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The fluctuations in a brain region’s activation levels over a functional magnetic resonance
imaging (fMRI) time-course are used in functional connectivity (FC) to identify networks
with synchronous responses. It is increasingly recognized that multi-voxel activity patterns
contain information that cannot be extracted from univariate activation levels. Here we
present a novel analysis method that quantifies regions’ synchrony in multi-voxel activity
pattern discriminability, rather than univariate activation, across a timeseries. We introduce
a measure of multi-voxel pattern discriminability at each time-point, which is then used
to identify regions that share synchronous time-courses of condition-specific multi-voxel
information. This method has the sensitivity and access to distributed information that
multi-voxel pattern analysis enjoys, allowing it to be applied to data from conditions
not separable by univariate responses. We demonstrate this by analyzing data collected
while people viewed four different types of man-made objects (typically not separable
by univariate analyses) using both FC and informational connectivity (IC) methods. IC
reveals networks of object-processing regions that are not detectable using FC. The IC
results support prior findings and hypotheses about object processing. This new method
allows investigators to ask questions that are not addressable through typical FC, just as
multi-voxel pattern analysis (MVPA) has added new research avenues to those addressable
with the general linear model (GLM).
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INTRODUCTION
The enormous wealth of data generated by functional magnetic
resonance imaging (fMRI) has driven the continual development
of new analytical methods to understand the brain’s functions
and processes. For many years, a predominant analysis approach
has applied the general linear model (GLM) to compare blood
oxygenation level dependent (BOLD) univariate activation lev-
els across conditions, regions and subject groups (Friston et al.,
1994). The last 10 years, however, have seen increased recogni-
tion within the fMRI community that information can also be
encoded in the activity patterns of populations of voxels. A mul-
titude of studies have now successfully employed multi-voxel
pattern analysis (MVPA) techniques to decode information con-
tained within multi-voxel activity patterns (Haynes and Rees,
2006; Norman et al., 2006; O’Toole et al., 2007). Many such stud-
ies have reported that their conditions of interest could not be
distinguished by the mean voxel response differences that are
assessed in a univariate GLM approach (e.g., Haxby et al., 2001).

In this study, we introduce an analysis method that combines
MVPA’s access to distributed encoding, with connectivity analy-
ses. Functional connectivity (FC) techniques measure the degree
of response-level synchrony between different brain regions or
voxels (Biswal et al., 1995). The particular measures used to index
connectivity (during rest or while performing a task) vary with
different approaches (e.g., Friston et al., 1997), but a frequent
goal is to identify regions with response levels that fluctuate
in a synchronized manner. Just as univariate analyses have led

to numerous findings, GLM’s cousin—the analysis of fluctu-
ating univariate responses of voxels or regions (FC)—has led
to results in a wide spectrum of research fields. In this paper,
we introduce a method–Informational Connectivity (IC)—that
could analogously be considered a cousin of MVPA.

As discussed above, multi-voxel pattern investigations have
revealed that one voxel’s response magnitude is frequently insen-
sitive to information encoded across a pattern of voxels. Instead of
comparing the magnitude of activation levels, multi-voxel analy-
ses frequently employ a machine learning classifier to assess the
multivariate discriminability of conditions. While GLM inves-
tigations look to increased or decreased response levels as an
indication of relevant neural activity, studies using MVPA often
consider the successful separation of conditions as being an indi-
cator of relevant neural information. In this paper, we introduce
a method that quantifies the discriminability of multi-voxel pat-
terns in a seed region and identifies regions of the brain that show
synchronized discriminability over time.

Whereas FC is frequently applied to measure connectivity
between a seed and individual brain voxels, it is (by definition)
not possible to measure multi-voxel patterns in single voxels.
Instead, we quantify how well a condition can be discriminated
from other conditions in the multi-voxel patterns at each time-
point in a scanning session. We measure the time-course of
discriminability for a seed region and for 3-dimensional spheres
(“searchlights”) placed at every location in the brain. We correlate
the seed region’s discriminability time-course with the equivalent
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time-course of each searchlight: measuring the simultaneous ebb
and flow of multi-voxel distributed information across regions
(compared to FC in Figure 1).

Since the conference presentation of an earlier version of this
work (Coutanche and Thompson-Schill, 2011), Chiu et al. (2012)
have employed a FC framework to identify voxels that vary in uni-
variate responses for two cognitive states that were identified by a
multivariate classifier in a region-of-interest (ROI). Our approach
contrasts with this by identifying regions that have synchronized
discriminability of multi-voxel information (rather than chang-
ing univariate activation). This makes our technique available
for examining conditions that are not accompanied by differ-
ing univariate responses. Multivariate techniques have previously
been applied in alternative connectivity approaches (such as the
application of information-theoretical measures; Chai et al., 2009;
Lizier et al., 2011). Our approach contrasts with prior work that
has applied multivariate analyses to FC results (e.g., Welchew
et al., 2005), by employing its own metric (instead of analyzing
univariate change) to track multi-voxel pattern discriminability,

building on the success of MVPA at detecting information inac-
cessible to univariate measures. This distinction is analogous
to the difference between using MVPA and applying multivari-
ate analyses to a GLM map. Although both approaches might
yield interesting results, MVPA is sensitive to the condition-
relevant distributed information that is coded within populations
of voxels.

Here, we describe our method by example and examine its
effectiveness by applying it to a classic dataset from Haxby et al.
(2001); later analyzed in Hanson et al. (2004), O’Toole et al.
(2005), and Raizada and Connolly (2012). For simplicity, and
to test our technique’s sensitivity to conditions that are distin-
guishable by potentially subtle differences in activity patterns, we
restrict our analyses to time-points associated with presentations
of four man-made object categories. We select six seed regions
and identify brain areas that are informationally connected to
each. We compare these results to a conventional FC analysis. The
possible differences between these two methods include IC reveal-
ing: a subset of FC (selectivity), a superset of FC (sensitivity),

FIGURE 1 | The relationship between Informational Connectivity and other fMRI measures.
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a different set of regions, or no regions. We predicted that IC
would identify more areas of cortex than FC, based on findings
that multivariate decoding can detect information that a typical
GLM cannot (Haxby et al., 2001) and a recent direct compari-
son of MVPA and GLM showing that MVPA can identify more
areas of relevant cortex (Jimura and Poldrack, 2012). IC has
MVPA’s sensitivity and access to distributed information that is
not obtainable from univariate responses. The larger IC networks
might include the FC regions (i.e., a superset) or there may be
little overlap. In their comparison of MVPA and GLM results,
Jimura and Poldrack (2012) noted that a “conjunction of the
two analyses revealed relatively small commonality in significant
results across the brain” (p. 549), leading us to predict that infor-
mational and functional networks may be largely distinct. One
consequence of this predition is an expectation that some regions
will be identified based on common univariate synchrony (FC)
but not multivariate synchrony (IC). This hypothesis is supported
by prior findings that univariate differences can sometimes iden-
tify regions that are not identified from MVPA (Quamme et al.,
2010; Jimura and Poldrack, 2012).

MATERIALS AND METHODS
STIMULI AND EXPERIMENTAL DESIGN
Full experimental details are available from the original
manuscript employing this data (Haxby et al., 2001), but the
relevant details are as follows. Participants were presented with
24-s blocks (separated by 12 s of rest) of gray-scale photographic
images belonging to one of eight categories: faces, houses, cats,
scrambled images, bottles, chairs, shoes, and scissors. For these
analyses we focused on the latter four categories (all man-made
objects). Within blocks, stimuli were presented for 500 ms with an
interstimulus interval of 1500 ms. Participants identified object
repeats (1-back) with a button-press. One block of every category
appeared in each of 12 runs (excepting one participant where 11
runs were available). Analyses were performed on data for all runs
from the five participants with anatomical T1-images and func-
tional datasets available. The condition-labels for the time-points
were shifted by two TRs for the multi-voxel pattern and IC anal-
yses to account for the hemodynamic delay, giving nine TRs for
each block and 108 for each condition across the experiment.

IMAGING PREPROCESSING
Hemodynamic changes were recorded with gradient echo echo-
planar imaging with a 3T scanner [repetition time (TR) = 2.5 s,
forty 3.5 mm thick sagittal slices, TE = 30 ms, flip angle = 90;
Haxby et al., 2001]. The functional data were slice-time corrected,
motion-corrected, aligned to the subject’s anatomical image and
detrended with a second order polynomial. The anatomical image
and functional data were transformed into standardized Talairach
space with unchanged voxel resolution (3.5 × 3.75 × 3.75 mm
for functional data). For the IC analyses, the effects of motion
and global signal were removed from the data by modeling six
motion parameters (pitch, roll, yaw, x, y, z) and mean white mat-
ter signal, and then using the residuals for subsequent analyses.
This is equivalent to including motion and white matter signal as
covariates in a FC model. The white matter signal was extracted
using SPM8’s segmentation procedure, which classifies voxels into

gray matter, white matter and cerebrospinal fluid based on image
intensity and prior probabilities of the distribution of tissue types.
A threshold of 0.75 was employed to select white matter voxels.
The Analysis of Functional NeuroImages (AFNI) software pack-
age was used for preprocessing and relevant univariate analyses
(Cox, 1996). Prior to MVPA and IC analyses, each voxel’s task
and rest data were z-scored within each run; normalizing the run’s
time-series to have a mean of zero and unit variance.

SEED REGIONS
We examined IC and FC for six empirically determined seed
regions: two regions identified by both an MVPA searchlight and
GLM group map; two regions found from the MVPA searchlight
but not the GLM; two regions found in the GLM but not the
searchlight. To create the relevant group MVPA searchlight map,
each individual’s dataset was submitted to a 4-way correlation-
based classifier (a popular classification approach) to separate
activity patterns from the four types of man-made objects. We
implemented a roaming searchlight analysis (Kriegeskorte et al.,
2006), where a spherical volume (3-voxel radius) is centered on
each brain voxel in turn and an analysis (in this case, classifica-
tion) is conducted using data from the voxels included within
the searchlight volume. For each searchlight, a leave-one-run-out
cross-validation procedure trained on 11 runs and tested on the
twelfth. Each testing TR’s vector of activity values was correlated
with the mean activity pattern for each of the four conditions in
the training set. The condition that was most strongly correlated
with the testing time-point determined the classifier’s predic-
tion for that TR. Classifier performance was calculated as the
proportion of correctly predicted time-points (chance = 25%).
The classification accuracy from each searchlight was allocated
to its central voxel for mapping purposes. Individual search-
light maps were smoothed (9 mm Full-Width at Half Maximum;
FWHM) and subjected to a one-way group t-test for performance
above chance. As this was performed purely to identify seeds, we
adopted a liberal threshold of p < 0.005 and cluster size of at least
five voxels.

To create a group GLM map, each individual’s dataset was
submitted to a typical univariate analysis with six motion param-
eters as covariates. As the above searchlight analysis attempted to
distinguish the four man-made objects, we ran a similar analy-
sis with the GLM: running six pairwise comparisons, smoothing
each individual’s pairwise maps (9 mm FWHM) and submit-
ting the maps for each comparison to a group analysis. The six
group maps were then thresholded at p < 0.005 and a union of
the six maps was created. A 5-voxel cluster threshold was then
applied. Relatively few voxels survived even this liberal threshold,
as expected from prior literature showing that object identity is
typically not identifiable from univariate differences (Haxby et al.,
2001).

The six seeds were created by selecting the central voxels of the
two largest cluster volumes found only in the searchlight map, the
two largest found only in the GLM map (although as discussed
above, this was at a sub-significant level), and the two largest
found in both maps. Selecting the seed locations based on the
largest clusters (rather than statistical peaks) gave confidence that
the majority of voxels in the seeds had the desired characteristic
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(e.g., condition-differences in a GLM), and is also consistent with
findings of greater reliability from cluster-based statistical thresh-
olds (e.g., Thirion et al., 2007). The seeds were located in the right
inferior occipital gyrus, left inferior occipital gyrus, left fusiform
gyrus, left superior temporal sulcus, right supramarginal gyrus
and right postcentral sulcus (coordinates in Table 1). A 3-voxel
radius sphere (with a volume of 123 voxels) was placed at each
central voxel to create each seed.

INFORMATIONAL CONNECTIVITY
The metric underlying IC quantifies how robustly the real class’s
activity pattern (versus the alternative classes) becomes discrim-
inable at points along the timeseries. During correlation-based
MVPA, the activity pattern at a time-point (i.e., a vector of voxel
activations m-voxels long, recorded at that time) is compared to
the mean voxel activity pattern corresponding to each condition
in the held-out training set (i.e., the mean vector of each condi-
tion that is calculated by averaging the condition’s time-points).
We quantified multi-voxel pattern discriminability for each time-
point with the following procedure (also captured in the formulae
below):

(1) Calculate the Pearson correlation coefficient between the
(i) vector of voxel activation values for that time-point
(i.e., its activity pattern) and (ii) vector of mean voxel acti-
vation values for the time-point’s condition in the training
data (i.e., the prototypical activity pattern for the condition).
Fisher-transform to z-score.

(2) Calculate the Pearson correlation coefficient between the
(i) vector of voxel activation values for that time-point
(i.e., its activity pattern) and (ii) vector of mean voxel acti-
vation values for each alternate condition in the training
data (i.e., the prototypical activity patterns for the rival
conditions).

(3) Identify the highest correlation from step 2 (i.e., the highest
similarity to an “incorrect” condition). Fisher-transform to
z-score.

(4) Multi-voxel Pattern Discriminability = Step 1 − Step 3
(i.e., Relationship to condition’s prototypical pattern minus
Relationship to the most similar incorrect condition).

The procedure is formalized in the below formulae, where x is
the normalized 1-by-m row vector of m voxel activation values at
time-point n, y is the normalized 1-by-m row training data vector
of mean m voxel activation values for the correct (c) or incorrect
(i) conditions relating to time-point n. In the analyses conducted
here, m was 123 (the searchlight volume), and n ranged from 1 to
432. The artanh function normalizes the correlation coefficients
through Fisher’s transform.

rc[n] = x[n] · y′
c

m − 1

ri[n] = max

(
x[n] · y′

i

m − 1
, ∀i �= c

)

Multi-voxel pattern discriminability = artanh (rc[n])− artanh
(ri[n]).

This multi-voxel pattern discriminability metric is calculated
for each time-point across the timeseries, giving a dynamic series
of values across the fMRI session (see Figure 2). This metric can
be intuitively related to the typical binary metric used in classifi-
cation analyses: The commonly used correlation-based classifier
would successfully predict a time-point’s condition when its data
give a discriminability value above zero. This type of classifier
makes a prediction for each time-point based on which class’s
training pattern is most strongly correlated with the time-point’s
activity pattern. In our measure, discriminability values are pos-
itive when a time-point’s multi-voxel pattern is most strongly
correlated with the training pattern of the correct class (i.e., the
condition that was shown to participants). Positive discriminabil-
ity values therefore reflect that a time-point’s condition can be
successfully predicted. A negative value on the other hand, reflects
that the training pattern for a non-present (rival) class has the
highest correlation with the current time-point, which would lead
to an incorrect prediction.

To create an IC map, multi-voxel pattern discriminability is
calculated for the timeseries of the seed region, followed by the
timeseries of every searchlight sphere identified in the roam-
ing searchlight procedure described above (Kriegeskorte et al.,
2006). The timeseries of pattern discriminability from the seed
region (i.e., a vector N-trials long) is then correlated with
each searchlight’s timeseries of discriminability, through a non-
parametric Spearman’s rank correlation. The resulting rs-value
(representing the strength of the relationship between search-
light and seed) is placed at the voxel that lies at the center
of each searchlight (a typical approach to mapping search-
light results; Kriegeskorte et al., 2006). This produces a brain
map of values that each reflects how closely the timeseries
of multi-voxel pattern discriminability for that (searchlight)
area matches the equivalent timeseries of the seed region. The
map therefore shows how strongly brain regions are corre-
lated in terms of pattern discriminability (i.e., how “informa-
tionally connected” they are) with the ROI (the seed). Each
participant’s map is then Fisher-transformed into z-scores, spa-
tially smoothed (8 mm FWHM) and tested for values above
zero (i.e., asking which searchlights are significantly correlated
with the seed) in a one-way group t-test. We have made the
tools and scripts for running these analyses freely available
within our IC Toolbox (http://www.informationalconnectivity.
org). Statistical significance was tested using the same proce-
dure (described below) for both IC and FC to enable direct
comparisons.

FUNCTIONAL CONNECTIVITY
The IC results were compared to results from a typical FC
analysis. We assessed FC for the same TRs analyzed using IC
(TRs associated with the four man-made objects). The time-
series of mean activation values for the TRs was extracted for
each seed region. This timeseries was then used as a predic-
tor in a whole-brain GLM analysis, with six motion param-
eters and mean white matter signal as covariates. Individuals’
maps of correlation values, reflecting the correspondence between
voxels’ and each seed’s timeseries, were converted to Fisher-
transformed z-scores and spatially smoothed (8 mm FWHM). All
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Table 1 | Significantly connected regions for IC and FC analysis methods.

Region Informationally connected clusters Functionally connected clusters

Volume (voxels) x y z Volume (voxels) x y z

UNIVARIATE SEED 1: RIGHT POSTCENTRAL SULCUS (x = 39, y = −42, z = 45)

Left precuneus 3871* −11 −43 36
Left fusiform gyrus 3871* −30 −43 −10
Left fusiform gyrus 3871* −37 −58 −7 19 −33 −56 −18
Left middle temporal gyrus 3871* −45 −58 19
Left superior temporal gyrus 318* −54 0 −6
Left superior temporal gyrus 112 −54 −30 12
Left parahippocampal gyrus 83* −22 −12 −22
Left temporal pole 83* −19 8 −26
Left anterior cingulate 78 −16 45 1
Left inferior parietal lobe 3871* −47 −43 47 31 −37 −38 53
Left orbital gyrus 318* −35 27 −12
Left inferior frontal gyrus 318* −51 11 1
Left middle frontal gyrus 87 −40 19 34
Left superior frontal gyrus 3871* −11 0 53
Left superior frontal gyrus 3871* −7 17 57
Left caudate 170 −5 19 4
Right inferior occipital gyrus 3871* 37 −67 −7
Right fusiform gyrus 3871* 25 −78 −13
Right fusiform gyrus 3871* 40 −36 −14
Right superior temporal gyrus 3871* 39 −26 9
Right precentral gyrus 3871* 55 2 22
Right supplementary motor area 3871* 5 −19 54
Right inferior frontal gyrus 3871* 46 33 6
Right inferior frontal gyrus 3871* 34 7 31
Right middle frontal gyrus 3871* 32 33 19 21 37 26 34
Right superior frontal gyrus 48 19 8 53
Right cerebellum 39 44 −41 −44
Right cerebellum 3871* 43 −43 −46
Right cerebellum 3871* 23 −55 −45
Right cerebellum 3871* 24 −43 −27
Right thalamus 3871* 8 −15 1
UNIVARIATE SEED 2: RIGHT SUPRAMARGINAL GYRUS (x = 49, y = −24, z = 35)

Left lingual gyrus 96 −2 −79 4
Left parahippocampal gyrus 59 −18 −25 −13
Left middle temporal gyrus 29 −54 −56 19
Left cingulate gyrus 306* −12 7 30
Left cingulate gyrus 911* −2 −20 44
Left supramarginal gyrus 911* −60 −17 33
Left precentral gyrus 911* −29 −21 61
Left inferior frontal gyrus 39 −30 23 −14
Left cerebellum 89 −51 −56 −26
Left cerebellum 66 −12 −68 −37
Left thalamus 306* −4 −10 15
Right fusiform gyrus 37 37 −4 −29
Right superior frontal gyrus 41 3 44 36
Right cerebellum 87 30 −34 −26
Right putamen 82 30 −11 −3
Left supramarginal gyrus 12 −58 −26 23
Left precentral gyrus 10 −51 4 23
Left postcentral gyrus 27 −44 −30 42
Right postcentral gyrus 87 47 −8 16

(Continued)
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Table 1 | Continued

Region Informationally connected clusters Functionally connected clusters

Volume (voxels) x y z Volume (voxels) x y z

MULTI-VOXEL SEED 1: LEFT INFERIOR OCCIPITAL GYRUS (x = −30, y = −75, z = −7)

Left calcarine sulcus 225 −14 −96 −5

Left fusiform gyrus 42 −33 −29 −23

Left superior parietal lobe 28 −18 −63 51 13 −26 −60 42

Left orbital gyrus 22 −40 47 −5

Left cerebellum 23 −37 −75 −37

Left insula 22 −33 −7 16

Right inferior occipital gyrus 66* 29 −85 −12

Right middle occipital gyrus 66* 26 −86 12

Right cerebellum 28 45 −67 −26

Left middle occipital gyrus 40 −26 −60 −11

Left middle occipital gyrus 11 −33 −79 27

MULTI-VOXEL SEED 2: LEFT SUPERIOR TEMPORAL SULCUS (x = −51, y = −41, z = 8)

Left calcarine gyrus 2401* −15 −71 12

Left fusiform gyrus 2401* −45 −40 −22

Left inferior temporal gyrus 2401* −39 0 −26

Left parahippocampal gyrus 43 −19 −8 −29

Left superior parietal lobe 2401* −30 −64 51

Left postcentral gyrus 2401* −27 −30 50

Left inferior frontal gyrus 2401* −53 14 2

Right middle occipital gyrus 95* 33 −82 7

Right lingual gyrus 2401* 16 −96 −7

Right inferior temporal gyrus 95* 47 −59 −2

Right angular gyrus 78 42 −70 38

Right supramarginal gyrus 74 58 −41 38

Right precentral gyrus 45 33 −23 57

Right cerebellum 2401* 47 −59 −33

Right cerebellum 2401* 12 −55 −15

Right insula 146 35 −19 12

COMMON SEED 1: RIGHT INFERIOR OCCIPITAL GYRUS (x = 45, y = −61, z = −8)

Left fusiform gyrus 76 −44 −56 −14

Left middle temporal gyrus 68 −54 −39 −5

Left supramarginal gyrus 36 −65 −30 34

Right precuneus 31 20 −48 36

Right middle temporal gyrus 434 49 −72 12

Right inferior parietal lobe 113* 43 −50 53

Right supramarginal gyrus 113* 58 −41 38

Right superior frontal gyrus 28 12 15 42

Right superior frontal gyrus 62 16 53 1

Right inferior occipital gyrus 97* 30 −84 −8

Right inferior temporal gyrus 97* 56 −53 −8

COMMON SEED 2: LEFT FUSIFORM GYRUS (x = −38, y = −40, z = −16)

Left middle occipital gyrus 101 −41 −67 7

Right middle occipital gyrus 101 51 −65 11

Right supramarginal gyrus 49* 64 −40 29

Right inferior parietal lobe 49* 53 −47 44

Left superior occipital gyrus 12 −29 −71 26

Right fusiform gyrus 24 48 −54 −14

Significant regions are displayed for IC and FC (at p < 0.001 and cluster sizes determined by permutation testing). Similarly located regions are listed in the same

row. Clusters significant at the seed’s location are not listed to avoid circularity. Coordinates represent the peak of significant voxel–clusters. An asterisk indicates

that the cluster contained multiple peaks, each included separately.
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FIGURE 2 | Pattern discriminability over time in real data. Top: The
underlying basis for the pattern discriminability metric—shown here for
the bottle condition in one seed in one subject. The blue line
represents each time-point’s Fisher z-scored correlation with the training
pattern for the correct class. The green lines show the correlation
values with mean training patterns for the three other classes. Bottom:

Pattern discriminability is calculated by taking the correlation with the
correct class’s mean training pattern and subtracting the correlation
strength of the strongest incorrect class (see text for details). When a
time-point’s value surpasses zero, it would reflect a classifier
successfully predicting that time-point’s condition. The arrow shows the
corresponding values between the plots.

subjects’ maps were subjected to a one-way group t-test for values
greater than zero. The method for significance testing is outlined
below.

SIGNIFICANCE TESTING
We adopted the same significance testing approach for both IC
and FC to enable direct comparisons. For each seed region, the
group statistical t-maps were first thresholded at p < 0.001 (and
also at p < 0.005 to ensure that the results are not dependent
on a particular t-threshold) for positive t-values in a one-way
test to identify regions that were positively correlated with the

seed. To correct for multiple-comparisons, we employed permu-
tation testing to determine the minimum cluster size required for
corrected significance. The seed’s timeseries of values (pattern-
discriminability values for IC; univariate activation values for
FC) were shuffled by randomly swapping blocks of presentations
(i.e., moving the sets of nine contiguous TRs that were separated
by rest). One thousand group maps were created (constructed by
randomly sampling from a set of 100 permuted maps for each
subject) and submitted to a group test in the same manner as the
seed’s real (non-permuted) time-course, including thresholding
at p < 0.001. This gave a null distribution of 1000 group maps.
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We used this to determine the minimum cluster size needed in
the real (non-permuted) group map for a corrected p-value of
< 0.05: The size of the largest cluster within each permuted group
map was extracted, giving 1000 cluster sizes. The 50th largest clus-
ter size from this null distribution is the cluster size that would be
expected by chance five times out of 100 (i.e., p < 0.05). Any clus-
ters larger than this in the true (non-permuted) group map are
significant at p < 0.05 corrected. This approach has the advantage
of correcting in a manner that accounts for the dataset’s own level
of smoothing, as each permutation underwent the same process-
ing as the true order. The minimum cluster sizes were calculated
separately for every seed and the two connectivity approaches.

RESULTS
We analyzed a dataset collected while subjects viewed blocks
of images of four types of man-made objects, using our novel
IC method to track and compare dynamic change in discrim-
inability of multi-voxel patterns across time. We compared these
results to a typical FC analysis that tracks synchronized changes
in univariate activation. We employed six seeds, selected from
regions showing univariate variation between conditions, MVPA
decoding, or both.

The IC and FC analyses identified different networks of
regions, with IC revealing larger networks than FC in this man-
made object dataset (Figures 3, 5; Table 1). These FC results were
not specific to the p-value selected: Repeating the FC analysis with
a more liberal p-value (p < 0.005 with a permutation-generated
minimum cluster size) generated similar networks of regions. The
different seeds varied in how many regions were information-
ally connected to them: for example, the right postcentral sulcus
seed was informationally connected with a large variety of cor-
tical areas, while the left inferior occipital gyrus seed was not
(Figure 3).

To visualize the two methods’ results without a minimum spa-
tial extent, Figure 4 shows IC and FC connectivity before applying
the cluster-based permutation thresholds.

By visualizing the degree of overlap in regions that were signifi-
cantly informationally and functionally connected with each seed,
we found that the two methods identified either largely distinct
or slightly overlapping networks of regions (Figure 5). This is also
reflected in the small number of regions that are listed under both
methods in Table 1.

Many of the areas showing synchronous multi-voxel pat-
tern discriminability include regions that have been implicated
in object processing. Evidence underlying this involvement is
presented in the discussion.

We examined the univariate and multivariate characteristics of
searchlights, relative to their levels of IC and FC with seeds, and
confirmed that the IC approach can highlight regions that would
otherwise be ignored by FC. For example, regions with low uni-
variate activation to conditions, yet decodable multi-voxel infor-
mation, were ignored by FC, but detected with IC. This can be
seen in Figure 6, which shows the group average mean activation,
multivariate information and connectivity strength (with the left
fusiform gyrus seed) of searchlights across the brain. The empty
space visible in the top-left octant (representing searchlights with
low response levels despite high decoding accuracy) in the FC,

but not IC, graph highlights the connectivity that is inaccessible
to univariate FC. This pattern was representative of connectivity
with other seeds.

The IC networks detected for each seed were not redundant
with each other. A large proportion of searchlights were signif-
icantly connected with only one seed (Figure 7) and although
some searchlights were identified in the networks of two seeds
(blue in Figure 7), very few were found for three. The distinc-
tiveness apparent for different seed networks also confirms that
IC is not redundant with conducting a typical MVPA searchlight
analysis, as it can highlight distinct networks based on the selected
seed.

DISCUSSION
This paper has presented a new method—IC—for measuring
synchronous discriminability of multi-voxel patterns across the
brain. We have described a metric for quantifying multi-voxel
pattern discriminability across a timeseries, and conducted an
IC analysis on data collected as subjects viewed four types of
man-made objects. The IC method identified networks of syn-
chronized regions that were not identified by FC. Many of these
brain areas are linked to object processing (discussed below),
suggesting that multi-voxel pattern discriminability can identify
networks involved in processing conditions that are characterized
by multi-voxel information (such as perceiving objects).

The limited overlap of regions identified by IC and FC is
consistent with a prior report of low commonality between
MVPA and univariate measures, with MVPA having greater sen-
sitivity overall (Jimura and Poldrack, 2012). GLM and MVPA
approaches have been conceptualized as tapping basic processing
(causing changes in univariate activation) versus decoding rep-
resentations of the content being processed (causing changes in
pattern discrimination; Mur et al., 2009; Jimura and Poldrack,
2012; although MVPA has also been applied to identify cogni-
tive processes e.g., Esterman et al., 2009). MVPA investigations
into representational content, such as the type of man-made
object being processed, have proven effective for advancing our
understanding of the visual system (Eger et al., 2008) and others
(e.g., auditory system: Lee et al., 2011). Analogously, identify-
ing networks characterized by synchronized discriminability of
multi-voxel information will be valuable for investigators wishing
to study how systems of brain areas are engaged. A related pro-
posed distinction between MVPA and GLM, which frames MVPA
as reflecting sub-processing that varies during GLM-measured
general processing (Jimura and Poldrack, 2012) suggests that IC’s
access to multi-voxel patterns would be valuable for mapping
sub-processing networks.

Although a comprehensive discussion of implications of spe-
cific findings from this analysis, in terms of our understanding of
the visual system, is beyond the scope of this paper, we will make
some comments on the types of hypotheses that can be informed
by this approach. Firstly, the IC findings are consistent with
theories that an object’s action representations become automati-
cally activated when its visual or semantic properties are engaged
(Chao and Martin, 2000; Johnson-Frey, 2004; Mahon and
Caramazza, 2009). A frontal region, the left inferior frontal gyrus,
has previously been linked to visual-to-motor transformations
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FIGURE 3 | Significantly connected regions in IC and FC analyses for

three of the seeds. A group t-test (p < 0.001 with minimum cluster size
from permutation testing) determined significance (described in the

“Materials and Methods”). Connectivity strength is displayed between
green (lower values) and red (higher values). Each seeds region is shown
in blue.

(Chao and Martin, 2000) and was informationally connected
to several of the seeds here. Equally, the supramarginal gyrus,
suggested as a location for representations of object-use skills
(Johnson-Frey, 2004), was informationally connected to four of
the seeds. Secondly, the distinctions between the IC and FC results
for the left fusiform gyrus seed are consistent with a prior fMRI
investigation into the organization of object-processing regions
(Mahon et al., 2007). Mahon and colleagues (2007) have reported
that while the left and right fusiform gyri respond similarly to

different object categories in terms of their mean BOLD acti-
vation, their underlying neural representations (when measured
through repetition suppression) differ. This is supported by the
IC and FC differences reported here: the left and right fusiform
gyri were functionally connected (fitting with Mahon et al.’s mean
activation findings) but not informationally connected (for the
same statistical thresholds), giving support for the left and right
fusiform regions containing differences in their object represen-
tations (Mahon et al., 2007). This study is the first to find that
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FIGURE 4 | Connectivity strengths before cluster-based thresholding for

three of the seeds. The displayed regions have connectivity above zero from
the group t-test at p < 0.001 prior to thresholding in cluster-based

permutation tests, to visualize sub-threshold connectivity for both methods.
Connectivity strength is displayed between green (lower values) and red
(higher values). Each seed region is shown in blue.

object-processing regions are linked together by common fluc-
tuations in multi-voxel patterns for different types of man-made
objects.

As a primary analysis method, a key advantage of IC is its abil-
ity to examine synchrony within condition-related information
that is not accessible from univariate response levels, such as
object identity. Dynamically changing cognitive states (such as
attention to objects or visual properties) will also differentially

affect systems during the time-course of an experiment. For
example, time-points marked by greater or reduced attention
will likely show increased or decreased pattern discriminability.
Regions that process stimuli as part of an interconnected system
will often share these effects. As well as acting as a primary analy-
sis method, IC can be used as a further analysis after an MVPA
searchlight procedure, which is often used to identify regions
that have condition-relevant information or a relationship to
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FIGURE 5 | Venn diagrams of voxels significantly connected to each

seed through IC (dark gray) and FC (light gray). Searchlights that
overlapped with the relevant seed region have been removed. Here, FC

results come from an analysis using the timeseries of searchlights’ (rather
than voxels’) mean values, to give a suitable comparison with the
searchlight-based IC results.

individual differences (e.g., Coutanche et al., 2011). The brain
regions identified in a searchlight analysis will likely decode
conditions using a variety of separation principles and forms
of relevant information (i.e., the analysis is “opportunistic”;
p. 550, Jimura and Poldrack, 2012). For example, man-made
objects could be separated by visual appearance in early visual
areas, viewpoint-independent identity in later visual areas, asso-
ciated motor movements in motor areas, and so on. A region’s
basis for its distributed information will strongly influence which
stimuli and time-points are particularly discriminable. The IC
approach can help identify different networks of regions, mov-
ing beyond one overall MVPA searchlight map. The ability to
separate regions based on decoding principles is visible in the
IC results for a left inferior occipital gyrus seed in this work.
This posterior occipital region showed strong IC with occipital
regions in the opposite hemisphere, but little other contralateral
cortex. In contrast, more anterior seeds had more extensive IC.
This result was expected, given the basic visual properties that
are processed in these early visual areas (Kamitani and Tong,
2005). Once the visual processing stream moves to more anterior
brain areas, the processing target moves away from basic visual

properties to whole objects, which are processed across different
brain regions.

Among other applications, IC can also be used to compare
groups by directly contrasting subjects’ IC values, or to examine
differences in IC strengths between tasks. For example, certain
networks may show connectivity increases if participants make
action-related, compared to visual, judgments of objects. The
IC method’s general framework can be extended to use classi-
fiers other than the correlation-based approach employed here.
Many classifiers, including support vector machines, assign con-
tinuous values to the potential conditions for each time-point.
These condition-weights determine a classifier’s predictions, and
incorporate how well the conditions’ multi-voxel patterns can be
distinguished from each other. By extracting and treating these
values in the manner outlined here for correlations (i.e., correlat-
ing a timeseries of classifier condition-weights instead of z-scored
correlation coefficients), investigators can draw on the advantages
of a range of classification methods.

Although we employed IC using spherical volumes for seeds
and searchlights, the method is compatible with seeds and tar-
gets that are defined in other ways, such as through anatomical
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FIGURE 6 | Connectivity strengths of all searchlights with a seed in the

left fusiform gyrus (present in both the GLM and MVPA searchlight

results). The IC and FC results for every brain searchlight are displayed
relative to the searchlight’s mean univariate activation to the objects and
decoding accuracy in a 4-way classification of object-types. Searchlights that
overlapped with the seed region have been removed. The FC values reflect

the described FC approach, using each searchlight’s mean timeseries (rather
than each voxel’s timeseries) to give a suitable comparison with IC (which
reflects information in a searchlight volume). The empty space visible in the
top-left octant of the FC graph for searchlights with low response levels
(despite high decoding accuracy) highlights connectivity that is inaccessible
to univariate FC.

masks or a separate functional localizer. In some cases, it might
be desirable to select a seed with a theoretically driven size.
For example, an investigator may wish to ensure that the entire
visual field of retinotopic V1 is selected as a seed so that the
pattern discriminability metric reflects the information avail-
able from this entire region. Future investigations that employ
both FC and IC can examine seeds that are defined according
to a variety of criteria. Here we selected the univariate-based
seeds using GLM contrasts—as this was directly comparable to
the multivariate-seeds, in which the conditions’ multi-voxel pat-
terns were separable—but a connectivity seed can be defined in
a number of different ways, such as selecting regions with high
within-condition variance. The seed and data used in an FC or
IC analysis may be influenced by the particular question under
investigation. Whereas studies of the object-processing system,
for example, may examine a timeseries that fluctuates with differ-
ent conditions, other targets, such as the influence of attention,
may be accessible from seeds that show fluctuating responses
within a condition.

One methodological question concerns the length of a time-
series required for robust IC results. The specific data require-
ments for a given experiment will depend strongly on a number
of factors, including the conditions that trigger the data. For
IC, experimental paradigms that extensively sample a stimulus
space, or that challenge a neural system to varying degrees, will
likely produce strongly fluctuating multi-voxel discriminability,
potentially increasing the opportunity to sensitively detect rela-
tionships between regions. Similarly, an engaging task will likely
reduce participant fatigue, and more reliably engage neural rep-
resentations, thereby producing a more robust measure of dis-
criminability at each time-point. In addition to influencing the

quantity of time-points in the IC timeseries, the amount of col-
lected data will influence the robustness of the training model.
This factor is well known to MVPA investigators, and readers
are referred to relevant discussions (e.g., O’Toole et al., 2007;
Mur et al., 2009) or approaches to improving training data (e.g.,
Coutanche and Thompson-Schill, 2012) for further information.
We note that for the data analyzed here, we observed (from re-
running analyses with randomly selected subsets of runs) that
the reported informationally connected regions reached signifi-
cance (as measured with a group mean t-value) when the subjects’
IC values were calculated from a minimum of between seven
and 11 runs (depending on the seed). For this particular set of
stimuli and participants, approximately 7–11 blocks of each con-
dition were therefore sufficient for identifying the brain networks
reported above.

Although we found that a prototypical FC analysis was
unable to identify the networks found using IC, we acknowl-
edge that a variety of FC analysis measures are available, and
others may be more effective. Future work may wish to com-
pare IC results to other FC analysis approaches. Equally, there
may be circumstances where investigators wish to track varia-
tions in a general process, without influence from sub-process
or representational nuances. Analyzing data with FC or IC does
not preclude using the other method: in many circumstances,
they could be used together and their results compared, as
discussed above for the left and right fusiform gyri. A joint
approach may lead to a more nuanced understanding of relevant
networks.

We have created and made available an IC Toolbox online
(http://www.informationalconnectivity.org) to aid investigators
in applying this technique to their own data.
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FIGURE 7 | Searchlights with significant informational connectivity to at

least one of the three left hemisphere seeds (top) and at least one of the

three right hemisphere seeds (bottom), shown against MVPA accuracy

and mean functional activation. The green, yellow, and red colors each

represent searchlights that are connected with just one seed. Blue points
show searchlights that are connected to two seeds and black points show
searchlights connected to three seeds. Searchlights overlapping with one of
the three seeds regions were removed from each scatterplot.
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