a relatively short duration of spontaneous data,
evoked or event-related data appear to violate these assumptions.
For example, the mean or average response to a stimulus varies
with time. An MVAR model fit to data with a time-varying mean
results in spurious interactions because the assumption of sta-
tionarity is violated. Adaptive or time-varying methods have been
developed to relax stationarity assumptions (Ding et al., 2000;
Möller et al., 2001; Astolfi et al., 2008). For example, a time-
varying mean response is removed by subtracting the ensemble
average (Ding et al., 2000) and the MVAR model parameters are
allowed to vary with time. Adaptive models require specifica-
tion of an adaptation rate parameter that effectively determines
how much of the past data is used to estimate the present model
parameters, or equivalently, how fast the model is changing.
Models that use fast adaptation are able to track faster changes
in the underlying data, but employ less data to estimate model
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parameters and consequently possess more variability in the esti-
mated model parameters (see Astolfi et al., 2008, for assessment
of these issues).

During the pre-surgical evaluation of drug-resistant epileptic
patients, direct electrical stimulation of the brain is systematically
performed for diagnostic purposes to identify the epileptogenic
zone (Munari et al., 1994). Electrical stimulation generates a
time-varying response at the recording sites. In this paper we
propose describing the response of the brain using stationary
MVAR models with an exogenous input (MVARX) derived from
the stimulus characteristics. MVARX models are commonly used
in econometric time series analysis (Lütkepohl, 2006). The advan-
tage of the MVARX model is that it does not require subtraction
of the mean and consequent reduction in signal-to-noise ratio
(SNR) or the complication of time-varying models to capture
the response evoked by direct electrical stimulation. The model
captures both the mean evoked response and the background
activity present during the recordings. We demonstrate the effec-
tiveness of the MVARX model using intracerebral recordings from
epilepsy patients.

Direct electrical stimulation of the brain presents several mod-
eling challenges. Although the timing and location of the stimulus
is known precisely, the response of the brain in the near vicin-
ity of the stimulus cannot be measured due to electrical artifacts
and the propagation of the stimulus to more distant sites depends
on the topology of axons in the vicinity of the stimulation site
(Ranck, 1975). Electrical stimulation creates action potentials in
neurons whose axons pass near the stimulus site. These neu-
rons synapse both near and distant to the stimulation site, so the
stimulus actually activates multiple, a priori unknown areas. The
MVARX model explicitly accounts for this effect with a bank of
finite impulse response (FIR) filters that capture the impact of the
exogenous input, i.e., stimulus, on all recording sites. The exoge-
nous input filter coefficients and the MVAR model parameters
are simultaneously estimated from the recordings and knowl-
edge of the stimulation times using a least squares procedure.
The exogenous input filter coefficients describe the conduction
paths from the stimulus site to each recording site, while the
MVAR model parameters capture the causal interactions between
recording sites.

The MVARX model is applied to 10 datasets collected from
three subjects in wakefulness and NREM sleep. Two stimulation
levels are studied in one subject, and two stimulation sites in
another. The data consists of the intracranial response to 30 cur-
rent impulses separated by 1 s. A cross-validation (CV) procedure
is introduced for choosing the memory in the MVARX model. We
demonstrate that a stationary MVARX model accurately describes
the activity evoked by direct electrical stimulation. Comparison
to a series of univariate autoregressive models with exogenous
inputs (ARX) reveals that causal interactions must be modeled
to accurately describe the measured activity. The series of ARX
models result in much larger modeling error than the MVARX
model. One-step prediction performance is used to demonstrate
that the MVARX model also captures spontaneous fluctuations in
the recorded data. The MVARX model errors pass a whiteness test
while the univariate ARX models do not, further supporting the
applicability of the MVARX model.

The MVARX models are employed to contrast integrated
information in wakefulness and sleep. Integrated information is
a measure of the extent to which the information generated by
the causal interactions in the model cannot be partitioned into
independent subparts of the system. Hence, integrated informa-
tion measures the balance between functional specialization and
integration represented by the model. Theoretical considerations
(Tononi, 2004; Laureys, 2005; Dehaene et al., 2006; Seth et al.,
2008) indicate that integrated information should be less in sleep
than in wakefulness. This prediction is confirmed in all 10 datasets
using our MVARX model.

This paper is organized as follows. Section 2 describes the
data and preprocessing procedures. Section 3 defines the MVARX
model, introduces the method for estimating the model param-
eters, including our CV approach for selecting model memory,
and presents the residual whiteness test. Section 4 demonstrates
the effectiveness of the proposed model using the 10 datasets
described above and section 5 applies the MVARX models to con-
trast integrated information in wakefulness and sleep. This paper
concludes with a discussion in section 6. For notation, boldface
lower and upper case symbols represent vectors and matrices,
respectively, while superscript T denotes matrix transpose and
superscript −1 denotes matrix inverse. The trace of a matrix A
is tr[A] and the determinant is det(A). E{a} denotes the expec-
tation of a random variable a. The Euclidean norm of a vector
x is ||x||2 = √

xTx. The number of elements in a set S is |S|.
x ∼ N (μ,�) means that the vector x is normally distributed
with mean μ and covariance matrix �.

2. DATA
2.1. SUBJECTS AND EXPERIMENTAL PROTOCOL
Three subjects with long-standing drug-resistant focal epilepsy
participated in this study. All patients were candidates for surgi-
cal removal of the epileptic focus. During pre-surgical evaluation
the patients underwent individual investigation with stereotac-
tically implanted intracerebral multilead electrodes for precise
localization of the epileptogenic areas (Cossu et al., 2005). All
patients gave written informed consent before intracerebral elec-
trode implantation as approved by the local Ethical Committee.
Confirmation of the hypothesized seizure focus and localization
of epileptogenic tissue in relation to essential cortex was achieved
by simultaneous scalp and intracerebral electrode recording, as
well as intracerebral stimulation during wakefulness and sleep to
further investigate connectivity of epileptogenic and healthy tis-
sue (Valentín et al., 2002, 2005). The decision on implantation
site, duration of implantation and stimulation site(s) was made
entirely on clinical needs. Stereoelectroencephalography (SEEG)
activity was recorded from platinumiridium semiflexible multi-
lead intracerebral electrodes, with a diameter of 0.8 mm, a contact
length of 2 mm, an intercontact distance of 1.5 mm and a maximal
contact number of 18 (Dixi Medical, Besançon, France) (Cossu
et al., 2005). The individual placement of electrodes was ascer-
tained by post-implantation tomographic imaging (CT) scans.
Scalp EEG activity was recorded from two platinum needle elec-
trodes placed during surgery at “10–20” positions Fz and Cz
on the scalp. Electroocular activity was registered at the outer
canthi of both eyes, and submental electromyographic activity
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was acquired with electrodes attached to the chin. EEG and
SEEG signals were recorded using a 192-channel recording system
(Nihon-Kohden Neurofax-110) with a sampling rate of 1000 Hz.
Data was recorded and exported in EEG Nihon-Kohden format
(Nobili et al., 2011, 2012). The data for each channel is obtained
using bipolar referencing to a neighboring contact located entirely
in the white matter. Intracerebral stimulations were started on the
third day after electrode implantation. In eight out of ten cases
we discuss, stimulation of strength 5 mA were performed, while
for the other two cases stimulation of 1 mA were applied. At each
stimulation session, the stimulation is applied at a single chan-
nel and SEEG recordings were obtained from all other channels.
A single stimulation session consisted of a 30 impulse stimula-
tion train at intervals of 1 s. Each impulse is of 0.2-ms duration.
The channels that were stimulated were chosen based on clinical
requirements. All patients included in this study were stimulated
during wakefulness and stage 4 of NREM sleep. Sleep staging
was performed using standard criteria (Rechtschaffen and Kales,
1968). Stimulations which elicited muscle twitches, sensations or
cognitive symptoms, were excluded from this study, in order to
prevent possible awareness of stimulation or alteration of sleep
depth.

In our analysis, we consider a subset of 8–12 recording chan-
nels of all channels for each subject, as illustrated in Figure 1. The
8–12 channels were selected based on approximately maximizing
the distance between the subset of channels that are both artifact
free and near the surface of the cortex.

2.2. PREPROCESSING
During each stimulation session, a raw trigger signal that indi-
cates the occurrence of current stimulation with 1 and the
absence of stimulation with 0 is collected at a sampling rate of
1000 Hz in addition to the SEEG recordings. We use a Tukey-
windowed median filter to remove volume conduction artifacts
within 39 ms of each stimulus. First, a median filter of order
19 is applied to the raw data channel by channel. Next, the

raw data within a 39-ms window centered at each stimulus
is replaced with a weighted average of the raw data and the
median filtered data to eliminate the artifact. The weights for
the median filtered data take the form of a Tukey window
(Bloomfield, 2000, p. 69) and are zero for ±20 ms away from
the stimulus, a cosine rising from 0 to 1 beginning at 19 ms
prior to the stimulus and ending at 10 ms prior to the stimu-
lus, unity until 10 ms post-stimulus, and then a cosine decreas-
ing from 1 to 0 ending at 19 ms post-stimulus. The weighting
applied to the raw data are one minus those applied to the
median filtered data. Figure 2 illustrates the results of this pro-
cess. The cleaned data is then lowpass filtered by an FIR filter
with passband-edge of 48 Hz and stopband-edge of 49.9 Hz to
eliminate 50 Hz powerline contamination, and the lowpass fil-
tered data is downsampled by a factor of 10 to a sampling
frequency of 100 Hz. The portion of the downsampled data con-
taining responses to stimulation are further segmented into 30

epochs of data y
(j)
n , each of which contains 100 samples. Here

superscript (j) denotes epoch index while subscript n denotes
time index. The start of each epoch is from 12 samples (0.12 s)
before the occurrence of a stimulus and the end is 87 samples
(0.87 s) post-stimulus. Similarly, the raw trigger signal is lowpass
filtered, downsampled by 10, and partitioned into 100-sample

epochs x
(j)
n .

In principle, filtering the signal may have an impact on model
estimation and causality inference (Barnett and Seth, 2011). We
minimize the potential impact of filtering by specifying the stop-
band edge of the lowpass filter close to the post-downsampling
Nyquist frequency.

2.3. IDENTIFICATION OF OUTLYING EPOCHS
An automated procedure is employed to exclude epochs
that markedly deviate from the majority of epochs due

to non-stationary brain activity or other factors. Let y
(j)
n =

[y(j)
1,n, y

(j)
2,n, . . . , y

(j)
d,n]T represent the d channels of recordings at

A B C

FIGURE 1 | Recording and stimulation electrode placements for the

subjects. Black dots represents recording channels while black “X”
represents stimulating channel(s). (A) Subject A, right hemisphere is shown.
1, Inferior frontal opercular; 2, anterior horizontal lateral fissure; 3, middle
frontal gyrus; 4, middle frontal sulcus; 5, superior temporal sulcus; 6, inferior
frontal sulcus; 7, middle temporal gyrus; 8, middle frontal gyrus; 9, middle
temporal gyrus; 10, orbital gyrus; 11, precentral gyrus; 12, superior frontal
sulcus; and X, middle frontal gyrus. (B) Subject B, right hemisphere is shown.

1, Inferior frontal gyrus; 2, superior temporal sulcus; 3, posterior lateral
fissure; 4, postcentral solcus; 5, superior temporal gyrus; 6, transversal
temporal sulcus; 7, superior frontal gyrus; 8, subcentral gyrus; X (L1),
precentral gyrus, and X (L2), subcentral sulcus. (C) Subject C, right
hemisphere is shown. 1, Precentral gyrus; 2, posterior middle temporal gyrus;
3, inferior parietal lobule; 4, postcentral gyrus; 5, postcentral sulcus; 6, angular
gyrus; 7, supramarginal gyrus; 8, anterior middle temporal gyrus; 9, inferior
temporal gyrus, and X, superior parietal lobule.
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FIGURE 2 | Tukey-windowed median filtering for eliminating volume

conduction artifacts. The upper trace depicts an example of raw data (blue
solid line) and the Tukey-windowed median filter output (red dashed line).
The lower trace depicts the weighting applied to the raw data (blue solid
line) and the median filtered data (red solid line) to eliminate the volume
conduction artifact.

time n = 1, 2, . . . , Nj from epochs j = 1, 2, . . . , J. For epoch m,
we compute the time-varying mean μ−m

y (n) and time-varying

covariance matrix �−m
y (n) by excluding the m-th epoch of data.

That is,

μ−m
y (n) = 1

J − 1

J∑
j = 1,j �= m

y(j)
n (1)

�−m
y (n) = 1

J − 2

×
J∑

j = 1, j �= m

(
y(j)

n − μ−m
y (n)

)(
y(j)

n −μ−m
y (n)

)T
, (2)

for n = 1, . . . , 100. Here m = 1 to J and J is 30 for all
data sets considered. Then the squared Mahalanobis distance
(Penny, 1996) between the epoch m and the other epochs is
computed as

D2(m) =
100∑

n = 1

(
y(m)

n − μ−m
y (n)

)T

×
(
�−m

y (n)
)−1 (

y(m)
n − μ−m

y (n)
)

. (3)

Epochs with D2(m) exceeding

100 · d + 60
√

2 · 100 · d (4)

are declared as outliers and removed from subsequent analysis.
Intuitively, if the data is Gaussian, then D2(m) is Chi-squared dis-
tributed with 100 · d degrees of freedom. This implies that the
threshold rules out an epoch m if D2(m) exceeds its mean plus
60 standard deviations. Thus this threshold only excludes epochs
that have a large deviation from the temporal average of the other
epochs. The number of epochs retained for analysis are given in
Table 1.

Table 1 | Number of non-outlying epochs used in analysis.

Dataset Wakefulness epochs Sleep epochs

Subject A, 1 mA 29 25

Subject A, 5 mA 28 22

Subject B, L1 30 24

Subject B, L2 30 29

Subject C 30 29

3. METHODS
3.1. MVARX MODEL
The MVARX model of order (p, �) describes the data as follows
(Lütkepohl, 2006):

y
(j)
n =

p∑
i = 1

Aiy
(j)
n−i +

�∑
i = 0

bix
(j)
n − i + w

(j)
n , (5)

where x
(j)
n denotes the input at time n and epoch j. The

d × d matrices Ai = {am,n(i)} contain autoregressive coefficients
describing the influence of channel n on channel m at lag i, and
the d × 1 vectors bi = {bm(i)} contain filter coefficients from the

stimulus to channel m at lag i. The vectors w
(j)
n are d × 1 zero-

mean noise vectors with covariance matrix Q and are assumed to

satisfy E
{

w(i)
n (w

(j)
s )T

} = 0, for either i �= j or n �= s. We assume
that the epochs are of varying lengths Nj and are possibly dis-
connected in time to accommodate rejection of outlying epochs.
Figure 3 depicts a schematic diagram of an example MVARX
model. The diagram assumes there are three recording electrodes
corresponding to the recordings y1,n, y2,n, and y3,n (the epoch
index j is omitted in the figure for simplicity). The intracranial
EEG signals recorded at the electrodes contain contributions due
to the current stimulus response and background brain activ-
ity. The exogenous input xn represents the current stimulation.
If B = [b0, . . . , b�] is a d × (� + 1) matrix of exogenous input
coefficients, then the i-th row of B, [B]i,:, is the impulse response
of the filter representing the unknown transmission characteris-
tics between the current stimulus and the i-th recording channel.
The autoregressive coefficients A = [A1, . . . , Ap] indicate how
past values of the recorded signals affect present values. The
autoregressive order p determines the time extent of the past that
affect the present values and may be regarded as the memory of
the system. The signals w1,n, w2,n, and w3,n can be interpreted
as modeling errors or alternatively as a process that generates
spontaneous activity.

Electrodes can be used either as stimulating or recording elec-
trodes but cannot be used simultaneously for recording and
stimulation. Moreover, the electrodes closest to the stimulation
site are affected by huge electrical artifacts and they cannot
be used because of consequent low SNR. Hence the recorded

data y
(j)
n contains recordings of the effect of the stimulation at

distant sites, not the stimulation itself. Stimulation depolarizes
the membranes of neurons passing through the neighborhood
of the stimulating electrode, possibly creating action potentials
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FIGURE 3 | Schematic diagram of the MVARX model. yi,n denotes the
recorded signals at the electrodes while xn represents current stimulation
and wi,n is model error, or equivalently, a random input that generates
spontaneous activity. ai,j captures the a priori unknown connectivity
between recording sites while [B]i,: represents the a priori unknown
transmission characteristics between the stimulus and recording sites.

in neurons that synapse near the stimulation site and at dis-
tant locations (Ranck, 1975), a phenomenon termed fibers of
passage. Thus, stimulation generates an “input” that is con-
veyed to potentially all recording sites in a manner that depends
on the axonal topology in the vicinity of the stimulation site.
This topology and consequent stimulation effects are usually
unknown and described in our MVARX model by the exoge-
nous input filters B. In our model we assume the exogenous
input is given by the trigger signal associated with delivery of a
current pulse, so B captures both the shape of the delivered stim-
ulus and the unknown direct propagation of the input to each
recording site.

Denote y(j)
n,s and y(j)

n,e as the spontaneous activity and stimu-
lus response to the exogenous input, respectively, at time n from
epoch j. Equation (5) can be alternatively expressed as

y
(j)
n = y

(j)
n,s + y

(j)
n,e (6)

y
(j)
n,s =

p∑
i = 1

Aiy
(j)
n−i,s + w

(j)
n (7)

y
(j)
n,e =

p∑
i = 1

Aiy
(j)
n−i,e +

�∑
i = 0

bix
(j)
n−i. (8)

Note that in practice y(j)
n,s and y(j)

n,e are not directly observed and

cannot be separated from y
(j)
n without knowledge of the MVARX

model parameters. The stimulus response component y
(j)
n,e is a

deterministic term that depends entirely on the stimulus and the
model. Given the model parameters � = [A, B], we can generate

y
(j)
n,e by applying the stimulus sequence x

(j)
n to Equation (8) with

zero initial conditions. Recall that w
(j)
n is assumed to be zero mean,

so y
(j)
n,s is a zero mean random process reflecting the spontaneous

component of the recordings. It is common in MVAR modeling to
subtract the mean prior to estimating MVAR model parameters
(Ding et al., 2000). This corresponds to removing the stimulus

response y
(j)
n,e and is unnecessary with the MVARX model. We

shall assume that the stimulus is repeated multiple times such

that averaging y
(j)
n,e with respect to the stimulus onset times pro-

duces the evoked response of the system. This is not required by
the model in Equation (5) but is consistent with conventional
electrophysiology practice.

The autoregressive parameters A model the inherent neu-
ral connectivity between sites—how activity at one site prop-
agates to another site. This is evident in Equations (5–8) by

the fact that the Ai are applied to y
(j)
n−i . If the spontaneous

activity y
(j)
n,s is very weak relative to y

(j)
n,e then the response is

described entirely by Equation (8) and the measured data y
(j)
n ≈

y
(j)
n,e. In this case there is a potential modeling ambiguity as

there are many different combinations of Ai and bi that could

be used to describe y(j)
n,e over a finite duration. For example,

y
(j)
n,e can be described on 1 ≤ n ≤ � + 1 by setting Ai = 0 and

only using bi. We control potential ambiguities associated with
relatively weak spontaneous activity by limiting � to a value
commensurate with the expected duration of stimulus prop-
agation through fibers of passage. This ensures that B is not
able to capture long duration interactions associated with feed
forward and feedback connectivity between sites. Based on pre-
vious experimental evidence (Matsumoto et al., 2004), we set � =
10 to accommodate a 100 ms duration of propagation through
fibers of passage. We will discuss this choice more thoroughly in
section 6.

3.2. ESTIMATION OF MVARX MODEL PARAMETERS
Suppose that we have the recordings and inputs {(y

(j)
n , x

(j)
n ) : j =

1, 2, . . . , J, n = 1, 2, . . . , Nj} for J epochs of Nj samples each.
Denote n0 = max(p, �), and suppose that Nj ≥ n0 + 1, for all
j. Using the first n0 samples as the initial values, the model in
Equation (5) can be rewritten in a simplified form:

y
(j)
n = �z

(j)
n−1 + w

(j)
n , (9)

for j = 1, . . . , J, n = n0 + 1, . . . , Nj, where the d × (dp + � + 1)

matrix � = [A, B] and the vector of dimension dp + � + 1,

z
(j)
n−1 = [(y

(j)
n−1)

T , (y
(j)
n−2)

T, . . . , (y
(j)
n−p)

T, x
(j)
n , x

(j)
n−1, . . . , x

(j)
n−�]T .

The vectors y(j)
n , w(j)

n , and z(j)
n−1 can be further concatenated as

columns of the matrices Yj, Zj, and Wj to write:

Yj = �Zj + Wj (10)

where Yj = [y(j)
n0+1, . . . , y(j)

Nj
], Zj = [z(j)

n0 , . . . , z(j)
Nj−1], and Wj =

[w(j)
n0+1, . . . , w

(j)
Nj

]. This expression takes the form of a linear

regression model, and we can obtain an ordinary least square
(OLS) estimate of (�, Q) as (Lütkepohl, 2006, chap. 10.3):
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�̂ =
⎛
⎝ J∑

j=1

YjZ
T
j

⎞
⎠

⎛
⎝ J∑

j=1

ZjZ
T
j

⎞
⎠

−1

,

Q̂ = 1

Nt

J∑
j=1

(
Yj − �̂Zj

)(
Yj − �̂Zj

)T
, (11)

where Nt = ∑J
j=1 Nj − n0J. If w

(j)
n is Gaussian, then the OLS esti-

mate (�̂, Q̂) is also the maximum-likelihood estimate of (�, Q)

(Lütkepohl, 2006).

3.3. MODEL SELECTION WITH CROSS-VALIDATION
In practice the order p could be chosen using numerous different
model selection criteria, including Akaike information criterion
and the Bayesian information criterion (McQuarrie and Tsai,
1998; Lütkepohl, 2006). Here we use CV to determine p in a
data-driven fashion [see Cheung et al. (2012) for another example
of using CV to select model parameters with neurophysiological

data]. The data y
(j)
n and input x

(j)
n are partitioned into training and

test sets. The goal is to choose the value p that produces the best
prediction of test data when the model � = [A, B] is estimated
from the training data. We consider two components in assessing
model predictive capability. The first is the one-step prediction
error, a measure of the model’s ability to track the sample-to-
sample and epoch-to-epoch fluctuations in the data. The second
is the error between the average evoked response predicted by
the model and the measured average response. This measures the
quality of the model’s response to the stimulus.

Partition the epochs of available data into training sets Rm

and test sets Sm and assume there are m = 1, 2, . . . , M such
partitions. Assume the sets Sm are non-overlapping and are of
approximately the same size. Let �m be the model estimated from
Rm as described in the preceding subsection. The one-step pre-

diction error at time n, e
(j)
n (�m) is the difference between the

recording y
(j)
n and the one-step prediction made by �m using the

n0 samples prior to time n, that is, z
(j)
n−1:

e
(j)
n (�m) = y

(j)
n − ŷ

(j)
n (�m) (12)

where the one-step prediction ŷ
(j)
n (�m) = �mz

(j)
n−1. Similarly we

define the average response error as

εn(�m) = yn(Sm) − ŷn(�m, Sm) (13)

where the average evoked response yn(Sm) = 1/|Sm| · ∑
j∈Sm

y
(j)
n

and the average model response ŷn(�m, Sm) over epochs in Sm,

ŷn(�m, Sm) = 1/|Sm| · ∑
j∈Sm

y(j)
n,e(�m). Here y(j)

n,e(�m) is gener-
ated using �m as described following Equation (8). We define a
CV score as a weighted combination of the one-step prediction
and average response errors averaged over all training/test data
partitions

CV(p) = 1

M

M∑
m=1

[
CVe(p, m)

we
+ CVε(p, m)

wε

]
(14)

where CVe(p, m) is the mean square one-step prediction error of
a p-th order model �m(p) in predicting data in Sm:

CVe(p, m) = 1

|Sm|
∑
j∈Sm

1

Nj − n0

Nj∑
n=n0+1

||e(j)
n (�m(p))||22 (15)

and CVε(p, m) is the mean square value of the average response
error on Sm:

CVε(p, m) = 1

N

N∑
n=1

||εn(�m(p))||22. (16)

Here N is the assumed duration of the average response. The
weights we and wε vary the emphasis between the one-step pre-
diction error and average response error. In the analysis below, we
set we and wε to the medians of CVe(p, m) and CVε(p, m), respec-
tively, for m = 1, . . . , M and all p considered. This approach
places approximately equal emphasis on the two errors. The
model order p is chosen as the p that minimizes CV(p) over the
range of p evaluated.

Several practical issues require attention for computing the
average response error. First, use of an average evoked response
assumes the stimulus is nominally identical for each epoch.
Second, care must be taken in computing the average response

of the model � to the stimulus x
(j)
n over epochs in Sm if the

effects of preceding stimuli extend into Sm. In such a case the
brain is not “at rest” upon the arrival of the new stimulus in
Sm, but is still responding to the preceding stimulus. This situ-
ation occurs when the response time of the cortex is longer than
the inter-stimulus interval. We mimic this aspect of the measured
data when computing the average model response by presenting
the entire train of stimuli to the model and averaging over the
responses corresponding to epochs in Sm.

3.4. MODEL QUALITY ASSESSMENT
A key assumption for the consistency of the OLS estimates is

that the residuals w
(j)
n be serially uncorrelated, that is, temporally

white. Serial correlation in w
(j)
n may be a sign of mis-specifying

the model or incorrect selection of order (p, �) (Hong, 1996;
Duchesne and Roy, 2004). We use a consistency test developed
in Duchesne and Roy (2004) to validate our models. Denote by

�w(r) = E{w
(j)
n (w

(j)
n−r)

T} the covariance at lag r, the hypotheses
of interest are:

H0 : �w(r) = 0, for all r �= 0 vs.

H1 : �w(r) �= 0, for some r �= 0. (17)

Let the residual at time n in epoch j be ŵ
(j)
n = y

(j)
n − �̂z

(j)
n−1. Let

q(·) be a window function of bounded support L, that is, q(r) > 0,
for |r| ≤ L and q(r) = 0 for |r| > L. Suppose that the last epoch
is of length longer than (J − 1)L, that is, NJ > (J − 1)L. The test
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statistic derived in Duchesne and Roy (2004) for testing H0 vs.
H1 is

TNc = Nc
∑L

r=1 q2(r)tr[CT
ŵ(r)C−1

ŵ (0)Cŵ(r)C−1
ŵ (0)] − d2MNc (q)

[2d2VNc (q)]1/2

(18)
where Nc = ∑J

j=1 Nj − (J − 1)L and

Cŵ(r) = 1

Nc

⎡
⎣ J−1∑

j=1

Nj∑
n=r+1

ŵ
(j)
n (ŵ

(j)
n+r)

T

+
NJ∑

n=r+1+(J−1)(L−r)

ŵ(J)
n (ŵ(J)

n+r)
T

⎤
⎦ , (19)

for r = 0, 1, . . . , L, are the estimated residual covariance matri-
ces. The functionals MNc (q) and VNc (q) of q(·) and Nc are defined
as (Duchesne and Roy, 2004):

MNc (q) =
L−1∑
i = 1

(
1 − i

Nc

)
q2(i) (20)

VNc (q) =
L−2∑
i = 1

(
1 − i

Nc

) (
1 − (i + 1)

Nc

)
q4(i). (21)

We use the Bartlett window defined as q(j) = 1 − |j/L|, j ≤ L and
q(j) = 0, j > L with a window width L = 	3N0.3

c 
 as suggested
in Duchesne and Roy (2004). For example, in our datasets the
longest possible single epoch would have Nc = 3000 samples,
which leads to the maximum value L = 34. Thus the test statistic
Equation (18) is based on estimated residual covariance matri-
ces at lags less than or equal to 34. Under the assumption that

both y
(j)
n and x

(j)
n are stationary, the test statistic is one-sided and

asymptotically standard normally distributed (see Duchesne and
Roy, 2004, Theorem 1). It declares that the residuals are serially
correlated if TN > z1−α and are white otherwise, where z1−α is
the value of the inverse cumulative distribution function of the
standard normal distribution at 1 − α and α is the significance
level of the test.

4. RESULTS
4.1. MODEL PARAMETERS
We have varying definitions and lengths of epochs throughout our
data processing procedures. For detection of outlying epochs we

choose all epochs to be of length Nj = 100 samples based on the
time between subsequent current stimuli. In model estimation
and assessment of residual whiteness, the epochs are defined as
the maximum contiguous segments between the time segments
removed by the outlier detection process. This minimizes the

impact of the initial conditions z
(j)
n0 required at the start of each

epoch. Hence, Nj varies across epochs and conditions. In CV, the
epoch lengths are set to be equal with Nj = 100. This, along with
choosing the test sets Sm to contain approximately the same num-
ber of epochs, makes the test sets span roughly the same amount
of time.

As shown in Table 1, the number of outlying epochs is gen-
erally larger in sleep than in wakefulness, most likely due to the
presence of slow waves during sleep. The number of partitions of
the available epochs used in the CV procedure for determining
model order p and the corresponding model order is shown in
Table 2. We did not consider model orders higher than p = 30.
We also evaluated an unconnected model consisting of d uni-
variate ARX models to assess the importance of the coupling
or connectivity between channels. The univariate models were
estimated by applying the procedure described above to each
channel. With the exception of Subject B, stimulus location 1
(L1), the CV procedure picks a higher model order for the uncon-
nected model and in many cases chooses the maximum order
considered.

The whiteness test described in section 3.4 was applied to the
residuals from all models using a significance level α = 0.1. Note
that since exceeding the threshold implies the residuals are not
white, use of a relatively large value for α leads to a more stringent
test, that is, makes it easier to declare the residuals are not white.
The MVARX models passed the whiteness test for every data set,
while the unconnected models failed the test for every data set.

4.2. EVOKED RESPONSE MODEL PERFORMANCE
In Figures 4–6 we compare the average evoked response and
average model response for a subset of subjects and conditions.
The average responses are generated following the CV approach
described in section 3.3. Figures 4A,B show the average CV
evoked responses yn(S) = M−1 ∑M

m=1 yn(Sm) and average CV

model responses ŷn(�, S) = M−1 ∑M
m=1 ŷn(�m, Sm) in channels

1, 4, 7, and 11 of Subject A in wakefulness for 1 and 5 mA stim-
ulation, respectively. Here 0 s on the time axis corresponds to
the stimulus onset. The averaging is first done within the test-
ing block for each CV partition, then a second phase of averaging
is done over the average responses of the test blocks for all CV

Table 2 | Model order parameters for wakefulness and sleep data sets.

Wakefulness Sleep

Dataset CV Part. MVARX p ARX p CV Part. MVARX p ARX p

Subject A, 1 mA 7 20 30 8 20 30

Subject A, 5 mA 7 26 30 11 26 26

Subject B, L1 10 30 28 8 30 24

Subject B, L2 10 18 22 7 22 30

Subject C 10 16 30 7 12 30
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FIGURE 4 | Comparison between average CV evoked and average CV

model responses of Subject A to two different stimulation strengths in

wakefulness. In panels (A) and (B) the black dotted lines indicate the origin
while the error bars denote the standard error of the mean. (A) Average CV
evoked and average CV model responses of channels 1, 7, 4, and 11 with
1 mA current stimulation. (B) Average CV evoked and average CV model

responses of channels 1, 7, 4, and 11 with 5 mA current stimulation.
(C) Normalized mean-squared difference in each channel for 1 mA
stimulation. (D) Relative root mean-squared energy in each channel for 1 mA
stimulation. (E) Normalized mean-squared difference in each channel for
5 mA stimulation. (F) Relative root mean-squared energy in each channel for
5 mA stimulation.
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FIGURE 5 | Comparison between average CV evoked and average CV

model responses of Subject A to two different stimulation strengths in

sleep. In panels (A) and (B) the black dotted lines indicate the origin while
the error bars denote the standard error of the mean. (A) Average CV evoked
and average CV model responses of channels 1, 7, 4, and 11 with 1 mA
current stimulation. (B) Average CV evoked and average CV model responses

of channels 1, 7, 4, and 11 with 5 mA current stimulation. (C) Normalized
mean-squared difference in each channel for 1 mA stimulation. (D) Relative
root mean-squared energy in each channel for 1 mA stimulation.
(E) Normalized mean-squared difference in each channel for 5 mA
stimulation. (F) Relative root mean-squared energy in each channel for 5 mA
stimulation.

partitions. The average CV model response of the MVARX model
(blue dashed line) follows the dynamics of the average CV evoked
response (green solid line) in each channel, for both stimulus
amplitudes and a range of channel response levels. In contrast,

the average CV model response of the unconnected model (red
dashed dot line) only tracks the average CV evoked response in
channels with the largest amplitudes, even though the univari-
ate model is fit independently to each channel. In the figures,

Frontiers in Human Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 317 | 8

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Chang et al. MVARX for responses to stimulation

0 0.2 0.4 0.6 0.8

1 mv

5 mv

Time (s)

 

 

Evoked Response
Full Model
Unconn. Model

0 0.2 0.4 0.6 0.8

1 mv

5 mv

Time (s)

1 2 3 4 5 6 7 8
0

0.5

1

Channel

CBA

N
M

S
D

1 2 3 4 5 6 7 8
0

0.5

1

Channel

D

R
R

M
S

1 2 3 4 5 6 7 8
0

0.5

1

Channel

E

N
M

S
D

1 2 3 4 5 6 7 8
0

0.5

1

Channel

F

R
R

M
S

FIGURE 6 | Comparison between average CV evoked responses and

average CV model responses of Subject B with two different stimulating

locations in wakefulness. In panels (A) and (B) the black dotted lines
indicate the origin while the error bars denote the standard error of the mean.
(A) Average CV evoked and average CV model responses of channels 1, 3, 6,
and 8 when the stimulating channel is L1. (B) Average CV evoked and average

CV model responses of channels 1, 3, 6, and 8 when the stimulating channel
is L2. (C) Normalized mean-squared difference in each channel when the
stimulating channel is L1. (D) Relative root mean-squared energy in each
channel when the stimulating channel is L2. (E) Normalized mean-squared
difference in each channel when the stimulating channel is L1. (F) Relative
root mean-squared energy in each channel with the stimulating channel is L2.

error bars indicating one standard error are displayed every five
samples. Figures 4C–F summarize the model performance on a

channel-by-channel basis. Let yi,n(S) and ŷi,n(�, S) be the aver-
age CV evoked response and average CV model response at time
n in the i-th channel. Figures 4C,E depict the normalized mean-
squared difference (NMSD) between the average CV evoked and
average CV model response for 1 and 5 mA stimulation, respec-
tively, where the NMSD in channel i is defined as

NMSD(i) =
∑N

n=1(yi,n(S) − ŷi,n(�, S))2

∑N
n=1 y2

i,n(S)
. (22)

Figures 4D,F depict the relative root mean-squared (RRMS)
energy for 1 and 5 mA stimulations, respectively, for each chan-
nel. The RRMS for channel i is defined as the ratio of the root
mean-squared energy in channel i to that of the channel with the
largest root mean-squared energy. More precisely,

RRMS(i) =
√∑N

n=1 y2
i,n(S)

max
i′=1,...,d

√∑N
n=1 y2

i′,n(S)

. (23)

The unconnected model only gives comparable NMSD to that of
full model in channel 11, which has the largest energy. The dif-
ference between the MVARX model and the unconnected model
in terms of per-channel NMSD is less significant for the 1 mA
stimulation, than for the 5 mA stimulation.

Figures 5A,B depict the average CV evoked and average CV
model responses for Subject A during NREM sleep with current

stimulation of 1 and 5 mA, respectively. The four traces, from
top to bottom, show the responses in channels 1, 7, 4, and 11,
respectively. Panels (C) and (E) depict the NMSD, while (D) and
(E) depict RRMS for 1 and 5 mA stimulation, respectively, as a
function of channel.

The average CV evoked responses and the average CV model
responses in wakefulness for Subject B, with two different stimu-
lating sites L1 and L2, and both with current stimulus of 5 mA, are
shown in panels (A) and (B) of Figure 6. The four traces, from top
to bottom, depict the responses in channels 1, 3, 6, and 8, respec-
tively. The difference between the two stimulating sites lies mainly
in channels with smaller energy, i.e., channels 1, 3, and 6. Panels
(C) and (E) depict NMSD in each channel when the stimulating
channel is L1 and L2, respectively. Panels (D) and (F) show the
RRMS in each channel.

Define the normalized mean-squared response difference
(NMRD) over all channels as the ratio of the NMRD to the
mean-squared average CV evoked response. That is,

NMRD =
∑N

n=1 ||yn(S) − ŷn(�, S)||22∑N
n=1 ||yn(S)||22

. (24)

Figure 7 depicts NMRD of the MVARX models for all five
data sets considered. Generally the MVARX models captures the
dynamics in average evoked response reasonably well with NMRD
no larger than 0.25.

4.3. ONE-STEP PREDICTION MODEL PERFORMANCE
The ability of the model to predict the present recorded value of
the data given past recordings reflects a different attribute than

Frontiers in Human Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 317 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Chang et al. MVARX for responses to stimulation

A, 1 mA A, 5 mA B, L1 B, L2 C
0

0.05

0.1

0.15

0.2

0.25

Data set

N
M

R
D

 

 

Wake
Sleep

FIGURE 7 | Normalized mean-squared response difference [see

Equation (24)] in each dataset.
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FIGURE 8 | Comparison between recorded signal and one-step

prediction of Subject B when the stimulating site is L2. 1.5 s
pre-stimulus is shown followed by two-and-a-half epochs of evoked data.
The black dotted lines in the panels indicate the origin. The model is
estimated from data beginning with the fourth epoch. (A) Wake recorded
and predicted signals in channels 1, 3, 6, and 8 ordered from top to bottom.
(B) Non-REM sleep recorded and predicted signals in channels 1, 3, 6, and
8 ordered from top to bottom.

the modeling of the average evoked response. One-step prediction
performance indicates the model’s ability to follow spontaneous

fluctuations in the data. Figure 8 compares the recording y
(j)
n and

one-step prediction ŷ
(j)
n (�) of the signals recorded from Subject

B for 1.5 s of pre-stimulus data followed by two and a half epochs
of evoked data, when the stimulating site is L2. The models used
to perform prediction in Figure 8 are trained from data excluding
the data plotted. Panels (A) and (B) shows the signals in wake-
fulness and sleep, respectively. Similar results are obtained for the
other epochs, subjects, and conditions. The traces show the sig-
nals in channels 1, 3, 6, and 8, respectively. These results indicate
that the MVARX model performs accurate one-step prediction in
wakefulness and sleep and for both pre-stimulus and evoked data
segments.

Define the normalized mean-squared one-step (NMSE) pre-
diction error as the ratio of the mean-squared prediction error
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FIGURE 9 | Normalized mean-squared one-step prediction error [see

Equation (25)] in each dataset.
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FIGURE 10 | Exogenous input filters B for each channel as a function of

time. The identical colormap is used for each row. (A) Subject A wake,
1 mA. (B) Subject A sleep, 1 mA. (C) Subject A wake, 5 mA. (D) Subject A
sleep, 5 mA. (E) Subject B wake, stimulation site L1. (F) Subject B sleep,
stimulation site L1. (G) Subject B wake, stimulation site L2. (H) Subject B
sleep, stimulation site L2. (I) Subject C wake. (J) Subject C sleep.

over the samples to the mean-squared energy. That is,

NMSE =
1

J(N−n0)

∑J
j=1

∑N
n=n0+1 ||y(j)

n − ŷ
(j)
n (�)||22

1
JN

∑J
j=1

∑N
n=1 ||y(j)

n ||22
. (25)

As a reference, the NMSE of the model � = 0 is approximately
1. The bar diagrams in Figure 9 show the NMSE of the MVARX
models for all five datasets considered. Overall, our models give
NMSE less than 0.06 for one-step prediction of the recordings and
less than 0.02 in seven of the ten data sets studied.

4.4. B MATRICES
Figure 10 depicts the exogenous input filters B matrices estimated
for all 10 datasets as color plots. The i-th row of each matrix
represents the FIR filter coefficients representing the path from
the stimulus site to the i-th channel. Hence, rows with greater
extremes of color have the strongest paths from the stimulus site.
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5. APPLICATION TO CONSCIOUSNESS ASSESSMENT
Numerous network characteristics can be obtained from an
MVARX model. For example, graphs with partially directed
coherence or conditional Granger causality as edges can be
obtained by computing partially directed coherence or condi-
tional Granger causality from the MVARX parameters. In this sec-
tion we demonstrate the application of the model to assessment
of consciousness by measuring the integrated information of the
estimated MVARX model. The integrated information theory
(Tononi, 2004, 2008, 2010) starts from two self-evident axioms
about consciousness: every experience is one out of many and
generates information because it differs in its own way from the
large repertoire of alternative experiences; and every experience
is one, that is, integrated, because it cannot be decomposed into
independent parts. The theory formalizes these notions by postu-
lating that a physical system generates information by reducing
uncertainty about which previous states could have caused its
present state, and that this information is integrated to the extent
that it cannot be partitioned into the information generated by
parts of the system taken independently. The theory predicts that
integrated information in wakefulness is higher than that in sleep.
Integrated information can be measured rigorously in models
such as the MVARX model presented here. The integration of
information is captured by A and Q in the MVARX model—B
only indicates how stimulation enters the network. In this sec-
tion we contrast integrated information in wakefulness and sleep
using a variation on the procedure introduced in Barrett and Seth
(2011) for obtaining a bipartition approximation to integrated
information in MVAR systems. Our variation is based on use of
“effective information” (Kullback–Leibler divergence) (Balduzzi
and Tononi, 2008) in place of the difference in mutual informa-
tion and ensures that integrated information is always positive
(Cover and Thomas, 2006).

Suppose yn describes a stable MVAR(p) process:

yn =
p∑

i = 1

Aiyn−i + wn, (26)

where wn are i.i.d. zero-mean Gaussian noise vectors with covari-
ance Q. Then the MVAR(p) process is wide sense stationary and
yn ∼ N (0, �(y)) with �(y) = E{ynyT

n }. Given that the state at
time n, yn = y, the conditional distribution of the state τ samples
prior to sample n, yn−τ , follows

yn−τ |(yn = y) ∼ N (�τ (y)�(y)−1y, �(yn−τ |yn)) (27)

where �τ (y) = E{yn−τ yT
n } and

�(yn−τ |yn) = �(y) − �τ (y)�(y)−1�τ (y)T . (28)

Given A and Q, the matrices �(y) and �τ (y) for τ = 1, . . . , ρ,
with ρ ≥ p − 1, are computed as described in Barrett and Seth
(2011).

Let the set of the channels be S = {1, 2, . . . , d}. A bipar-
titon B = {M1, M2}, divides the channels into two mutually
non-overlapping and non-empty sub-networks, S = M1 ⋃

M2.

Denote two sub-systems m1
n and m2

n within which are the mea-
surements in the channels corresponding to the elements in M1

and M2 at time n, respectively. Given �(y) and �τ (y), we have
�(mi) = [�(y)]Mi,Mi and �τ (mi) = [�τ (y)]Mi,Mi , for i = 1, 2.
Hence, given the present state, the conditional distribution of the
sub-system i at τ samples into the past is given by mi

n−τ |(mi
n =

mi) ∼ N (�τ (mi)�(mi)−1mi,�(mi
n−τ |mi

n)), for i = 1, 2, where

�(mi
n−τ |mi

n) = �(mi) − �τ (mi)�(mi)−1�τ (mi)T .
Define the effective information for the system y over a lag of τ

samples under partition B as [see Barrett and Seth (2011), (0.32)]

ϕ(y; τ,B) = 1

2

[
− log2

(
det(�(yn−τ |yn))

)

+
2∑

i = 1

log2

(
det(�(mi

n−τ |mi
n))

)]
bits. (29)

The effective information is the Kullback–Leibler divergence
between a system consisting of two mutually independent sub-
systems m1

n and m2
n and the system yn. The integrated informa-

tion measured at a time difference of τ is defined as

φ(y; τ) = ϕ(y; τ,BMIB) (30)

where the minimum information bipartion (MIB) is defined as

BMIB = arg min
B

(
ϕ(y; τ,B)

K2(B)

)
(31)

with
K2(B) = min(H(m1

n), H(m2
n)) (32)

and the differential entropy of mi
n, H(mi

n) is given by

H(mi
n) = 1

2
log2

(
(2πe)|Mi| det(�(mi))

)
. (33)

Figure 11 depicts the integrated information of Subject A
for stimulus of 5 mA, as the time difference τ varies from 10
to 300 ms. The integrated information in wakefulness is higher
than that in sleep. In both wakefulness and sleep, the integrated
information increases until the time difference is approximately
100 ms and then remains approximately constant. We further
used the CV procedures described in section 3.3 to study the dif-
ference between integrated information in wakefulness and sleep.
Specifically, we estimated a model from the training set of each
CV partition and compute integrated information for each CV
partition. This provides M different estimates of integrated infor-
mation for each data set, where M is the number of CV partitions.
We compare the maximum values of the estimates of integrated
information for each CV partition in wakefulness and sleep using
the Wilcoxon rank sum test, which tests the null (H0) hypothe-
sis that the measured maximum integrated information values in
wakefulness and sleep for all CV partitions are samples from con-
tinuous distributions with equal medians, against H1 that they
are not. The p-values of the rank sum test for each conditions are
shown in Table 3. With the exception of Subject C, all of the cases
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FIGURE 11 | Integrated information of Subject A, when the stimulation

current is of 5 mA.

have p-values below 0.05, and Subject C is only slightly above 0.05.
Figure 12 depicts the average maximum value of integrated infor-
mation and average time delay τ at which the maximum value is
achieved, where the averaging is done across CV results, and error
bars indicates one standard error.

6. DISCUSSION
The results demonstrate the effectiveness of the MVARX model
for intracerebral electrical stimulation data. Excellent agreement
between measured and modeled evoked responses is found across
channels, two stimulus amplitudes, vigilance states, stimulus sites,
and subjects (Figures 4–7). One-step prediction is used to show
that the MVARX model also accurately captures the spontaneous
fluctuations in the measured signals (Figures 8 and 9). We con-
trast the MVARX models with a series of univariate ARX models,
one for each channel, to illustrate the importance of account-
ing for the interaction between cortical signals (Figures 4–6).
In some channels for some subjects/conditions the univariate
ARX model describes the evoked response as well as the MVARX
model. However, in general modeling interactions between cor-
tical signals is necessary to capture the measured response. For
example, in Figure 4B the univariate model fails to model the
responses in channels 1, 4, and 7 beyond 200 ms after the
stimulation.

The MVARX model explicitly represents both evoked and
spontaneous (or background) brain activity using a determinis-
tic input term to capture the effect of stimuli and a random input
term to generate spontaneous activity. Stimuli generally give rise
to a non-zero mean component in the response that varies with
time, i.e., is non-stationary. Conventional approaches to MVAR
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FIGURE 12 | (A) Average maximum values of integrated information with
error bars indicating one standard error. (B) Average lag at which maximum
integrated information is achieved, with error bars indicating one standard
error.

modeling of cortical event-related potentials (e.g., Ding et al.,
2000), subtract the ensemble mean of the data before processing
to avoid the negative effects of the non-stationary mean on the
MVAR model. However, subtraction of the ensemble mean sig-
nificantly reduces the SNR of the data and is not necessary if
the exogenous input is properly accounted for in the modeling
procedure.

The effect of the stimulus on each recording channel is
addressed by applying a separate filter in each channel to the
stimulus signal. The filter coefficients are estimated jointly with
the autoregressive model parameters from the measured evoked
data. This approach accounts for the generally unknown and
different characteristics of the transmission paths from the stim-
ulation to each measurement site. The length of the filters [�
samples in Equation (5)] should be limited based on physiological
expectations for the stimulus paradigm. Indeed, the autoregres-
sive coefficients Ai and filters bi are estimated simultaneously and

the evoked response (y
(j)
n,e in Equation (8)) is often much larger

than the spontaneous component [y
(j)
n,s in Equation (7)]. If � is

set equal to the duration of one epoch of y
(j)
n,e, then it is possible to

perfectly model y
(j)
n,e using only the bi while setting the Ai = 0. We

have shown that the MVARX models are capable of characterizing
yn,s by one-step prediction of data not used to estimate the model
(see Figure 8). Moreover, the model describes the dynamics in
yn,e, as was shown in Figures 4–6.

In order to define a practical value for � we refer to previ-
ous electrophysiological studies on intracerebral evoked poten-
tials (Matsumoto et al., 2004, 2007, 2012). In these studies
Matsumoto and colleagues thoroughly discussed the possible

Table 3 | p-values of the Wilcoxon rank sum test of whether integrated information in wakefulness and sleep are different.

Subject A, 1 mA Subject A, 5 mA Subject B, L1 Subject B, L2 Subject C

p-value 3.18e-4 0.0012 2.06e-4 0.0068 0.0553
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generator mechanisms of intracerebral potentials evoked by direct
electrical stimulation. In all of these studies it has been shown
that the duration of the “purely evoked” response expires within
100 ms. Based on these results and our 100 Hz sampling fre-
quency we set � = 10. The 100 ms value is also consistent with
our data. Indeed, the first 100 ms post-stimulus of the evoked
waveforms exhibit quite different character than later portions.
Typically the initial 100 ms of the measured response contain rel-
atively sharp, high frequency waveforms, while later portions of
the response have a smoother, lower frequency behavior. This
suggests two regimes in the modeling process. The exogenous
input filters account for the sharp initial response, as evident by
the filter impulse responses shown in Figure 10. Channels hav-
ing relatively large impulse response tend to rapidly transition
from negative to positive maxima over one or two samples, con-
sistent with the sharp features in the early portions of the evoked
response. These sharp inputs to the channels are smoothed by the
autoregressive component of the model to obtain the later por-
tions of the response. The filter responses depicted in Figure 10
decay to relatively small values by the 10-th lag (100 ms) and gen-
erally contain most of their energy in the first through sixth lags,
that is between 10 and 60 ms. This further supports the choice
of � = 10.

The energy transmission characteristics shown in Figure 10
are consistent with physiological expectations for modeling
stimulation of fibers of passage. There is general consistency
between wakefulness and sleep in all subjects (Figure 10, left
column vs. right column) even though the evoked responses
differ markedly (Figure 4 vs. Figure 5); channels with strong and
weak responses are the same in wakefulness and sleep, and the
shape of the responses in each channel are generally very similar.
The subtle differences between wakefulness and sleep may be
due to changes in neural excitability. Comparing 1 and 5 mA
stimulation in Subject A (Figures 10A,B and C,D) reveals that
channel 11 has the strongest response in both stimulation levels
and the strength of the response increases roughly by a factor
of 5, consistent with the factor of 5 change in the stimulation
level. This is because we used the trigger signal to represent the
exogenous input without adjusting its amplitude. However, the
shape of the response in channel 11 differs slightly, with the 5 mA
case having reduced latency by approximately 10 ms and a higher
frequency response reflected by the sharper, shorter duration of
the filter. This suggests that the higher stimulus level is associated
with a faster response. The two stimulation sites L1 and L2 in
Subject B (Figures 10E,F and G,H) both involve channels 8 and
4 as the strongest response, suggesting similar fibers of passage
are excited at the two sites. However, the overall gain differs by
a factor of 2 and the shape of the response in channel 8 and
4 differ, especially in wakefulness. Subject C (Figures 10I,J)
exhibits multiple channels with strong linkage to the
stimulus site.

Our MVARX approach assumes the dynamic interactions
between evoked and spontaneous cortical signals follow the
same model, that is, both evoked and spontaneous activity are
described by one set of Ai. The excellent one-step prediction per-
formance in the pre-stimulus interval of Figure 8 combined with
the high quality fitting of the evoked responses suggests this is a

reasonable assumption, at least for these particular data sets. This
approach also assumes that the measured signal is the sum of the
evoked and spontaneous activity.

The windowed median filtering procedure successfully elim-
inated the volume conduction artifact while limiting changes
to the measured signal to within ±20 ms of the stimulation.
The outlier detection strategy only eliminates epochs that have
significant deviation from the average evoked response. Both
of these strategies significantly improve model fidelity to the
measured data. Seven times as many outlier epochs were iden-
tified in sleep than in wakefulness, likely due to the presence
of occasional slow waves during an epoch. However, in seven
of the ten data sets we analyzed 28 or more of the 30 avail-
able epochs, which indicates our artifact detection procedure is
not overly aggressive. Subject A had the most outlier epochs
and in the worst case (5 mA, sleep) our procedure eliminated
8 of the possible 30 epochs. The CV strategy for choosing
MVAR model order is effective, as demonstrated by the fidelity
of the model evoked responses (Figures 4–7) and the ability
of the models to accurately perform one-step prediction on
pre-stimulus data (Figure 8). Outlier rejection helps the data
meet the stationarity assumption of the MVARX model. While
it is unlikely that the data are truly stationary, the accuracy
with which the model describes the data and the whiteness
of the residuals suggests that the stationarity assumption is
reasonable.

As a proof of concept application, we used the MVARX model
to assess changes in the level of information integration between
wakefulness and deep sleep in human subjects. Using a sim-
ple, bipartition approximation we found that, as predicted by
theoretical considerations (Tononi, 2004; Seth et al., 2008), inte-
grated information is higher in wakefulness than sleep for each
subject/condition, supporting the notion that integrated infor-
mation reflects the capacity for consciousness. We note that the
integrated information results presented here only apply to the
recordings analyzed. Analysis of the dependence of integrated
information on recording coverage is beyond the scope of this
paper. Our findings indicate that the human cerebral cortex is
better suited at information integration—being both functionally
specialized and functionally integrated—when awake and con-
scious. In contrast, when consciousness fades in deep sleep, the
parameters of the system change in such a way that informa-
tion integration is diminished, in line with theoretical predictions
(Tononi, 2004) and consistent with qualitative evidence obtained
from experiments employing transcranial magnetic stimulation
and high density EEG (Massimini et al., 2005). We also found
that the lag at which the maximum level of information integra-
tion is attained is consistently longer in sleep than wakefulness.
Maximum information integration in wakefulness occurred at
lags of 30–110 ms, while those in sleep were from 70 to 140 ms
longer, consistent with the increased low frequency activity
of sleep.
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