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Introduction: Smart phones are becoming ubiquitous and their computing capabilities
are ever increasing. Consequently, more attention is geared toward their potential use in
research and medical settings. For instance, their built-in hardware can provide quantitative
data for different movements.Therefore, the goal of the current study was to evaluate the
capabilities of a standalone smart phone platform to characterize tremor. Results: Algo-
rithms for tremor recording and online analysis can be implemented within a smart phone.
The smart phone provides reliable time- and frequency-domain tremor characteristics. The
smart phone can also provide medically relevant tremor assessments. Discussion: Smart
phones have the potential to provide researchers and clinicians with quantitative short-
and long-term tremor assessments that are currently not easily available. Methods: A
smart phone application for tremor quantification and online analysis was developed.Then,
smart phone results were compared to those obtained simultaneously with a laboratory
accelerometer. Finally, results from the smart phone were compared to clinical tremor
assessments.
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INTRODUCTION
Tremor is the most prevalent movement disorder, and can manifest
itself in a myriad of pathologies. One of those disorders is Parkin-
son’s disease (PD) (Calabrese, 2007). According to the World
Health Organization, more than 5.2 million people were affected
by PD in 2004 (http://www.who.int/healthinfo/global_burden_
disease/GBD_report_2004update_part3.pdf ), and this number is
expected to increase to 40 million by the year 2020 (Morris, 2000).
While PD is associated with other motor symptoms besides tremor,
it is expected that the majority of patients with PD will exhibit
some form of tremor within the course of their disease (Jankovic,
2008). Essential tremor (ET) is another disease exhibiting tremor.
It is the most common movement disorder as it affects close to
4000 per 100,000 people aged over 65 years (Louis et al., 1995). The
hallmark motor feature of this pathology is postural and action
tremor of the upper limb (Louis et al., 1998). While tremor is a
cardinal feature in PD and ET, other conditions can also present
with tremor; such as dystonia (Jedynak et al., 1991) and multi-
ple sclerosis (Pittock et al., 2004). Finally, tremor can occur as a
result of exposure to environmental agents (Louis et al., 2011)
or be a side-effect of some medications (Zesiewicz and Sullivan,
2011).

The treatment and monitoring of tremor still represents a sig-
nificant challenge for clinicians as tremor is highly variable in

its characteristics within a day and over several days. Currently,
tremor is assessed during clinic visits, mostly with the use of clin-
ical rating scales (see Goetz et al., 2008 for example). However,
clinical observations by medical staff are time consuming and
not always representative since the testing environment can be
stressful for the patient; which can alter symptomatology. Lim-
ited methods are currently available to capture and assess tremor
over long periods. Patients can manually complete a diary of
the evolution of their tremor over several days; however, they
may have a difficult time accurately and objectively evaluating
their own symptom severity and the effect of medication. Some
quantitative methods were developed, such as an electromagnetic
tracking device (O’Suilleabhain and Dewey, 2001), a mechanical
linkage device on the fingertip (Matsumoto et al., 1999), lasers
(Beuter et al., 1994), electromyography (Askari et al., 2010), wear-
able sensors (Chen et al., 2011), miniature gyroscopes (Salarian
et al., 2007), digitizing tablets (Aly et al., 2007), a tremor pen
(Papapetropoulos et al., 2010), and accelerometers (Barroso Junior
et al., 2011). However, such devices are not readily available
to patients or clinicians, they require technical expertise when
manipulating hardware and analyzing results, and there are sub-
stantial costs associated with their purchase. We propose that
smart phones have the potential to address the aforementioned
issues. In the coming years, a majority of the population will own
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smart phones1. In fact, research shows that for 2011 alone, more
than 420 million smart phones were sold worldwide and these
figures are expected to rise to over 1 billion by 2016 (see text
footnote 1).

In a recent editorial in Nature methods, it was proposed that
smart phones could be used to gather data in the laboratory
(Anonymous, 2010). The next step would then be to develop
easy-to-use medical applications that correspond to the needs of
clinicians, patients, and researchers. Interestingly, almost all smart
phones have an accelerometer which, historically, was the device of
choice for tremor assessment (Comby et al., 1992). The potential
of smart phones for the evaluation of tremor was recently exam-
ined by our group (Daneault et al., 2010; Carignan et al., 2011) and
others (Lemoyne et al., 2010; Joundi et al., 2011). However, these
attempts presented with serious limits since they were performed
on limited sample sizes (Lemoyne et al., 2010; Joundi et al., 2011),
lacked clinical evaluation, and did not correlate other tremor mea-
surements to the smart phone. Finally, previous studies have not
evaluated the possibility that the smart phone could be used as a
standalone device for tremor assessment. As such, these previous
studies should be considered as proof of principle rather than a
validation of the use of smart phones for tremor recordings in
research or clinical settings.

To test the real potential of smart phones to assess, character-
ize, and monitor abnormal tremors, we developed a protocol in
two parts. We first determined whether the device could act as a
standalone platform for detection and analysis of several tremor
characteristics, and whether values obtained with the smart phone
were similar to those obtained with a commonly used laboratory
measurement tool; i.e., an accelerometer. Secondly, we sought to
compare values obtained by the smart phone against those of a
clinical evaluation.

RESULTS
In the first part of the study, the objective was to compare a
smart phone [Blackberry® Storm™ 9530 (Research In Motion,
Ltd., Waterloo, ON, Canada)] to a tremor assessment method nor-
mally used in laboratories. In order to do so, tremor was assessed
simultaneously with the smart phone and a laboratory accelerom-
eter. One of the authors (Jean-François Daneault) simulated 192

1Smart Phone Sales Statistics. According to figures for 2010, smart phones
accounted for 297 million (19%) of the 1.6 billion mobile phones sold that
year (http://www.gartner.com/it/page.jsp?id=1543014). US sales of smart
phones are expected to grow from 67 million in 2010 to 95 million in 2011,
and become the highest-selling consumer electronic device category (http:
//www.gartner.com/it/page.jsp?id=1550814). Currently, US smart phone owner-
ship is estimated at just over 37% of mobile subscribers or 87.4 million people as
of September 2011 (http://www.comscore.com/Press_Events/Press_Releases/2011/
11/comScore_Reports_September_2011_U.S._Mobile_Subscriber_Market_Share).
These figures are also representative for France, Germany, Italy, Spain and the
UK where the combined smart phone ownership is estimated at 38.9% or 91.4
million people (http://www.comscore.com/Press_Events/Press_Releases/2011/10/
Smartphones_and_Tablets_Drive_Nearly_5_Percent_of_Digital_Traffic_in_EU5).
Sales predictions estimate that 420 million smart phones will be sold in 2011 such
that it will represent 28% of the mobile handset market. This figure is predicted
to rise to over 1 billion in 2016 which will represent half of the total cellular
phone market (http://imsresearch.com/pressrelease/Global_Smartphones_Sales_
Will_Top_420_Million_Devices_in_2011_Taking_28_Percent_of_all_Handsets_
According_to_IMS_Research).

trials of tremor of different amplitudes and frequencies in differ-
ent conditions (i.e., rest tremor, postural tremor, kinetic tremor,
and intention tremor). Analysis of data was then carried out in
two steps. In part 1a, the objective was to evaluate whether algo-
rithms developed specifically for the smart phone to assess and
characterize tremor were as effective as time series analysis soft-
ware developed for laboratory work. In part 1b, the objective was
to compare the effectiveness of the smart phone’s accelerom-
eter in replicating results obtained by a laboratory accelerom-
eter. Examples of traces recorded with the smart phone and
the accelerometer with their corresponding power spectrum are
shown in Figure 1.

In part 2 of the study, the objective was to evaluate whether
tremor amplitude from patients with different pathologies
recorded with the smart phone application correlated with tremor
amplitude evaluated with a clinical scale. In order to achieve this
goal, tremor was assessed simultaneously with the smart phone
and a clinical scale in patients presenting with tremor stemming
from different pathologies in the conditions stated above. The
results from each part of the study are described next.

RESULTS OF PART 1A
Both time- and frequency-domain properties of tremor, such as
tremor amplitude, tremor regularity, power distribution (per-
centage of power within the 3–7 Hz frequency band), median
power frequency, peak power frequency, power dispersion (fre-
quency band containing 68% of total power centered at the median
power frequency), power dispersion centered at peak power fre-
quency,and harmonic index were examined. All these measures are
known to help categorize abnormal tremors and provide detailed
tremor characteristics (Beuter and Edwards, 1999; Edwards and
Beuter, 2000; Duval et al., 2006). To assess the effectiveness of
the smart phone’s algorithms, a correlation between values given
by the smart phone and those from the post-processing of the
time series from the smart phone was performed for each vari-
able of interest (see Table 1). For time-domain characteristics,
our results demonstrate that tremor amplitude and tremor reg-
ularity presented with a correlation coefficient of 1, regardless
of the condition. For frequency-domain characteristics such as
the power distribution, median power frequency, power disper-
sion, and harmonic index, correlation coefficients were always
above 0.95. This indicates that the algorithms of the smart phone
can accurately replicate the results obtained from the laboratory
analysis. As for the peak power frequency, the correlation coef-
ficients were somewhat lower; as they ranged from 0.73 to 0.95,
while averaging 0.87. These correlation coefficients are still satis-
factory as the 0.73 coefficient can be explained by three outliers
that, when removed, allow for the correlation coefficient to rise
above 0.90. Then, Bland–Altman and Concordance correlation
coefficients (CCC) were computed to assess whether there was a
good agreement between both analysis methods. The bias between
both analyses methods were mostly below or extremely close to
the resolution of the analysis methods, with standard deviations
(SD) well within acceptable ranges. CCC were all above 0.95 with
several above 0.99 which indicates substantial to almost perfect
agreement between methods. The only exception was for the peak
frequency where two coefficients were below 0.90. This indicates
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FIGURE 1 | Example of tremor traces recorded with the smart phone and
the accelerometer with their corresponding power spectrum. Top pane:
example of a moderate amplitude tremor. Middle pane: example of a high
amplitude tremor. Bottom pane: example of a low amplitude tremor
(physiological tremor). (A) Example of a tremor trace recorded with the smart
phone, (B) example of the tremor trace from the same trial as in (A) but

recorded with the accelerometer, (C) power spectrum of the tremor trace
recorded with the smart phone which was calculated with the algorithms
implemented within the smart phone, (D) power spectrum of the tremor
trace recorded with the smart phone which was calculated offline using our
laboratory software, (E) power spectrum of the tremor trace recorded with
the accelerometer which was calculated offline using our laboratory software.

that the smart phone algorithms could not adequately identify the
peak frequency; as such, this variable was not retained for further
analysis.

RESULTS OF PART 1B
Our results show correlation coefficients above 0.80 for time-
domain tremor properties; namely tremor amplitude and tremor
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Table 1 | Correlation coefficients between the results obtained from

the algorithms imbedded within the smart phone and the results

obtained from the analysis of the time series from the smart phone

by our analysis package using the S-Plus software.

r p Bias SD CCC

RMS Rest 1.00 0.00 0.000 0.000 1.00

Post 1.00 0.00 0.000 0.000 1.00

Kin 1.00 0.00 0.000 0.000 1.00

Intention 1.00 0.00 0.000 0.000 1.00

Reg. Rest 1.00 0.00 0.000 0.001 1.00

Post 1.00 0.00 0.000 0.001 1.00

Kin 1.00 0.00 0.000 0.001 1.00

Intention 1.00 0.00 0.000 0.001 1.00

Pow.Dist Rest 0.98 0.00 0.723 4.540 0.98

Post 0.99 0.00 −0.743 2.557 0.99

Kin 0.99 0.00 −0.246 3.813 0.99

Intention 0.94 0.00 1.466 7.877 0.94

MPF Rest 0.99 0.00 0.016 0.194 0.99

Post 0.99 0.00 −0.031 0.138 0.99

Kin 0.98 0.00 −0.077 0.242 0.98

Intention 0.98 0.00 −0.054 0.213 0.98

HI Rest 0.96 0.00 0.026 0.027 0.96

Post 0.96 0.00 0.029 0.033 0.96

Kin 0.97 0.00 0.023 0.019 0.97

Intention 0.95 0.00 0.023 0.030 0.95

Peak Rest 0.73 0.00 −0.115 1.157 0.73

Post 0.86 0.00 −0.096 0.933 0.86

Kin 0.95 0.00 −0.020 0.540 0.95

Intention 0.94 0.00 0.093 0.478 0.94

Disp. Rest 0.99 0.00 0.039 0.348 0.99

Post 1.00 0.00 0.031 0.216 1.00

Kin 0.98 0.00 0.189 0.510 0.98

Intention 0.99 0.00 0.059 0.304 0.99

Disp.Peak Rest 0.98 0.00 −0.216 0.767 0.98

Post 0.98 0.00 −0.242 0.692 0.98

Kin 0.97 0.00 −0.070 0.695 0.97

Intention 0.99 0.00 −0.125 0.596 0.99

Correlation coefficients are shown for every task performed. Correlation coef-

ficients were obtained for every variable calculated by the smart phone. RMS,

root mean square (tremor amplitude); Reg., tremor regularity; Pow.Dist, power

distribution; MPF, median power frequency; Peak, peak power frequency; Disp.,

power dispersion; Disp. Peak, dispersion centered at peak power frequency; HI,

harmonic index; SP, results obtained directly from the smart phone; PP, results

obtained by post-processing the time series from the smart phone. Bias between

both results and standard deviation (SD) of the difference between results of both

methods were computed. Finally, the concordance correlation coefficient (CCC)

was also computed between both methods.

displacement regularity (see results in Table 2). While providing
fairly similar results to the laboratory assessment tool, the differ-
ences observed with the smart phone application could be due to
a resolution issue. It seems that the smart phone’s accelerometer
is not sensitive enough to properly detect tremor characteristics
below a certain amplitude threshold (see bottom pane of Figure 1

Table 2 | Correlation coefficients between the results obtained from

the algorithms imbedded within the smart phone and the results

obtained from the analysis of the time series from the laboratory

accelerometer by our analysis package using the S-Plus software.

Without

threshold

With threshold

r p r p Bias SD CCC

RMS Rest 0.99 0.00 0.99 0.00 0.024 0.017 0.99

Post 0.98 0.00 0.98 0.00 0.022 0.044 0.98

Kin 0.99 0.00 0.99 0.00 0.071 0.032 0.99

Intention 0.99 0.00 0.99 0.00 0.066 0.061 0.99

Reg. Rest 0.92 0.00 0.95 0.00 −0.009 0.053 0.95

Post 0.81 0.00 0.90 0.00 0.033 0.060 0.90

Kin 0.88 0.00 0.88 0.00 −0.004 0.046 0.88

Intention 0.91 0.00 0.98 0.00 0.018 0.039 0.98

Pow.

Dist

Rest 0.96 0.00 0.97 0.00 −9.266 8.215 0.97
Post 0.97 0.00 0.98 0.00 −9.044 9.121 0.98

Kin 0.97 0.00 0.97 0.00 −7.137 7.208 0.97

Intention 0.96 0.00 0.92 0.00 −11.259 6.476 0.92

MPF Rest 0.82 0.00 0.99 0.00 −0.103 0.210 0.99

Post 0.84 0.00 0.95 0.00 −0.244 0.452 0.95

Kin 0.59 0.00 0.59 0.00 −0.828 1.268 0.59

Intention 0.92 0.00 1.00 0.00 −0.160 0.069 1.00

HI Rest 0.92 0.00 0.92 0.00 0.003 0.010 0.92

Post 0.77 0.00 0.90 0.00 0.001 0.012 0.90

Kin 0.81 0.00 0.81 0.00 0.023 0.034 0.81

Intention 0.89 0.00 0.89 0.00 0.004 0.007 0.89

Disp. Rest 0.75 0.00 0.55 0.00

Post 0.85 0.00 0.81 0.00

Kin 0.81 0.00 0.81 0.00

Intention 0.96 0.00 0.89 0.00

Disp.

Peak

Rest 0.73 0.00 0.52 0.00
Post 0.81 0.00 0.83 0.00

Kin 0.79 0.00 0.79 0.00

Intention 0.92 0.00 0.87 0.00

Correlation coefficients are shown for every task performed. Correlation coef-

ficients were obtained for every variable calculated by the smart phone. RMS,

root mean square (tremor amplitude); Reg., tremor regularity; Pow.Dist, power

distribution; MPF, median power frequency; Disp., power dispersion; Disp. Peak,

dispersion centered at peak power frequency; HI, harmonic index; SP, results

obtained directly from the smart phone; Acc, results obtained by post-processing

the time series from the accelerometer. Correlations were performed without any

threshold to the results as well as after removing all trials having tremor ampli-

tude below 1 mm. Then, for variables showing high correlation coefficients (i.e.,

RMS, Regularity, Pow.Dist, MPF, and HI), bias between both results and standard

deviation (SD) of the difference between results of both methods were com-

puted. Finally, the concordance correlation coefficient (CCC) was also computed

between both methods.

for an example a trial near this threshold). Spectral characteris-
tics assessed by the smart phone application seem to vary quite a
bit more, as observed correlation coefficients ranged from 0.15 to
0.97, although the majority lie above 0.80. This again could be due
to a lack of proper resolution from the smart phone hardware.
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To verify this, we removed all trials having tremor amplitude
below 1 mm from the correlation analysis (see Table 2). This value
was chosen as it is at around this amplitude that tremor can become
clinically visible. The results demonstrate that correlation coef-
ficients for time-domain tremor properties improved to values
above 0.88; with most correlation coefficients being above 0.96.
This indicates that limits in the resolution of the hardware within
the smart phone caused the lower precision seen in Table 2 before
the threshold was applied. The bias and SD between both quantifi-
cation methods were well within acceptable ranges. CCC were all
above 0.95 for RMS and above 0.90 for regularity (except during
the kinetic task) which indicates substantial agreement between
methods for the RMS and moderate agreement for regularity. As
such, the smart phone, using the current algorithms, can be viewed
as a valid tool to examine time-domain properties of tremor hav-
ing amplitude above 1 mm; but not during a kinetic task. This is
not a weakness since the goal is to detect abnormal tremor, not
physiological tremor. As for frequency-domain tremor properties,
correlation coefficients were greatly improved by the implementa-
tion of the threshold but not equally for each variable. It seems that
power distribution; median power frequency, and harmonic index
display the highest correlation coefficients of the spectral variables,
whereas power dispersion and power dispersion centered at peak
power frequency display less robust correlation coefficients. The
low correlation coefficients for both power dispersion calculations
may be due to the lower resolution of this tremor characteristic. In
fact, as soon as a movement is cyclic and regular, a sharp peak can
be observed in the power spectrum, i.e., small power dispersion.
Consequently, all simulated tremor over 1 mm had very similar
power dispersion in the current data. This lack of variability can
explain the poor correlation coefficients observed in this part of the
study for these variables. Bias, SD of the difference between both
quantification methods and CCC were then computed for spectral
characteristics showing high correlations. The bias between both
quantification methods were mostly below or extremely close to
the resolution of the analysis methods with SD, well within accept-
able ranges. CCC were all above 0.95 for the power distribution
which indicates substantial agreement between methods. As for the
CCC for the MPF and HI, they were above 0.90 with some above
0.95 except during the kinetic task. This indicates that a moder-
ate agreement can be observed between methods except during a
kinetic task; where only a poor agreement can be detected between
methods. Bland–Altman plots are shown in Figure 2 for tremor
characteristics exhibiting high correlations.

As such, the smart phone application could be considered as
an adequate measurement tool to provide power distribution,
median power frequency, and harmonic index of tremors having
amplitude above 1 mm while not performing a kinetic task.

RESULTS OF PART 2
To address the objective of this part of the study, we opted to cre-
ate and validate a clinical rating scale for tremor amplitude (see
Table 3). The scale developed allowed for scores between 0 and
5, with each increment being associated with a specific range in
tremor amplitude.

Results presented in Table 4 show that correlation coefficients
between recorded tremor and clinical evaluation of tremor were

fairly high for the rest, postural and intention tasks with values of
0.76, 0.85, and 0.88, respectively. However, the correlation coef-
ficients were lower than what was seen during the validation of
the clinical scale (see Table 3). This can be explained by the fact
that pathological tremor can fluctuate even over short periods of
time, whereas the simulated tremor used for the validation of the
scale was much more constant in amplitude over a given record-
ing. This made the clinical evaluation more difficult. Nonetheless,
the correlation coefficients observed with the patients were high
enough to expect relevant clinical information from the smart
phone application. As for the kinetic task, there was no significant
correlation between tremor amplitude calculated by the smart
phone and the clinical rating of tremor. This was due to the fact
that the very high amplitude of the voluntary movement dimin-
ished the influence of tremor. To address this issue, we chose to use
the amount of power located within the frequency band associ-
ated with tremor (3–7 Hz) as a marker of tremor amplitude. This
was done to remove frequencies related to voluntary movements,
which lie below 3 Hz. Despite this strategy, the correlation coef-
ficient remained somewhat lower than in other conditions, with
a value of 0.7 (see Table 4). We believe that this stems from two
factors. First, the clinical evaluation of tremor was more difficult
during a voluntary movement. Second, the smart phone applica-
tion has some difficulty in separating tremor from some of the
faster portions of voluntary movements as can be seen from the
lower correlation coefficients in that particular task in Part 1b of
this study (see Table 2). Taken together, these results indicate that
the smart phone application can provide relevant clinical infor-
mation about the amplitude of tremor during static positions, but
currently lack specificity during kinetic tasks. Interestingly, when
the data are grouped according to clinical rating scores, signifi-
cant differences can be observed for the tremor recorded with the
smart phone application between each clinical score (Figure 3).
This demonstrates that the data from the smart phone applica-
tion can reliably provide a clinical rating of pathological tremor
amplitude.

DISCUSSION
Mobile technology is currently used to transmit or store data
obtained from laboratory instruments (Barroso Junior et al.,
2011). With the current study, we demonstrate that mobile phones
can be used as a standalone platform to assess abnormal motor
behaviors such as tremor and as a tool to perform clinical evalu-
ations. More specifically, we demonstrated for the first time that
algorithms developed for smart phones can perform as well as
time series analysis software used in a laboratory setting to assess
and characterize abnormal tremor, as well as differentiate normal
from abnormal tremors.

VALIDATION AGAINST LABORATORY TOOLS
The current study provides a comparison between the use of
a smart phone application and laboratory tools for the char-
acterization of tremor. The results demonstrate that the smart
phone application can provide similar results to laboratory
tools for measurements of time-domain and spectral charac-
teristics albeit with some limitations. While the smart phone
always provides valid tremor amplitude values, evaluation of
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FIGURE 2 | Left column: correlation between smart phone data and
accelerometer data for tremor amplitude, regularity, power distribution,
median power frequency (MPF), and harmonic index (HI). Exact
correlation coefficients and p values are inTable 2. Right column:

Bland–Altman plots to evaluate the agreement between data from the smart
phone and from the accelerometer for tremor amplitude, regularity, power
distribution, median power frequency (MPF), and harmonic index (HI).
Specific values for the Bland–Altman test (bias, SD) are shown inTable 2.
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Table 3 |Table describing the results from the validation of the clinical scale used in Part 2 of the study.

A. Introduction

The purpose of this experiment was to characterize the properties of the clinical scale used to assess tremor amplitude of the hand.The scale incorporated a

six level ordinal scale; each associated with a predefined tremor amplitude (0=no visible tremor; 1=up to 1.5 cm; 2=1.5–3 cm; 3=3–4.5 cm; 4=4.5–6 cm;

and 5=6 cm and above)

B. Validity

Group 1 Group 2

Rater 1 0,967 (0.000) 0,963 (0.000)

Rater 2 0,954 (0.000) 0,968 (0.000)

Rater 3 0,907 (0.000) 0,969 (0.000)

Rater 4 0,951 (0.000) 0,966 (0.000)

Rater 5 0,957 (0.000) 0,965 (0.000)

Validity of the clinical scale was assessed against a laboratory accelerometer. As such, tremor was assessed simultaneously with both instruments by a

group of five raters. This was repeated with a second group of five raters. Pearson correlations were performed between the clinical score and the result

obtained from the accelerometer (p values are in parentheses beside correlation coefficients)

C. Sensitivity

Sensitivity of the clinical scale was assessed again against a laboratory

accelerometer.Trials were grouped by clinical score and the results obtained

from the accelerometer for contiguous clinical scores were compared

using repeated t -tests with Bonferroni–Holmes adjustments.

Asterisks signify a significant difference from the previous box plot.

Lines within the box plots represent the median for each group; whiskers

represent the tenth and ninetieth percentile and, dots below and above

the box plots represent fifth and ninty fifth percentiles, respectively.

D. Reliability

Group 1 Group 2

Intraclass

correlation

0,943 0,963

95% Confidence

interval

0,912–0,965 0,945–0,976

Inter-rater reliability was assessed using an intraclass correlation from the data of the two groups of five raters with the corresponding 95% confidence

interval

E. Discussion and conclusion

The results presented above demonstrate that the clinical scale used to evaluate hand tremor in the current study is valid, provides good sensitivity and

has very good inter-rater reliability. As such, the use of this scale to provide a clinical score of hand tremor is appropriate as per the study parameters

Cell A: description of the clinical scale. Cell B: results to demonstrate the validity of the clinical scale. Cell C: results to demonstrate the sensitivity of the clinical scale.

Cell D: results to demonstrate the inter-rater reliability of the scale. Cell E: summary of the results and short explanation of their meaning relating to the validity of

the clinical scale.

spectral characteristics and regularity of tremor requires an
amplitude threshold above 1 mm. This smart phone is there-
fore not suitable for characterizing the spectral characteristics
of normal physiological tremor, but can be used to moni-
tor pathological tremor characteristics. This is expected since
accelerometers used in laboratory settings are highly sensitive

to low amplitude oscillation but can be deleteriously affected
by shocks, which would be impractical in smart phones. Fur-
thermore, our results demonstrate that spectral characteristics
of tremor should currently not be assessed during movement.
The exact mechanism behind the poorer results obtained dur-
ing movement is not known, but we hypothesize that it could
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Table 4 | Correlation coefficients between the tremor amplitude (RMS)

obtained from the algorithms imbedded within the smart phone and

the clinical tremor scores.

r (Pearson) p

Rest RMS 0.762 <0.000

Postural RMS 0.851 <0.000

Intention RMS 0.880 <0.000

Kinetic RMS 0.086 0.557

Pow.Dist 0.700 <0.000

Correlation coefficients are shown for every task performed. Note that for the

Kinetic task, since tremor amplitude yielded a poor correlation, the power dis-

tribution (Pow.Dist) was chosen to better represent tremor oscillation and was

subsequently correlated to the clinical tremor scores. p Values are shown next to

their associated r values.

FIGURE 3 | Comparison of tremor amplitude recorded with the smart
phone according to the clinical tremor score each trial was given.
Asterisk (*) indicates a significant difference from the previous group. p
Values were 0.004, 0.002, 0.001, 0.001, and 0.017 for the paired
comparisons 0–1, 1–2, 2–3, 3–4, and 4–5, respectively. The associated
power for those tests was 0.788, 0.869, 0.973, 1.000, and 0.638,
respectively.

stem from crosstalk between the three axes of the smart phone
accelerometer, which would be absent from the one-axis labora-
tory accelerometer.

There are numerous ongoing studies examining patholog-
ical tremor worldwide. The use of a portable smart phone
based measurement tool could therefore provide much needed
information on the characteristics of tremor beyond what can
currently only be gathered in laboratory setting. Amongst many
applications for tremor evaluation, smart phones could pro-
vide valid measures of prevalence of ET in different popu-
lations, help determine the effect of different medications on
tremor frequency and amplitude in PD over the patient’s day,
and evaluate the prevalence of tremor as a side-effect of certain
medications.

VALIDATION AGAINST A CLINICAL SCALE
In addition to providing confirmation of the usefulness of smart
phones for tremor research, the current study provides for the
first time evidence of clinical utility for these devices in tremor
disorders. We found a strong relationship between the ampli-
tude of tremor measured by the smart phone application and
the amplitude of tremor measured by a clinical rating scale. Fur-
thermore, mean tremor amplitude recorded with the smart phone
application for each level of clinical scale rating was significantly
different, which indicates that clinicians could obtain a valid pro-
file of tremor severity over time. This demonstrates that the smart
phone can provide a reliable measure of tremor of different ampli-
tudes. This is important as it is well known that while not all PD
patients exhibit tremor, those that have tremor can exhibit highly
variable tremor amplitude and that this amplitude can fluctuate
over short periods of time (Duval et al., 1997; Duval and Beuter,
1998; Rahimi et al., 2011). Tremor severity can also fluctuate within
a given day and over multiple days which makes long-term moni-
toring of patients a necessity. This tool could inform the clinician
on the true impact of a medication change on the severity and
fluctuation of tremor. This is important as a significant part of
the costs associated with movements disorders stem from lack of
efficiency in adjusting and testing medication efficacy for indi-
vidual patients. These types of medical tools are then required
as the health community tries to move to evidence-based and
patient-centered medicine. The health-care system is stretched
thin and the development of novel tools to improve efficiency
and at the same time improve the quality of life of patients is
necessary. While the current study focused on the use of smart
phones for the quantification of tremor, using proper algorithms,
they could possibly characterize many other forms of involuntary
movements.

LIMITATIONS OF THE CURRENT STUDY
The current study examined the feasibility of evaluating tremor
using a Blackberry® smart phone. While the data presented in
this study clearly demonstrates that several tremor characteristics
can be assessed using this device, and that the results provided
are clinically meaningful, the algorithms have solely been tested
on one Blackberry® model. Indeed, other Blackberry® devices are
equipped with the hardware necessary for the proposed applica-
tions. We have not yet verified whether other models of Black-
berry® smart phones or phones from other manufacturers may
indeed be able to characterize the spectral properties of tremor
having amplitude below 1 mm. While the feasibility of such appli-
cations was briefly demonstrated on the iPhone® (see above), to
our knowledge there are currently no such studies on other widely
used platforms such as Android™, Java ME, and Windows Phone®.
The implementation of the method demonstrated in the current
study on all major platforms is essential in order to maximize the
impact of such a tool. We have no reason to believe that other
platforms could not be used for tremor assessment, except if their
hardware or software configuration does not allow access to the
accelerometer data. It is quite possible that accelerometer chips
within smart phones may soon be as precise as laboratory tools and
because of their relative affordability, smart phones may eventually
replace some laboratory assessment tools.
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FUTURE INDICATIONS FOR THE USE OF SMART PHONES IN RESEARCH
AND MEDICAL SETTINGS
The current study provides the framework for the use of smart
phones for the evaluation of motor behavior. While we presented
data on the assessment of tremor, with the proper algorithms, a
myriad of other movements, voluntary or involuntary, in health
and disease, can be quantified using these devices. The only bar-
rier to the use of smart phones in research settings is creativity and
the ability to implement the proper software within the devices
to achieve the set goals. The implementation of smart phones
in medical settings clearly requires more research since it will
directly impact the lives of patients. One foreseeable avenue from
the data presented here is the development of applications tai-
lored to the long-term monitoring of patients with tremor. These
applications could incorporate testing schedules, data transmis-
sion to the physician for remote monitoring,and many other useful
specifications. The goal of these applications would be to provide
meaningful information to the clinician in order to improve per-
sonalized care and reduce burden on the health-care system. Such
devices could also greatly improve the efficiency of clinical trials
in which tremor monitoring is needed.

CONCLUSION
The current study demonstrates for the first time that, with the
proper analytical algorithms, smart phones can be used not only
for data storage during experiments, but also as a data gather-
ing and analysis tools. Furthermore, we demonstrate that smart
phones can provide meaningful and powerful data for clinical
evaluations. Smart phones may therefore revolutionize scientific
research and greatly improve patient care.

METHODS
PART 1
The analysis of this part of the study is subdivided into two section;
part 1a and part 1b. The objective of part 1a of the study was to
evaluate whether our analysis packages normally used to char-
acterize tremor in the laboratory could be translated into a smart
phone application yielding corresponding results. The objective of
part 1b of the study was to evaluate whether the smart phone appli-
cation yielded similar results as tools commonly used to quantify
tremor in the laboratory.

Participant
Jean-François Daneault performed the tests. He is free of any
neurological disorders that could have influenced movements
or understanding of the tasks. Jean-François Daneault is right-
handed according to the Edinburg Handedness Inventory. This
protocol was approved by the ethics board of the Université du
Québec à Montréal.

Procedure
Apparatus. Tremor was assessed using a Blackberry® Storm™
9530 (Research In Motion, Ltd., Waterloo, ON, Canada). A choice
was made to code the required algorithms for the Blackberry® plat-
form as several were readily available in the laboratory for testing
and it was the programming language in which we were the most
proficient. Furthermore, the security provided by this platform for

storing and transmitting sensitive information that could be med-
ically relevant is currently much greater than on other platforms.
Finally, tremor was also quantified using a one-axis accelerometer
(TLB333B42, PCB Piezotronics, NY, USA) which was affixed to
the back of the smart phone.

Design. Tremor was recorded simultaneously with both methods.
The accelerometer was fixed to the back of the smart phone using
two-sided tape. Smart phone data acquisition rate was set at 60 Hz,
and the accelerometer acquisition rate was set at 2048 Hz. For the
purpose of the current experiment tremor was always recorded in
the same axis (i.e., front-to-back axis of the smart phone). Four
tasks were performed by the participant while he was seated: (A)
Resting tremor. This task consisted of having the participant sit-
ting with his arm hanging by his side as tremor was being recorded.
(B) Postural tremor. This task consisted of having the participant
keep his arm and hand outstretched in front of him and parallel
to the ground. (C) Intention tremor. This task consisted of hav-
ing the participant keep his arms and hands in front of him while
trying to bring the tips of his fingers as close as possible to each
other. (D) Kinetic tremor. This task consisted of starting in the
same position as in B and then, bringing the phone to one’s ear
and back at a relatively slow velocity. During each task, the partici-
pant held the smart phone in his hand. We opted for this approach
instead of taping or strapping the smart phone to the partici-
pant’s hand because we wanted a more ecological design where
they would hold the phone as they would in real life. The partic-
ipant performed 48 trials of every task while simulating tremors
of different amplitude and frequency. No specific instruction on
tremor amplitude and frequency was given for each trial; only
that after completion, there should be a high variability in tremor
amplitude and frequency between trials. Tremor recordings were
coded to last 10 s, while only the last 8.5 s of recording were taken
into account for analysis in order to minimize the impact of any
movement that could have occurred as a result of placing the hand
in the required position. A 1-s vibration (∼140 Hz) indicated to
the participant the end of each trial. Ten seconds were allotted
between trials to minimize fatigue.

PART 1A
Data analysis
The analysis algorithms usually employed in our laboratory, using
the S-Plus software (Mathsoft, Seattle, WA, USA), were coded
in Java™ in order to run on the Blackberry® operating system.
Each trial yielded two files of data on the smart phone. One
containing the raw time series of a given trial and another con-
taining the results obtained by the algorithms implemented in the
smart phone. The time series was analyzed with both the smart
phone algorithms and the algorithms usually employed within
the laboratory to obtain tremor characteristics, such as: tremor
amplitude, tremor regularity, power distribution, median power
frequency, peak power frequency, power dispersion, power disper-
sion centered at peak power frequency, and harmonic index. Each
characteristic and their computation are described below:

Tremor amplitude. First, to remove the influence of gravity, the
time series was demeaned. Then, a root mean square was applied
to the signal.
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Tremor regularity. First, the original time series was normalized,
i.e., the mean of the time series was removed from each point and
then, each point was divided by the SD of the time series. After,
the signal was divided into epochs of 1 s and the amplitude (root
mean square) was calculated for each epoch. Finally, the total SD
from the amplitude of all epochs was computed. This yielded a
measure of signal amplitude stability over time. A more regular
signal was associated with a lower value.

Spectral characteristics of tremor were then evaluated. To do so,
a fast-Fourier transform (FFT) was performed on the time series.
Codes were written in such a way that the power spectral density
function yielded only the power lying between 1 and 20 Hz as these
are the prominent frequencies of tremor.

Power distribution. Represents the sum of the power within a
specific frequency band located between 3 and 7 Hz; divided by the
total power. This frequency band harbors the majority of power
in most pathological tremors (McAuley et al., 1997).

Median power frequency. Represents the frequency where 50%
of the power lies below it and the remaining 50% lies above it.

Peak power frequency. Represents the frequency where the
maximum power was observed.

Power dispersion. Represents the width of a frequency band
containing 68% of total power; centered at the median power
frequency.

Power dispersion centered at peak power frequency. Represents
the width of a frequency band containing 68% of total power;
centered at the peak power frequency.

Harmonic index. Represents a ratio considering a rectangle
bounded on the sides by the frequency band of interest (0–20 Hz),
and vertically from 0 to the height of the highest peak. The har-
monic index is the proportion of the area of this rectangle lying
above the power spectrum itself.

While the coding of the algorithms mentioned above provide
the analytical basis of the application, several lines of codes were
also required to implement the graphical user interface, to assign a
specific id to each recording, to record files in appropriate folders
on the phone, and many more functional issues that are required
when using a smart phone application. These will not be discussed
in detail here as they can be modified to suit the needs of each study
and do not directly impact the data being analyzed.

Statistical analysis
In order to identify whether the algorithms written for the smart
phone provide the same results as those used in the laboratory,
a Pearson’s correlation was performed on the data. The results
provided by the smart phone were compared to results obtained
by analyzing the raw time series of the smart phone offline using
custom-designed algorithms within the S-Plus software (Math-
soft, Seattle, WA, USA). These analyses have been used on several
occasions by our group to characterize tremor in healthy and
pathological populations (see Duval et al., 2006; Carignan et al.,
2010 for example).

Next, Bland–Altman analyses were performed between data
from the smart phone and the accelerometer for each variable
(bias and SD of the difference between both methods of analysis).

Finally, concordance correlation coefficients (CCC) were com-
puted between data from both methods. These last two analyses
were performed to identify whether there was a good agreement
(reproducibility) between both tremor analysis methods.

PART 1B
Data analysis
Note that for this part of the study, the data from the accelerom-
eter was compared to the results calculated by the smart phone;
not from post-processing of the phone time series. Time series
from the accelerometer were recorded on a computer for post-
processing.

First, in order to identify whether the data recorded by the
phone was congruent with measures obtained with the accelerom-
eter, the time series obtained with the accelerometer were analyzed
using the S-Plus software (Mathsoft, Seattle, WA, USA). Data from
the accelerometer were down-sampled to 60 Hz using a moving
average. The same analysis performed in Part 1a of the study was
carried out on the accelerometer time series.

Statistical analysis
In order to identify whether the results stemming from the algo-
rithms written for the smart phone are significantly correlated with
results stemming from the analysis of the time series of a labora-
tory accelerometer, a Pearson’s correlation was performed. First, a
Pearson’s correlation was performed on all trials pooled together.
Then, a Pearson’s correlation was performed on trials within each
condition.

Then, to assess whether a threshold of tremor amplitude would
improve the correlation between instruments, the same corre-
lations were performed only on trials having tremor amplitude
above 1 mm.

Next, Bland–Altman analyses were performed between data
from the smart phone and the accelerometer for each variable
showing high correlation between methods (i.e., RMS, regularity,
MPF, distribution, and harmonic index).

Finally, CCC were computed between data from both meth-
ods for the same variables showing high correlations. These last
two analyses were performed to identify whether there was a good
agreement (reproducibility) between both tremor quantification
methods.

PART 2
The objective of this part of the study was to evaluate whether
there was a relationship between the results from the smart phone
application and a clinical scale to evaluate tremor amplitude.

Participants
Sixteen patients were recruited for this experimentation. Twelve
patients were diagnosed with idiopathic PD. Three patients were
diagnosed with ET and one patient was diagnosed with mul-
tiple sclerosis. When patients exhibited clinically visible tremor
within one limb, tremor recordings were performed on that
limb otherwise, tremor was recorded on their dominant side.
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The experimental protocol was approved by the institutional
ethics board of the Montreal Neurological Hospital and Insti-
tute. Fourteen patients were right-handed and two were left-
handed.

Procedure
Tremor was concurrently evaluated using two methods: the smart
phone and a clinical scale performed by Jean-François Daneault.
The clinical scale was custom-designed to evaluate tremor ampli-
tude of the upper limb. The rater was asked to assign a value
ranging from 0 to 5 to the participant’s tremor. Each value was rep-
resentative of a specific tremor amplitude [0= no visible tremor;
1= up to 1.5 cm (roughly the equivalent of one finger width based
on a previous study; Peters et al., 1990); 2= 1.5–3 cm (more than
the width of one finger up to two fingers); 3= 3–4.5 cm (more
than the width of two fingers up to three fingers); 4= 4.5–6 cm
(more than the width of three fingers up to four fingers); and
5= 6 cm and above (more than the width of four fingers)]. We
evaluated the specificity and reliability of this tremor amplitude
rating scale prior to clinical testing (see Table 3). The reasons
behind the development of this scale rather than using an already
available tremor rating scale for PD are that: (a) the scale needed
to provide a quantitative measure of tremor amplitude, (b) the
scale needed to provide a high degree of precision (small incre-
ments between ordinal values), and (c) the scale needed to be
linear. The most commonly used clinical scales that assess tremor
in PD do not provide all three characteristics. The Unified Parkin-
son’s Disease Rating Scale (UPDRS) (Fahn et al., 1987) does have
two items in the motor section to assess tremor however, it does
not provide quantitative measures of amplitude. The Movement
Disorders Society revision of the UPDRS (MDS-UPDRS) (Goetz
et al., 2008) does provide quantitative measures of tremor ampli-
tude however, the increment in clinical score does not reflect a
linear increase in tremor amplitude and it does not provide a
measurement precise enough for our purpose. Another scale that
is sometimes used is the Fahn, Tolossa, Marin tremor rating scale.
Again, this scale does not provide quantitative measures of tremor
amplitude. As such, we deemed necessary to develop our own scale.

Patients were asked to perform the four tasks that were evalu-
ated in Part 1a and 1b of the current study. Each task was repeated

three times and a rest period of 20 s was allotted between trials to
minimize fatigue.

Data analysis
Tremor amplitude from the smart phone was analyzed using the
same method as described in Part 1a. However, tremor ampli-
tude for all three axes were computed and compared. The highest
tremor amplitude value was retained for comparison with clinical
scores.

Statistical analysis
In order to identify whether the amplitude results stemming from
the smart phone are significantly correlated with results stemming
from a clinical rating scale, a Pearson’s correlation was performed
within each condition. Then, we evaluated whether the smart
phone was able to detect clinical differences. For this, the ampli-
tude of each trial assigned a given clinical score were pooled. Then,
the mean tremor amplitude was computed for each clinical rating
(0–5). The mean value for each contiguous score was compared
using a t -test (0–1, 1–2, 2–3, 3–4, and 4–5). Initial threshold for sig-
nificance was set at p > 0.05. To correct for multiple comparisons,
a Bonferroni–Holmes adjustment was performed.
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