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In the past, the amygdala has generally been conceptualized as a fearprocessing module.
Recently, however, it has been proposed to respond to all stimuli that are relevant with
respect to the current needs, goals, and values of an individual. This raises the question
of whether the human amygdala may differentiate between separate kinds of relevance.
A distinction between emotional (vs. neutral) and social (vs. non-social) relevance is
supported by previous studies showing that the human amygdala preferentially responds
to both emotionally and socially significant information, and these factors might even
display interactive encoding properties. However, no investigation has yet probed a full 2
(positive vs. negative valence) x 2 (social vs. non-social content) processing pattern, with
neutral images as an additional baseline. Applying such an extended orthogonal factorial
design, our fMRI study demonstrates that the human amygdala is (1) more strongly
activated for neutral social vs. non-social information, (2) activated at a similar level when
viewing social positive or negative images, but (3) displays a valence effect (negative
vs. positive) for non-social images. In addition, this encoding pattern is not influenced
by cognitive or behavioral emotion regulation mechanisms, and displays a hemispheric
lateralization with more pronounced effects on the right side. Finally, the same valence x
social content interaction was found in three additional cortical regions, namely the right
fusiform gyrus, right anterior superior temporal gyrus, and medial orbitofrontal cortex.
Overall, these findings suggest that valence and social content processing represent
distinct kinds of relevance that interact within the human amygdala as well as in a more
extensive cortical network, likely subserving a key role in relevance detection.
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INTRODUCTION

Thanks to the advancement of neuroimaging techniques and
paradigms, our knowledge on human amygdala function has
steadily increased during the last two decades. Yet, divergent
views have emerged concerning stimulus properties that trig-
ger amygdala responses. One classic notion is that the amygdala
constitutes a fear module crucially involved in the automatic
detection of threat-related information, fear reaction and fear
learning (Ohman and Mineka, 2001). Other views suggest instead
that the amygdala may preferentially process arousal (Anderson
et al., 2003; Small et al., 2003) or valence (Murray, 2007) infor-
mation. According to such notions, the amygdala would either
represent a general arousal indicator or valence processor. Finally,
besides these traditional accounts respectively derived from basic
(Ekman, 1999) or bi-dimensional (Russell, 1980) theories of emo-
tion, recent experimental evidence revealed amygdala activation
to be determined by many additional factors (not confounded by
arousal), such as eye gaze (N’Diaye et al., 2009; Sato et al., 2010),
novelty (Blackford et al., 2010; Weierich et al., 2010; Balderston
et al., 2011), social content (Norris et al., 2004; Britton et al.,

2006; Goossens et al., 2009; Scharpf et al., 2010), context (Kim
et al., 2003, 2004; Vrticka et al., 2008), personal impact (Ewbank
et al., 2009), or individual differences in subjective evaluation
(Schiller et al., 2009), motivational state (Canli et al., 2001; LaBar
et al., 2001; Morris and Dolan, 2001) as well as various psycho-
logical traits (Canli et al., 2001; Bishop et al., 2004; Etkin et al.,
2004; Sabatinelli et al., 2005; Dickie and Armony, 2008; Vrticka
et al., 2008, 2012a; Vrticka and Vuilleumier, 2012). To integrate
these different findings, a new account of human amygdala func-
tion has been put forward, primarily linking it with the appraisal
of biological relevance (Sander et al., 2003; Sergerie et al., 20065
Adolphs, 2010; Pessoa and Adolphs, 2010). This concept of rel-
evance detection has its origins in emotion psychology (Sander
etal.,2003), in particular in appraisal theories of emotion (Sander
etal., 2005), and refers to the preferential processing of events that
are (biologically) relevant to major concerns/goals/needs and val-
ues of an individual at a specific moment in time (see Frijda, 2009;
Reisenzein, 2009).

When considering human amygdala function in terms of bio-
logical relevance detection, the question arises what kind of
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information might be most relevant, and thus which stimulus
properties are preferentially processed by the human amygdala.
To address this issue, several studies have compared two differ-
ent kinds of relevance, in particular emotional vs. social relevance
(Norris et al., 2004; Britton et al., 2006; Harvey et al., 2007;
Scharpf et al., 2010). On the one hand, emotional relevance was
referred as to stimuli that are likely to be appraised so that
they would elicit an emotional response (see Sander et al., 2005)
and modulate cognitive processes such as attention (Vuilleumier,
2005; Brosch et al., 2008), independently of their social nature.
On the other hand, social relevance was associated with stimuli
conveying information about interpersonal interactions and con-
specifics, regardless of their emotional value. This corroborates
the view denoting a high relevance of social information for our
species due to its direct link to guiding human behavior (Keltner
and Kring, 1998; Hariri et al., 2002). It is also consistent with
the so called social brain hypothesis (Dunbar, 1998), stating that
the need for social skills led to functional specialization of new
cognitive mechanisms and “... fuelled the expansion of the human
brain ...” (Adolphs, 2003, p. 166). Accordingly, the abovemen-
tioned investigations reported both emotional relevance effects
(emotional vs. neutral) and social relevance effects (social vs. non-
social) in the amygdala (Norris et al., 2004; Britton et al., 2006;
Scharpf et al., 2010). The last study even suggests an interactive
processing of emotional and social relevance (highest amygdala
activation for emotional and social stimuli), although no for-
mal test for such interactive processing was carried out (Scharpf
et al., 2010). Such data corroborate the notion that socially rel-
evant stimuli are most likely also emotionally relevant, in the
sense that emotions are typically elicited in social situations or
by taking into account the affective or motivational dimension
of social contexts (Jakobs et al., 1997; Balderston et al., 2011).
However, none of these studies differentiated the emotional rel-
evance effect in terms of valence, distinguishing between positive
vs. negative value (Morrison and Salzman, 2010), therefore leav-
ing the question open of whether valence processing (e.g., threat)
may (at least partly) determine the response to social relevance.
According to the literature, negative stimuli should activate the
amygdala stronger than positive ones due to their intrinsically
higher biological relevance in terms of survival (Hariri et al.,
2002). To clarify relevance detection in the human amygdala, it
would therefore be useful to test for a full 2 (valence) x 2 (social
content) interaction pattern, which was not possible in previous
studies (Norris et al., 2004; Britton et al., 2006; Harvey et al., 2007;
Scharpf et al., 2010). Consequently, the current functional mag-
netic resonance imaging (fMRI) study applied such experimental
design, using both social and non-social neutral images serving as
an additional baseline.

In addition, fMRI investigations in the field of emotion regu-
lation have disclosed differential amygdala activation to positive
and negative stimuli as a function of task instructions or viewing
conditions, particularly through emotion regulation processes.
The latter may involve cognitive (re-appraisal) or behavioral
(expressive suppression) regulation strategies, aimed at either up-
or down-regulating emotional states (Ochsner et al., 2002, 2004;
Levesque et al., 2003; Kim and Hamann, 2007; Goldin et al,,
2008). We therefore also included these two major regulation

strategies (together with a natural viewing condition) in our
experimental paradigm to further test for potential task effect on
relevance detection mechanisms.

Furthermore, as already mentioned above, amygdala activity is
consistently modulated as a function of motivational state (Canli
etal., 2001; LaBar et al., 2001; Morris and Dolan, 2001) or person-
ality traits (Canli et al., 2001; Bishop et al., 2004; Sabatinelli et al.,
2005; Vrticka et al., 2008, 2012a,b; Vrticka and Vuilleumier, 2012).
Therefore, we also included measures assessing individual differ-
ences in the current study, in order to probe for relations between
relevance detection mechanisms and personal dispositions. First,
we chose trait anxiety (STAI-T, see section “Methods”), because it
has already previously been shown to modulate amygdala activ-
ity to threat- or fear-related stimuli (Bishop et al., 2004; Etkin
et al., 2004; Dickie and Armony, 2008), and thus influence neg-
ative valence processing. Second, we assessed attachment style
(secure vs. insecure—avoidant or anxious; Relationships Scales
Questionnaire, see section “Methods”), because we have pre-
viously shown that this personality trait can influence social
emotional processing within the human amygdala and increase
blood-oxygen-level-dependent (BOLD) responses to social nega-
tive interaction scenarios (Vrticka et al., 2008, 2012a; Vrticka and
Vuilleumier, 2012).

Finally, besides the question to what stimulus types or proper-
ties the amygdala would respond to preferentially, another issue
on human amygdala activation concerns any hemispheric lateral-
ization during social and/or emotional processing. Hemispheric
lateralization of emotion in general has been proposed in different
ways, either in terms of (1) fundamentally more right-lateralized
emotion processing, regardless of valence; (2) a preferential rep-
resentation of positive vs. negative emotions in the left vs. right
hemispheres, respectively—and thus as a function of valence; or
(3) a distinction between approach (left) vs. avoidance (right)
behavioral tendencies, rather than valence (Sergerie et al., 2006).
Regarding lateralization in the human amygdala more specifi-
cally, one prominent account has been related to language and
proposed a differential representation of semantic (left) vs. non-
semantic (right) information (Sergerie et al., 2006), whereas
another hypothesis highlighted differential temporal dynam-
ics and suggested faster emotional information processing with
quicker habituation in the right as compared to the left amyg-
dala (Sergerie et al., 2006). Amygdala lateralization has also been
related to sex differences (Cahill, 2006), but here we chose to
recruit only female participants to avoid confound related to
this additional factor. However, assumptions on hemispheric lat-
eralization have generally focused on the valence dimension of
emotional information only, and it still remains to be seen how
such lateralization accounts may be affected by social relevance.

According to the previous literature and theoretical consider-
ations of the appraisal theory summarized above (Sander et al.,
2003), we predicted the following findings. First, the amygdala
should display a social vs. non-social activation difference (for
both neutral and emotional stimuli), because social information
is thought to be particularly relevant for our species. Second,
this social relevance effect should interact with the representation
of valence in terms of a negative vs. positive activation differ-
ence, as social threat is likely to be even more strongly relevant.
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Third, personality (trait anxiety and/or attachment style) should
modulate these valence and social effects in the human amyg-
dala, because the appraisal of social emotional stimuli is strongly
dependent on their significance for the observer in terms of per-
sonal values and needs. Thereby, social and emotional stimuli
should be affected most, again due to their highest significance
for the human species.

METHODS

SUBJECTS

We recruited 19 healthy paid volunteers (all right-handed women,
mean age 24.82 % 4.0), who all had a normal or corrected to
normal vision, no history of neurological or psychiatric disease,
and gave informed written consent according to the local ethi-
cal committee regulation. Only women were included in order
to avoid any potential sex differences that could have modulated
the effects of interest (see e.g., Cahill, 2006; Kim and Hamann,
2007; Vrticka et al., 2012a,b). fMRI data from the same study
were previously reported in Vrticka et al. (2011) and Vrticka et al.
(2012a), but the latter focused on whole-brain results compar-
ing specific emotion regulation strategies and distinct attachment
styles. In addition, behavioral data derived from stimulus val-
idation (see section “Stimuli” below) was published in Vrticka
etal. (2012b). Here, we specifically examine amygdala activity and
brain areas that show main effects of social and emotional rele-
vance, independently of any task effects, and we investigate the
role of trait anxiety (rather than individual attachment style, see

below).

EXPERIMENTAL MATERIAL AND PROCEDURE

Stimuli

A total number of 360 emotional pictures were initially collected
from the internet and from the International Affective Pictures
System (IAPS). All were in colors, and adjusted to obtain similar
size, contrast, and pixel resolution. Half of the pictures displayed
scenes with a clear social content, such as two people fighting
or a mother interacting with her baby. The other half repre-
sented animals, objects or landscapes that were not social, like
a dead bird in industrial waste or a tropical island scene. All
360 pictures were rated in a separate behavioral study by 54
female students on three continuous rating scales (from 1 to 100),
including PLEASANTNESS (from very negative to very positive),
INTENSITY (from low to high arousal), and CONTROL (from
absence to full presence of control over the emotional experi-
ence induced by viewing images (Vrticka et al., 2012b). According
to the average rating results from this sample, 240 pictures were
finally chosen for the fMRI study, and sorted by their SCENE
CONTENT (either social or non-social) and VALENCE (either
positive or negative). This gave rise to four stimulus categories (60
pictures each): Social Positive (SP) or Negative (SN), and Non-
social Positive (NSP) or Negative (NSN). Negative images were
rated as lower in pleasantness and control, but higher in intensity
than positive images (ps < 0.001). However, there were no dif-
ferences between social vs. non-social images (ps > 0.25), and no
interactions (ps > 0.11). In addition, there were no differences in
luminance overall (ps > 0.098), and social complexity for social
images specifically (number of humans per image; p = 0.5).

Please refer to Vrticka et al., (2011 and 2012a,b) for detailed val-
ues. Note that the differences in intensity between negative and
positive stimuli could not be avoided in order to match pairs of
social and non-social scenes in both valence conditions, because
social material is otherwise typically judged as much more intense
than non-social material (Ewbank et al., 2009). Finally, we also
selected 40 neutral images from the IAPS database (20 including
humans, 20 without humans) to be used in a baseline control con-
dition (see below), with valence ratings situated between positive
and negative images.

Experimental conditions

Before entering the fMRI scanner, all participants were told that
the purpose of the experiment would be to investigate how the
brain reacts to different types of images (e.g., real scenes vs. fic-
tion scenes) and to which degree people can voluntarily influence
the emotional impact of these images on them. Accordingly, the
experimental layout comprised four different viewing conditions
in which pictures were presented with different tasks to induce
different emotion regulation strategies.

The first condition was used as a control baseline, and was
introduced to the participants as “a photographic quality” judg-
ment, where they had to indicate on each trial (by button press,
using a 4-point scale—see below) whether the image was of good
quality (e.g., well-focused or properly lighted). All images in
this condition were neutral, but could display either scenes with
humans (i.e., social content) or inanimate settings and landscapes
(i.e., non-social content). This viewing condition was later used
to provide a baseline for general differences in brain activation to
social vs. non-social stimuli, irrespective of emotional processing
demands and valence. It was presented as the first block of the
first scanning run and the last block of the last run.

The three other viewing conditions included emotional
images only, and comprised an emotion experience, a cognitive
re-evaluation (re-appraisal), and a behavioral expressive sup-
pression condition. Because there was no significant three-way
interaction in any region of interest (see section “Results”), acti-
vations were collapsed during final data analysis. For more details
regarding the experimental layout, please refer to the study where
the emotion regulation effects were explored systematically as a
function of the different viewing conditions (Vrticka et al., 2011).

The participant’s task was to report their feeling state evoked
by the preceding stimulus (“How did you feel while seeing the last
image”?), using a 4-point scale (see below). All emotional images
were counterbalanced across participants, so that the same images
seen in one viewing condition by a given participant were seen in
the other viewing conditions by different participants.

Procedure

The fMRI experiment was divided into three successive scanning
runs. Each run included two of the three viewing conditions, pre-
sented in blocks of 40 emotional images (duration = 294 s per
block), whereas the first and the last run also included an addi-
tional block of 20 neutral images (baseline condition, duration =
151's). Within each block, images were pseudo-randomized and
equally probable for the different stimulus categories (social vs.
non-social content, positive vs. negative valence). The first and
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the third runs lasted approximately 13 min, and the middle run
10 min.

Each viewing condition block began with an instruction dis-
play (7 s), followed by images in pseudo-randomized order. Every
individual trial started with a fixation cross at the screen center
(average duration = 1125 ms jittered between 790 and 1485 ms),
followed by an emotional or neutral image for 2, and then a
response display probing for emotion ratings (4 s; see Figure 1).
Ratings were made on a 4-button response box, according to a
4-point scale ranging from very and slightly negative (buttons 1
and 2, respectively) to slightly and very positive (buttons 3 and 4,
respectively).

MRI acquisition

MRI data were acquired on a 3 T whole-body scanner (Siemens
TIM TRIO, Erlangen, Germany), using standard head-coil
configuration. For each participant, a structural image was
obtained with a MPRAGE T1-weighted sequence (TI/TR/
TE/Alip = 900/1900/2.32/9°, parallel acquisition (GRAPPA)
with acceleration factor 2, FOV = 230 x 230 x 173 mm?>,
Matrix = 256 x 246 x 192). Functional images (TR/TE/Flip =
2200 ms/30 ms/85°, parallel acquisition (GRAPPA) with acceler-
ation factor 2, FOV = 235mm X 235 mm, matrix = 128 x 84,
resulting voxel size is 2.8 x 1.8 x 3.4mm?) covered the whole
brain, composed of 36 contiguous 4 mm axial slices parallel
to the inferior edge of the occipital and temporal lobes, and

acquired continuously for a total of 975 images per participant
(two sessions with 350 and one session with 275 images).

Image  processing was  performed  with  SPM2
(www.fil.ion.ucl.ac.uk) using standard procedures for realign-
ment of the time-series, slice-timing correction, normalization
to a standard brain template in MNI space, and smoothing
with an 8 mm FWHM Gaussian kernel. Statistical analysis was
performed using the general linear model implemented in SPM2,
with a separate regressor for each event type convolved with a
canonical hemodynamic response function. Twelve event types
from the emotion regulation task (4 image categories: SP, NSP,
SN, and NSN; for each of the three viewing conditions), plus
two additional event types (social and non-social) from the
baseline condition were modeled for each participant, using the
three scanning runs in a fixed-effect analysis at the single-subject
level. Movement parameters from realignment corrections were
entered as additional covariates of no interest for each scanning
run, in order to account for residual movement artifacts after
realignment. Statistical parametric maps were then generated
from linear contrasts between the different conditions in each
participant.

A second-stage random-effect analysis was performed using
one-sample ¢-tests on contrast images obtained in each subject
for each comparison of interest. Because of a-priori predictions
regarding amygdala, we opted to threshold amygdala activa-
tions at p < 0.005 (uncorrected, whole brain) and k> 10. All
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FIGURE 1 | Interactive valence and social content processing in bilateral
amygdala. Statistical parametric maps (threshold p = 0.005) for the contrast
social > non-social displaying increased activity in the left (A) and right (B)

amygdala, (big windows: sagittal view; small windows: coronal view). Graphs

depicting the extracted activation values (betas) averaged across voxels from
the left (C) and right (D) amygdala, displaying a valence x social content
interaction. NEG, negative; NSOC, non-social; POS, positive; SOC, social.
Error bars reflect S.E.M.
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other contrasts were thresholded at p < 0.001 (uncorrected,
whole brain) and k > 20 (Lieberman and Cunningham, 2009).
Average parameter estimates of activity (betas) for each con-
dition were extracted from all voxels in regions of interest,
defined by the full-extent clusters showing significant activa-
tion at a voxel level in the SPM group analysis (random-effect
contrasts). These beta values were then used for repeated-
measure ANOVAs, ANCOVAs and t-tests performed in SPSS
(Version 18; http://www.spss.com/) with the factors of social
content, valence, viewing condition, and personality, when
appropriate.

Individual diffrence measures
Trait anxiety was measured using a French version of the
Spielberger State-Trait Anxiety Inventory (STAI-T) analyzed
according to the author’s manual (Spielberger, 1983). Attachment
style was assessed by a validated French version (Guédeney et al.,
2010) of the relation scales questionnaire (RSQ; Collins and Read,
1994), analyzed according to Kurdek (Kurdek, 2002) relying on
an initial model by Simpson and colleagues (Simpson, 1990;
Simpson et al., 2002)—see also (Vrticka et al., 2008, 2012a,b).
Influences of trait anxiety or attachment style on brain activity
in regions of interest were assessed by a full 3 (viewing condi-
tion) x 2 (valence) x 2 (social content) x 1 (anxiety) or x 2
(attachment style) analysis of covariance (ANVCOVA), by includ-
ing the respective personality measures for each subject in SPSS
(www.ibm.com/software/analytics/spss/). To do so, the raw scores
collected from STAI-T and attachment scales were centered to
avoid multicollinearity problems in multiple regression (Aiken
and West, 1991).

RESULTS

BEHAVIORAL RESULTS

A full 3 (viewing condition) x 2 (valence) x 2 (social content)
ANOVA on the behavioral ratings revealed (1) a main effect of
valence [F(1, 18y = 1149, p < 0.001] because positive images were
always rated as more pleasant than negative images, and (2) a
viewing condition x valence interaction [F(;, 18y = 36.79, p <
0.001], because both positive and negative images were rated as
less pleasant and less unpleasant, respectively, during re-appraisal
as compared to emotion experience and expressive suppression
(Vrticka et al., 2011).

MAIN EFFECTS AND INTERACTIONS OF THE fMRI ANALYSIS

In an initial step, we computed the four main effects con-
trast regarding valence (positive > negative and vice versa)
and social content (social > non-social and vice versa). These
analyses revealed significant BOLD signal change in the amyg-
dala solely for the contrast social > non-social (see Table 1
and Figurel). Because the main aim of the present study
was to investigate relevance detection within the amygdala
(and only subsidiarily examine any additional brain areas dis-
playing the same computational profile), all subsequent anal-
ysis steps are reported for this region first, and then for
regions appearing in the same initial social > non-social

comparison (functional region of interest determination; see
Table 1).

Table 1| Brain areas activated in the main contrast SOCIAL >
NON-SOCIAL, listed with peak coordinates and best estimates of
anatomical location.

Region BA Voxel T-Value x y z
SOCIAL > NON-SOCIAL

Amygdala right* 26 4.21 21 -6 -18
Amygdala left* 13 3.55 -21 -9 -18
Fusiform Gyrus right 37 98 6.59 42 —42 —-27
Anterior STG right 21 m 6.29 60 -6 —-24
mOFC il 40 5.26 -3 54 -18
mPFC 10 28 4.36 3 57 15
Temporal Inferior left  20/21 109 6.85 -57 -3 —-27
PCC 23 393 732 0 —51 33
pSTS left 19 458 782 —45 -84 0
pSTS right 19 711 707 45 48 18
Fusiform Gyrus left 19/37 25 4.43 —-42 —63 -21
Occipital cortex left 17 331 774 -6 —102 9

Statistical threshold was p < 0.005 (uncorrected, whole brain) and k = 10 for
bilateral amygdala as indicated by * above, and p < 0.001 (uncorrected, whole
brain) and k > 20 for remaining brain areas. STG, superior temporal gyrus, OFC,
orbitofrontal cortex; PFC, prefrontal cortex; STS, superior temporal sulcus; PCC,
posterior cingulate cortex; m, medial; dl, dorsolateral; dm, dorsomedial; p, pos-
terior. The first five brain areas listed were the ones found to display a significant
valence x social content interaction; BA, brodman area.

Amygdala

We first analyzed amygdala activation during the neutral con-
trol condition with a 2 (side) x 2 (social content) ANOVA. This
confirmed a main effect of social content [social > non-social;
Fa, 18 = 9.78, p = 0.006], demonstrating that this effect was
present even for non-emotional scenes (see Figure 3A).

We then analyzed amygdala activation to emotional images
during the three different viewing conditions with a 2 (side) x 3
(viewing instruction) x 2 (valence) x 2 (social content) ANOVA.
This revealed several main effects and interactions (see Figure 1).
First, there was a main effect of side [F(;, 15y = 2699, p < 0.001],
because activity was overall higher in the left than in the
right amygdala. Second, we found a main effect of valence
[Fa, 18y = 7.37,p = 0.014], as activity was overall higher for
negative as compared to positive images. There was also a
side x valence interaction [F(i, 13y = 7.15, p = 0.016], because
the activation difference between negative vs. positive images was
greater in the right [¢j3) = 2.73, p = 0.014] as compared to the
left [t13) = 2.21, p = 0.04] amygdala. Third, our data showed
a main effect of social content [F(;, 18y = 38.39, p < 0.001],
because activity was overall higher for social than non-social
scenes.

We also found a side x social content interaction
[F(1, 18y = 6.25, p = 0.022], which arose because of a more
pronounced social > non-social activation difference in the right
[tas) = 5.83, p < 0.001] as compared to the left [tg) = 4.29,
p < 0.001] amygdala. These effects were accompanied with
a valence x social content [F(; 18y = 7.30, p =0.015] and
a marginally significant side x valence x social content
[F(1, 18y = 3.89, p = 0.064] interaction. The valence X social
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content interaction showed that activity in both amygdalae was
not significantly different between negative and positive social
images [all 15y < 1.51, p > 0.15], but higher for negative than
positive non-social images [all t(15) > 2.66, p < 0.016], while
the side x valence x social content interaction revealed that
this effect was stronger in the right [f(13) = 10.24, p = 0.005] as
compared to the left [t(15) = 3.95, p = 0.062] amygdala.

Finally, there were no interactions with viewing conditions
{natural viewing, re-appraisal, and suppression; [all F(; 15) <
1.12, p > 0.34]}, suggesting that the abovementioned valence
and social relevance detection pattern was independent of task
instructions.

Overall, these data on amygdala activation revealed two main
findings. Firstly, we observed a reliable preferential response to
social > non-social information bilaterally, for both neutral and
emotional images. Secondly, we also found an additional inter-
active processing of valence and social content, which was more
right-lateralized.

Other areas in social brain networks

The 3 x 2 x 2 ANOVA was similarly performed on extracted
beta values from the other regions of interest that were iden-
tified by the same initial computation of the social > non-
social main effects (see Table1). Like in the amygdala, this

revealed a significant valence x social content interaction in the
right fusiform gyrus (FG), right anterior superior frontal gyrus
(SFG), and medial orbito-frontal cortex (mOFC; see Figure 2).
In all these three brain areas, there were also main effects
of valence [negative > positive; all Fi9, 1) > 5.67, p < 0.028]
and social content [social > non-social; all F(j9, 1) > 65.63,
p < 0.001], but no interaction with the three different view-
ing conditions {natural viewing, re-appraisal, suppression;
[all F19, 1) < 2.39,p > 0.11]}.

We also assessed activity in the FG, aSTG, and mOFC dur-
ing the neutral control condition. This revealed a significant
social > non-social activation difference in all three regions [all
Fq, 18) > 16.03, all p = 0.001] (see Figures 3B,C,D).

The findings in the FG, aSTG, and mOFC thus showed a
very similar pattern to the amygdala, with preferential social vs.
non-social processing, regardless of emotional content, but also
interactive processing of valence and social content, independent
of viewing conditions.

CORRELATIONS WITH PERSONALITY MEASURES
We next assessed the possible influence of trait anxiety and adult
attachment style on relevance detection using regression anal-

yses with the corresponding questionnaire scores (see section
“Methods” for details).
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Amygdala

When considering individual differences using trait anxiety scores
in an ANCOVA, we found a trend for a 2 (valence) 2 x (social
content) x 1 (trait anxiety) triple interaction in the right amyg-
dala [F(1, 13y = 4.19, p = 0.059]. There was no such effect in
the left amygdala [F(;, 13y = 1.63, p = 0.22], and there were no
additional interactions with trait anxiety bilaterally. To visualize
the direction of these effects, we performed a median split of
activation parameters from the right amygdala according to indi-
vidual trait anxiety scores (low: n = 8, mean AX score = —0.86;
high: n = 8, mean AX score = 0.93). This visualization revealed
that the right amygdala effect was explained by a significant
valence x social content interaction solely for low [F(1, 7) =
17.06, p = 0.004] but not high [F(;, 7y = 0.68, p = 0.44] anxious
subjects (see Figures 4A,B). To further elaborate on the finding
that high anxious participants did not display any valence x social
content interaction pattern in the right amygdala, we correlated
activation values (betas) for each stimulus condition separately
(SP, NSP, SN, NSN) with trait anxiety scores from all subjects.
This revealed a selective negative association between trait anx-
iety and activation for social positive (SP) images (r> = 0.24,
p = 0.041), in the sense that the higher the trait anxiety, the lower
the right amygdala activation to SP images (see Figure 4C). No
such relations were found for the three other image categories
(r* < 0.05).

The valence X social content interaction for high anxious
participants was unaffected by the different viewing conditions
[Fa, 7y =0.02, p=10.98]. No influences of trait anxiety on
valence and social content processing in the left amygdala were
revealed.

No significant effects were found for attachment style
measures.

Other areas in social brain networks

None of the additional regions of interest activated by social vs.
non-social information showed significant effects of trait anxiety
or adult attachment scores in the current analyses.

DISCUSSION

The present fMRI study aimed at investigating relevance detec-
tion in the human amygdala by contrasting BOLD signal change
in response to visual scenes as a function of both their valence
(negative vs. positive) and their social (vs. non-social) content.
Further, we examined the influence of different viewing condi-
tions, implying different emotion regulation strategies, as well as
individual differences. This design allowed us to extend previous
fMRI studies with a similar purpose (Norris et al., 2004; Britton
et al., 2006; Goossens et al., 2009; Scharpf et al., 2010) that did
not differentiate between positive vs. negative valence of stimuli—
thereby preventing the investigation of any valence x social
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content interaction effects—and did not take into account task
conditions and/or personality traits on relevance processing. Our
analysis of amygdala activation revealed a significant interaction
between the valence (positive vs. negative) and social content
(social vs. non-social) of stimuli. Importantly, these effects were
independent of the different viewing conditions (natural viewing,
re-appraisal, suppression). Below we discuss these findings each
in turn.

SOCIAL CONTENT
In whole-brain analyses, bilateral amygdala showed a main effect
for social vs. non-social images. This differential social effect was

present for neutral as well as emotional stimuli (see Figures 1
and 3A). Such a preferential processing of images according to
social relevance (Keltner and Kring, 1998; Hariri et al., 2002),
even for scenes without any emotional value (“neutral”), con-
verges with previous findings (Norris et al., 2004; Britton et al,,
2006; Goossens et al., 2009; Scharpfet al., 2010) and thus extends
the notion that the human amygdala is highly sensitive to the
social significance of information, presumably due to the intrinsic
relevance of social cues for our species.

Importantly, such preferential social vs. non-social processing
in our study cannot be attributed to an arousal effect (Anderson
et al., 2003; Small et al., 2003), since all social and non-social
images were matched on this dimension. These results are con-
sistent with those obtained by (Ewbank et al., 2009) showing
that images with “personal impact” activate the amygdala when
arousal is controlled for, and may be explained by the fact that
social information has an intrinsic motivational value per se that
may make social images particularly impactful (Morrison and
Salzman, 2010). This value, however, is not synonymous with
valence (negative or positive), because we found that social rel-
evance and valence were processed interactively within the amyg-
dala with no significant activation difference between positive and
negative social images (see below). Consequently, it appears that
social relevance is computed in the amygdala independently of
the valence and arousal dimensions. This also accords with a key
role of this region in processing faces (Todorov et al., 2011; Yang
et al., 2012) or gaze (Kawashima et al., 1999; George and Conty,
2008; N’Diaye et al., 2009; Cristinzio et al., 2010), even when face
expression is neutral.

It remains, however, to be better determined what are the
social cues that preferentially drive amygdala responses, in par-
ticular whether they essentially reflect a differential tuning to
faces, bodies, and other human features relative to other objects.
Selective amygdala activation to faces or gaze has consistently
been reported in human and other primate species (Gothard
et al., 2007; Hoffman et al., 2007). Such an interpretation would
accord with the fact that we observed the same activation pattern
reflecting social relevance detection independent of valence in the
fusiform gyrus, another brain region known to be preferentially
involved in face processing (see also below). This suggests that one
possible origin of the social relevance effect could be a more basic
reactivity of the amygdala (and fusiform gyrus) toward facial cues
or human body parts, (e.g., eyes, etc.) vs. objects or non-human
scenes (Vuilleumier et al., 2004). Future studies should therefore
address if social significance implied by other visual cues may also
trigger a distinctive amygdala response to social relevance.

VALENCE

Besides the social relevance effect, we also observed a valence
effect in bilateral amygdala, with significantly higher activity dur-
ing the processing of negative as compared to positive images
overall (see Figure1). This pattern accords with the view that
negative information may have an intrinsically stronger relevance
for the human organism, probably due to its more immedi-
ate implication for survival (Hariri et al., 2002). However, our
study demonstrates that this valence effect was predominantly
driven by a selective increase to negative information in non-social
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scenes, reflected by a significant valence x social content interac-
tion. The difference between negative and positive social stimuli
did not reach significance (see above). Consequently, the notion
that negative or threat information has a generally higher value,
and is thus linked with distinctive amygdala activation, seems
partly inappropriate. According to our data, such “negativity bias”
in amygdala responses may arise only (or predominantly) for
non-social stimuli—whereas social significance may not need fur-
ther negative affective significance to be behaviorally relevant.
Furthermore, in our data, this valence effect was also likely to be
independent of arousal (Morrison and Salzman, 2010), because
the most arousing images (negative valence) were associated with
heightened amygdala activation only when they were non-social,
not otherwise.

VALENCE x SOCIAL CONTENT INTERACTION

To our knowledge, by using a full factorial design, our study is the
first to report direct evidence for this interactive processing pattern
of valence and social information in the human amygdala. These
results are consistent with the view that the amygdala is criti-
cal for relevance detection (Sander et al., 2003, 2005; Adolphs,
2010; Pessoa and Adolphs, 2010), whatever the nature of the
relevance, be it social or affective. In future studies, it would there-
fore be interesting to examine the role of the human amygdala
in processing stimuli with different kinds of relevance, includ-
ing motivational significance (e.g., food or drugs; see Tang et al.,
2012, for a recent review).

HEMISPHERIC LATERALIZATION

The valence and social effects, as well as their interaction dis-
cussed above, all were found to display a significant hemispheric
lateralization in the human amygdala. Whereas emotional images
induced more activity in the left than right side in general, both
the social vs. non-social and the negative vs. positive activation
differences were stronger in the right than the left side, suggesting
a more pronounced general valence x social content interaction
in the right amygdala (see Figure 1). In the literature, different
hemispheric lateralization accounts of human amygdala func-
tion have been proposed, related to language, temporal dynamics,
gender (Sergerie et al., 2006), or even awareness (Morris et al.,
1998). In our study, lateralization effects were independent of
task conditions, suggesting little or no modulation by the degree
of covert semantic processing (likely higher during cognitive re-
appraisal relative to natural viewing and expressive suppression).
Hence, although indirect, this appears inconsistent with the first
lateralization account.

On the other hand, the observed activation patterns could
be compatible with differential temporal dynamics in amygdala,
with possibly quicker habituation effects on the right side. This
might result from larger habituation to emotional images in gen-
eral, and to non-social positive scenes in particular, leading to
both the main effect of valence and the valence x social con-
tent interaction for the right amygdala. Such habituation would
also corroborate the relevance detector hypothesis (Sander et al.,
2003, 2005; Adolphs, 2010; Pessoa and Adolphs, 2010) as it
might be assumed that the more relevant information should be
less prone to habituation, explaining why activity to non-social

negative (vs. positive) images remained higher in the right amyg-
dala. However, these interpretations remain speculative, as our
study did not use direct tests for different lateralization accounts
and did not examine differences in the time-course of activation
during the experiment. Thus, our findings provide only indirect
support to some lateralization in amygdala responses to social and
emotional relevance, and more work is needed in the future to
better clarify the sources of such asymmetries.

PERSONALITY

Finally, our data also confirms an important role of individual
personality differences in modulating amygdala reactivity. In the
right amygdala, the valence x social content interaction was only
present for low but not high anxious participants (see Figure 4).
This was caused by a selective decrease of right amygdala response
to social positive (SP) images as a function of trait anxiety. As
noted above, this could potentially be attributed to some habitu-
ation of the right amygdala to these stimuli that might be further
accelerated in high anxious participants because such images were
perceived as less relevant to current concerns. This would accord
with the negativity biases associated with anxiety and converge
with previous findings showing increased processing of (socially)
relevant information in the human amygdala as a function of
trait anxiety (see Bishop et al., 2004; Sabatinelli et al., 2005; even
though such effects were often bilateral in the latter studies).
Although an association between STAI-T scores and the interac-
tive response to valence x social content was selectively observed
in the right amygdala, a formal ANOVA including SIDE as a factor
was not significant. It therefore remains to be determined whether
a true lateralization exists regarding personality effects on valence
and social content processing in the human amygdala.

RELEVANCE DETECTION IN CORTICAL BRAIN AREAS

Additional analysis of activation patterns for other areas within
the social brain networks (i.e., displaying a main effect of social
vs. non-social scenes) also revealed a significant valence x social
relevance interaction in right fusiform gyrus (FG), right ante-
rior superior temporal gyrus (aSTG), as well as medial orbito-
frontal cortex (mOFC; see Figure 2). Thus, these regions showed
a very similar profile of responses as the bilateral amygdala (see
above), independent of viewing conditions. However, unlike for
the amygdala, we did not find any influence of trait anxiety on
right FG, right aSTG, or mOFC.

All of these three regions have previously been associated with
privileged processing of social information, including preferen-
tial responses to (human) animate stimuli containing faces or
bodies in the FG (Kanwisher et al., 1997; Peelen and Downing,
2005; Schwarzlose et al., 2005); representation of abstract social
concepts/values and moral sentiments (Zahn et al., 2007), moral
cognition (Moll et al., 2005), and social emotion processing
(Wicker et al., 2003) in the aSTG; as well as social outcome mon-
itoring (Amodio and Frith, 2006) and theory of mind (Gallagher
and Frith, 2003) in the mOFC.

Negative valence effects in FG accord with previous evi-
dence that this area is generally more activated by emotional
(vs. neutral) and particularly negative (vs. positive) information
(Vuilleumier et al., 2001, 2004; Hadjikhani and de Gelder, 2003;
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Surguladze et al., 2003). Effects of valence in aSTG are less
clear, because there is not much data regarding emotional and
social processing in this area, even though a response to nega-
tive information—e.g., fear, anger, and particularly sadness—has
often been reported (Levesque et al., 2003; Gillath et al., 2005;
Moll et al., 2005). Finally, the current valence effect in mOFC is
somewhat at odds with usual considerations that this brain area
may primarily be involved in monitoring the positive, rewarding
value of social interactions in terms of their probable outcomes
(Rolls, 1996; Amodio and Frith, 2006). However, there is evidence
that the mOFC is also involved in the attribution of negative value
to initially neutral items (Goldstein et al., 2007), which implies
that it may have a more general function in computing the sub-
jective value of particularly social stimuli, even if negative, as in
our task.

A valence x social content interaction has previously been
reported in sensory areas such as the thalamus, superior tempo-
ral sulcus and middle occipito-temporal cortex, in addition to the
anterior insula and lateral medial prefrontal cortex (Norris et al.,
2004; Scharpf et al., 2010), but none of these brain regions were
found in the present fMRI experiment. However, as already men-
tioned above, the emotional relevance effect examined in those
studies comprised an emotional vs. neutral comparison, but not
a 2 (valence) x 2 (social content) interaction, an important dif-
ference that is likely to account for the discrepancy between our
new and previous findings. Because we looked for brain areas dis-
playing a valence x social content interaction within regions of
interest that were selected a priori based on the main effect social
vs. non-social, our analysis was more selective. However, using
a full 2 (valence) x 2 (social content) experimental design, we
did find that valence and social content were processed interac-
tively in several cortical areas including the FG, aSTG, and mOFC
(in addition to bilateral amygdala), thus delineating a distributed
subcortical-cortical network integrating emotional and social
content processing. These regions may constitute a relevance
detection network reciprocally interacting with the amygdala,
as corroborated by previous findings showing (1) modulation
of FG activity by inputs from the amygdala during emotional
face perception in humans (Vuilleumier et al., 2001, 2004) and
the existence of amygdala-visual cortex projections in macaques
(Amaral et al., 2003), (2) simultaneous OFC and temporal cortex
activation during social concept representation in humans (Zahn
et al.,, 2007), (3) the presence of direct anatomical connections

between the aSTG/middle and inferior temporal lobes and OFC
in macaques (Kondo et al., 2003), and (4) functional correlations
between amygdala and OFC activity during emotional conflict
resolution (Etkin et al., 2006) and the implication of this cir-
cuitry in anxiety in humans as well as animals (Bishop, 2007).
However, to draw any sound conclusions about causality and
directionality of effects within this extended network, more spe-
cific investigations of relevance processing in humans within this
subcortical-cortical network is necessary.

CONCLUSION

The present fMRI study aimed at systematically investigating
valence and social content processing within the human amygdala
by dissociating between positive and negative, as well as between
social and non-social stimuli, in addition to a “neutral” visual
baseline. Moreover, we included three different viewing con-
ditions representing “spontaneous” natural emotion processing
(natural viewing), as well as cognitive (re-appraisal) and behav-
ioral (expressive suppression) emotion regulation strategies, and
also probed for individual differences.

Results revealed an interactive processing of valence and social
content in the amygdala, more pronounced on the right than left
side. This interaction was not modulated by the different task
conditions, but depended on trait anxiety, being significant in
low but not high anxious subjects. The latter was due to a selec-
tive decrease in amygdala activity to positive social images with
higher anxiety scores. Overall, these data suggest that relevance
detection in the amygdala operates at a task-independent pro-
cessing level by integrating both valence and social content. The
same valence X social content interaction was present in other
cortical regions intimately connected to the amygdala, including
the right fusiform gyrus, right anterior superior temporal gyrus,
and medial orbito-frontal cortex, suggesting the existence of a dis-
tributed subcortical-cortical network for relevance detection in
humans.
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