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Introduction: Non-invasive measurements of brain activity have an important role to
play in understanding driving ability. The current study aimed to identify the neural
underpinnings of human driving behavior by visualizing the areas of the brain involved
in driving under different levels of demand, such as driving while distracted or making left
turns at busy intersections.

Materials and Methods: To capture brain activity during driving, we placed a driving
simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional
magnetic resonance imaging (fMRI) system. To identify the brain areas involved while
performing different real-world driving maneuvers, participants completed tasks ranging
from simple (right turns) to more complex (left turns at busy intersections). To assess the
effects of driving while distracted, participants were asked to perform an auditory task
while driving analogous to speaking on a hands-free device and driving.

Results: A widely distributed brain network was identified, especially when making left
turns at busy intersections compared to more simple driving tasks. During distracted
driving, brain activation shifted dramatically from the posterior, visual and spatial areas
to the prefrontal cortex.

Conclusions: Our findings suggest that the distracted brain sacrificed areas in the
posterior brain important for visual attention and alertness to recruit enough brain
resources to perform a secondary, cognitive task. The present findings offer important
new insights into the scientific understanding of the neuro-cognitive mechanisms of
driving behavior and lay down an important foundation for future clinical research.
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INTRODUCTION
Driving is an essential daily activity for many people, providing
mobility, independence, and sometimes a source of livelihood.
Previous research has reported factors that increase the risk of
vehicle crashes and driving errors including fatigue and sleepiness
after extended driving (Sagaspe et al., 2008) and alcohol con-
sumption (De Boni et al., 2012). Research has also reported on
neurological factors that impact driving ability, especially in indi-
viduals with cognitive impairments (Rapoport et al., 2007; Carr
and Ott, 2010; MacDonald and Hébert, 2010; Nelson, 2010), that
increase the risk of vehicle crashes (Rizzo, 2011). Health profes-
sionals have the responsibility to identify individuals with medical
conditions that may detract from safe driving ability (Carr et al.,
2006). However, to date there has been no consensus on the
assessment of fitness to drive and it remains a significant challenge

for clinicians to evaluate a patient’s driving capacity (Eby and
Molnar, 2010). Some individuals may be able to drive in sim-
ple, well-practiced circumstances, but may be incapable of driving
safely when circumstances become more demanding or novel.
There is very limited knowledge about how different levels of driv-
ing behavior are supported by normally functioning brains, and
how different areas of the brain interact when performing various
driving tasks.

Safe driving requires the ability to concentrate, to divide atten-
tion between multiple sensory events across visual and auditory
modalities, and to make fast cognitive decisions in a complex
and rapidly changing environment. The present study applied
virtual reality (VR) technology in a functional magnetic reso-
nance imaging (fMRI) system to investigate how brain responses
of healthy adults change across various driving scenarios. Using
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this novel setup allowed us to obtain a real-time, spatiotempo-
ral profile of brain activity while driving in a safe environment.
Previous fMRI driving research has identified brain areas respon-
sive to different aspects of driving (Carvalho et al., 2006; Spiers
and Maguire, 2007), including maintaining driving speed (Peres
et al., 2000; Calhoun et al., 2002) and responding to uncertain-
ties during driving (Callan et al., 2009). These studies commonly
identified brain regions involving the motor, parietal, occipital,
and cerebellar cortices responsible for various driving maneu-
vers (Walter et al., 2001; Calhoun et al., 2002; Uchiyama et al.,
2003; Graydon et al., 2004; Calhoun and Pearlson, 2012) such as
turning, reversing, and stopping (Spiers and Maguire, 2007) all of
which require visual-spatial and visual-motor processes. Specific
tasks such as monitoring other cars, processing traffic rules, and
action planning, recruit the pre-supplementary motor area, the
superior parietal and lateral occipital cortices, as well as the cere-
bellum (Spiers and Maguire, 2007). These additional activations
in posterior brain regions have been attributed to the increased
demands that driving places on vision and motor skills, as well
as visuo-motor and visuo-spatial integration. Previous research
examining driving performance with distractions has reported
an associated reduction in brain resources (Just et al., 2008).
However, existing studies have provided limited data related to
real-world driving behaviors, such as driving with distraction.

Cognitive psychologists have proposed that the posterior
attention system engages brain areas such as the occipital-parietal
and posterior cingulate regions that are critical to visual-spatial
orientation and integration functions. In contrast, the anterior
attention system serves a higher-level attention function, engag-
ing anterior portions of the frontal lobes such as the prefrontal
and anterior cingulate regions, which are responsible for executive
attentional control in more complex cognitive tasks associated
with problem-solving and decision-making, especially during
multi-tasking (Posner and Dehaene, 1994; Posner, 2012). Studies
have used electroencephalography (EEG) techniques to estimate
possible intracerebral sources associated with driving-related pro-
cessing: deactivation of signals during fast driving related to
a drop of cognitive control has been reported (Jancke et al.,
2008); and visual event-related potentials (ERP) components
were diminished and the attentional selection of target stimuli
were less efficient during concurrent auditory dual-tasks (Gherri
and Eimer, 2011). Magnetoencephalography (MEG) studies with
driving simulators have reported multiple brain sources, includ-
ing visual, parietal, and frontal areas that are engaged during
visual attention to driving-related signals (traffic lights and direc-
tion signs), with increased attention demand in a dual-task audio
condition modifying the neural processing of visual signals (Fort
et al., 2010). Functional Near Infrared Spectroscopy (FNIRS) has
also been used to explore the neural underpinnings of driving
behavior. Recent studies have suggested that the frontal lobes are
sensitive to the type of driving task, with greater frontal lobe activ-
ity observed for externally directed driving behavior (following
audio driving instructions) compared to internally-driven driv-
ing behavior (based on memory) (Liu et al., 2012). FNIRS data
also suggest that parietal and occipital brain areas are responsible
for spatial attention in the perception of VR space (Seraglia et al.,
2011; also see the review of Calhoun and Pearlson, 2012).

The current study focused on identifying the underlying neu-
ral networks subserving different driving behaviors including
distracted driving. Our immersive and novel VR setup (Kan et al.,
2013) allowed us to investigate how the brains of healthy young
adult drivers respond during various simulated driving condi-
tions ranging in levels of complexity. This goal was achieved by
using virtual driving technology combined with advanced neu-
roimaging techniques. Driving tasks were designed to require
increasing levels of attentional processing demands and visual
complexity. For example, the tasks included making turns at
intersections with and without oncoming traffic, or driving under
auditory distractions that mimic driving while talking on a hands-
free cell phone or engaging in a conversation with a passenger.
These simulated driving conditions allowed us to tap into the
same neural processes associated with a more complete range of
real-world driving behaviors. The cognitive manipulation dur-
ing driving in the current study can be helpful in studying
the underlying neural substrates for various driving behaviors,
such as distracted driving. The knowledge of these neural sub-
strates ultimately can help health professionals to more effectively
assess driving competence in individuals with brain dysfunctions
(e.g., using office-based, cost-effective tests), and will eventu-
ally contribute to the design of potential cognitive rehabilitation
strategies.

We hypothesized that complex simulated driving conditions
(such as making turns, particularly left turns at busy intersections
while encountering oncoming traffic) would involve posterior
brain activations including motor and occipital-parietal regions
for visual-spatial and visual-motor integration. On the other
hand, prefrontal activation would be involved in a distracted con-
dition consisting of performing a secondary cognitive task during
simulated driving, related to the executive function demands
when attentional resources are divided across multiple tasks.

MATERIALS AND METHODS
ETHICS STATEMENT
Ethical approval for the study was obtained on July 18th 2010,
by the Research Ethics Board at Baycrest Hospital in Toronto,
Canada. All participants provided written informed consent prior
to participating in the study.

PARTICIPANTS
Participants were recruited through the university network via
advertisement and emails. All participants were right-handed
with normal or corrected vision. Participants without a valid
driver’s license, with a history of psychological or neurological
illness, or with fMRI contraindications (such as having claus-
trophobia or ferromagnetic implants) were excluded. Sixteen
participants (7 females and 9 males) between the ages of 20 and
30 years (Mean = 25.8, SD = 1.5) who were actively driving
and with mean driving experience of 7.4 years (SD = 2.5) were
studied.

DRIVING SIMULATION
We applied a novel approach using an immersive VR environment
in a 3.0 Tesla MRI system to capture brain activity with high eco-
logical validity (Kan et al., 2013). We applied driving hardware
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(steering wheel and foot pedals) custom built for compatibil-
ity with fMRI. The driving scenario was designed using STISIM
Drive software (Systems Technology Inc., Hawthorne, CA).
Participants viewed the simulation through a mirror attached to
the head coil (see “Neuroimaging” section), which oriented on a
projection screen illuminated by an LCD projector system pro-
jecting through a waveguide in the radiofrequency shield of the
MRI room; participants also wore fMRI-compatible headphones
(Silent Scan, Avotec, Inc., Stuart, FL) to hear the audio tasks.

DRIVING TASKS
Prior to fMRI, participants underwent an hour-long training ses-
sion in an fMRI simulator to practice simulated driving. The tasks
included straight driving (“Straight Driving,” Figure 1A), turn-
ing at intersections with and without oncoming traffic, or driving
while performing audio tasks. Each participant performed six
simple right-hand turns (“Right Turn”) and six left-hand turns
(“Left-Turn,” Figure 1B) with no traffic. To increase driving com-
plexity, participants encountered six left turns with a stream
of oncoming traffic (“Left Turn + Traffic,” Figure 1C), which
required participants to decide when to turn safely. In conditions
of distracted driving, participants were presented with concur-
rent audio tasks consisting of general knowledge true or false

questions (e.g., “a triangle has four sides”) during straight driving
(“Straight + Audio”; six times) as well as in the demanding turns
(“Left Turn + Traffic + Audio”; six times). Participants answered
the questions by pressing corresponding buttons embedded on
the steering wheel (similar to modern vehicle designs for answer-
ing hands-free devices or volume controls). The experimental
protocol is shown in Figure 2. Straight driving served as the con-
trol condition (baseline) interspersed between other specific tasks
in pseudo-random order. Each task was introduced by a voice
recording (e.g., “At the intersection, turn left”) approximately 5 s
prior to the task, similar to navigation instructions with a Global
Positioning System. Participants were asked to follow the traffic
rules and to drive as close to the posted speed limit as possible.
Each driving task was separated by at least 15 s of straight driving
(baseline/controls) to maintain separation to limit overlapping of
the fMRI hemodynamic response signals.

NEUROIMAGING
Participants received motion training to operate the driving con-
trols with minimal head motion and practiced on four training
runs that introduced all driving conditions. During testing, par-
ticipants were placed in the MRI system with the driving hardware
in a comfortable position. A high-resolution anatomical scan was

FIGURE 1 | Representative STISIM screenshots of simulated

driving conditions used in the fMRI. Rural scenery was
chosen to minimize the potential confounding variations

from using complex visual backgrounds. (A) Straight driving; (B)

Left turn at intersection with no traffic; (C) Left turn with
oncoming traffic.

FIGURE 2 | The experimental task design.
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acquired first, followed by three fMRI runs with simulated driv-
ing. The driving scenarios were triggered synchronously with the
fMRI time series data collection. Each run was approximately
9–9.5 min. Images were acquired using a research-dedicated
whole body 3.0 Tesla MRI system (Magnetom TIM Trio software
version b15, Siemens, Erlangen, Germany). The high-resolution
anatomical scan was acquired with T1-weighted, 3D magneti-
zation prepared rapid gradient echo imaging (MPRAGE; echo
time (TE) = 2.63 ms, 160 slices, thickness = 1.0 mm, gap =
0 mm, field of view (FOV) = 256 × 192 mm, matrix = 256 ×
192, yielding 1 × 1 × 1 mm voxels). Functional MRI was under-
taken using T2∗-weighted echo planar imaging (EPI; repeti-
tion time (TR) = 2 s, TE = 30 ms, flip angle = 70 degrees, 32
slices, thickness = 4.5 mm, gap = 0 mm, FOV = 200 × 200 mm,
matrix = 64 × 64, yielding 3.13 × 3.13 × 4.5 mm voxels).

DATA ANALYSIS
The first 10 s of scanning for each driving run was discarded
to allow for equilibration effects. Using AFNI freeware (Cox,
1996), time series data were corrected for physiological move-
ment due to respiration, corrected for slice timing effects, and
co-registered to the 16th time point of the first run. The dataset
was spatially smoothed using a 5 mm full width at half max-
imum (FWHM) Gaussian kernel and normalized by the run-
wise mean of each voxel. Statistical brain activation maps were
calculated using a General Linear Model (GLM) by convolv-
ing a stimulus-timing file with a variable-shape hemodynamic
response function (HRF) with seven regressors (for an expected
HRF of 14 s, one regressor was used per TR). Estimated head
motion parameters, in six degrees of freedom as determined from
the co-registration procedure indicated above, were included as
nuisance regressors as well as a 4th order polynomial for base-
line detrending. The resulting GLM parameter estimates were
summed, transformed into Talairach brain atlas space (Talairach
and Tournoux, 1988), spatially smoothed using a 6 mm FWHM
Gaussian kernel, and the maps for all 16 subjects were entered
into a within-subjects, random effects ANOVA. Finally, t-statistic
maps for all conditions were thresholded using a false discov-
ery rate method (Genovese et al., 2002) at a level of q = 0.05,
to correct for multiple statistical comparisons. For interpreta-
tion, the final group activation maps were overlaid on the average
of all 16 anatomical images, which were also transformed into
Talairach brain atlas space. To disentangle the visuo-motor and
higher cognitive functions involved in driving, straight driv-
ing was used as the control condition in comparison with all
other driving conditions. The statistical comparisons of interest
across group activation maps were, therefore: distracted straight
driving vs. control; right turns vs. control; left turns vs. con-
trol; complex turns vs. control; and distracted complex turns vs.
control.

RESULTS
BRAIN ACTIVATIONS
Significant brain activations are summarized below, reported rel-
ative to the straight driving control condition. Brain activation
images for each task are shown in Figures 3 and 4. Peak locations
of brain activity are reported in Table 1. All reported results were

in contrast with the baseline (control condition: straight driving).
Behavioral results can be seen in Appendix.

Regular driving
Right turn (Figure 3A). Minimal significant activation was
observed in this simple task, including the somatosensory asso-
ciation (postcentral gyrus), parietal (including precuneus), and
visual cortices (lingual gyrus).

Left turn (Figure 3B). More activation was detected in this con-
dition, which was observed in the premotor cortex, somatosen-
sory area, visual and parietal cortices, as well as the cerebellum.

Left turn + traffic (Figure 3C). This condition showed larger
significant activations of multiple bilateral regions in the mid-
posterior brain, including motor and premotor areas, visual,
parietal, and somatosensory regions, and the cerebellum.

Distracted driving
Straight + audio (Figure 4A). Significant activations were found
in the ventrolateral prefrontal cortex (vlPFC) bilaterally, in addi-
tion to auditory cortex. Other activations were detected in the
parietal lobes. Decreased activation in occipital-visual regions was
observed.

Left turn + traffic + audio (Figure 4B). In addition to auditory,
motor, somatosensory, visual, parietal, and cerebellar regions, sig-
nificant additional activations were detected in anterior brain
areas bilaterally, mainly in the dorsolateral prefrontal cortex
(dlPFC) and the frontal polar region.

BEHAVIORAL RESULTS
Driving performance showed an effect of speed differences among
undistracted driving conditions (p < 0.05; Repeated Measure
ANOVA; Table A1); post-hoc comparisons showed that the mean
speed in left-turn-traffic was the slowest (29.4 km/hr, SD =
4.3 km/hr) compared to left turns (26.8 km/hr, SD = 5.2 km/hr)
and right turns (24.0 km/hr, SD = 3.3 km/hr). Left turn speed
was significantly slower than right turn speed, which was
the fastest among all conditions significantly (p < 0.05, Least
Significant Difference post-hoc tests; Table A2). The speed in the
distracted left-turn-traffic condition was not significantly differ-
ent from the left turn and left-turn-traffic conditions and was
only slower than right turns (p < 0.05). Average speed dur-
ing straight driving (58.57 km/hr, SD = 3.36 km/hr) was not
significantly different from that of distracted straight driving
(58.69 km/hr, SD = 2.34 km/hr) (Table A3). Lane position dur-
ing straight driving (2.35 km/hr, SD = 0.31 km/hr) was not sig-
nificantly different from that of distracted straight driving (2.51,
SD = 0.42 km/hr) (Table A3). Average response accuracy to the
audio distraction task was 87% (range = 50–100%, above the
chance level).

DISCUSSION
The current study extends previous research by using an immer-
sive fMRI-compatible driving simulator to examine how the
human brain responds to various driving conditions, and by char-
acterizing the effects of cognitive distraction on driving. First,
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FIGURE 3 | Brain activations from the bottom to the top of the

brain (left to right figures) of participants when performing

various simulated driving conditions. (A) The right-turn condition
showed minimal activation in the brain; (B) Left-turn showed

more activation in the posterior brain regions; (C) The left-turns with
oncoming traffic generated larger significant activations of multiple
bilateral regions in the mid-posterior brain areas. See details in the
“Results” section.

FIGURE 4 | Brain activations associated with distracted driving. (A) Straight driving with a cognitive-distraction, audio task. (B) The demanding, left-turn
condition with oncoming traffic plus the cognitive distraction.

we observed that the patterns of brain activation depend on
the type of simulated driving task. Performing right turns, the
simplest task, generated minimal activation relative to the con-
trol condition (Figure 3A). Making left turns, without oncoming

traffic, the participants showed activations in the posterior brain,
including visual-parietal and motor areas (Figure 3B), suggest-
ing that cognitive resources involving visuospatial and motor
coordination are required for making left turns. Performing the
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Table 1 | Peak locations (Tailarach coordinates) of brain activations

during each driving task.

Peak activations L P I TT Atlas

RIGHT TURNS

−24 −60 −62 L superior parietal lobule, BA7

−14 −78 44 L precuneus, BA7

34 −40 64 R postcentral gyrus, BA5

20 −66 58 R superior parietal lobule, BA7

18 −72 −8 R lingual gyrus, BA18

LEFT TURNS

−44 −30 60 L postcentral gyrus, BA1/2

−6 −62 64 L precuneus, BA7

−4 −86 38 L cuneus, BA7

12 −76 56 R precuneus, BA7

34 −14 66 R precentral gyrus, BA6

38 −34 64 R postcentral gyrus, BA1/2

58 −44 −34 R cerebellum (Crus 1)

LEFT TURNS + TRAFFIC

−30 −28 68 L precentral gyrus, BA4

−28 −4 64 L superior frontal gyrus, BA6

−8 −74 56 L precuneus, BA7

−2 −84 −18 L lingual gyrus, BA18

−20 −72 −14 L fusiform gyrus, BA19

−32 −36 −50 L cerebellum (VIII)

32 −12 66 R precentral gyrus, BA6

36 −34 66 R postcentral gyrus, Ba1/2

34 −84 26 R superior occipital gyrus, BA19

4 −96 18 R cuneus, BA18

10 −76 54 R precuneus, BA18

26 −92 −18 R fusiform gyrus, BA18

30 −36 −50 R cerebellum (VIII)

LEFT TURNS + TRAFFIC + AUDIO

−2 −98 −2 L cuneus, BA18

−6 −72 58 L precuneus, BA7

−4 −84 −20 L lingual gyrus, BA18

−46 −70 −16 L fusiform gyrus, BA19

−2 −34 74 L paracentral lobule

−32 −36 −52 L cerebellum (VIII)

68 −14 0 R superior temporal gyrus, BA22

34 −12 66 R precentral gyrus, BA6

36 −34 66 R postcentral gyrus, BA1/2

2 −96 20 R cuneus, BA18

24 −88 −16 R fusiform gyrus, BA18

4 −74 54 R precuneus, BA7

30 −38 −52 R cerebellum (VIII)

STRAIGHT DRIVING + AUDIO

−66 −28 2 L middle temporal gyrus, BA21

−64 −48 −10 L inferior temporal gyrus, BA37

−64 −8 6 L superior temporal gyrus, BA22

−54 20 −6 L inferior frontal gyrus, BA47

−46 −56 52 L inferior parietal lobule, BA40

−32 −76 48 L superior parietal lobule, BA47

54 22 −4 R inferior frontal gyrus, BA47

68 −14 2 R superior temporal gyrus, BA22

BA, Brodmann area.

more demanding left turns at busy intersections, where in the
real world most serious crashes occur (National Highway Traffic
Safety Administration, 2009; Choi, 2010), produced larger activa-
tions in the posterior network, along with additional activation
of the cingulate cortex, an area important for cognitive-response
selection and alertness (Vogt et al., 2004) (Figure 3C).

Second, a significant shift in activation from the posterior
to the anterior brain was observed when driving became dis-
tracted. Compared to straight driving, auditory distraction dur-
ing straight driving significantly activated not only auditory areas
but also the prefrontal cortices (mainly in the ventral lateral pre-
frontal cortex regions; Figure 4A), while decreased activation in
posterior brain regions was evident. These findings support the
study hypothesis in that undistracted driving, even in attention-
ally demanding conditions, engaged the posterior brain system,
while driving under cognitive distractions activated the anterior
brain system. Consistently, when the more challenging maneuver
(turning left at a busy intersection) was performed under cog-
nitive distraction, the anterior network was additionally engaged
(Figure 4B), predominantly in the dorsolateral prefrontal cor-
tex/frontal pole. These regions are associated with executive func-
tions including attention and working memory processes, and
processing thoughts and decision-making critical for multitask-
ing (Christoff and Gabrieli, 2000).

To substantiate the observed shift from occipital to frontal
brain activations, particularly in the prefrontal areas when
comparing the left-turn-traffic condition to the left-turn-traffic
plus cognitive distraction, we extracted mean BOLD percentage
change values for each subject from the activated occipital and
prefrontal regions of interest, and conducted post-hoc tests of the
differences between task conditions using Matlab (Mathworks
Inc., Natick, MA). Results confirmed a significant decrease in
the mean occipital activation [from 0.59 to 0.36%, p = 0.001,
paired samples t(15) = 4.01] and an increase in the mean pre-
frontal activation [from 0.11 to 0.39%, p = 0.016, paired samples
t(15) = −2.72].

This anterior-vs.-posterior shift in BOLD signals reflects
changing reactions of the brain, and highlights the effect of dis-
tracted driving and the role of the anterior frontal region, an
area that has been associated with impulsiveness (e.g., Beeli et al.,
2008) critical to driving. The pattern of increased frontal acti-
vation accompanied by cognitive distraction has been previously
observed in participants performing a visual event detection task
while passively watching a driving video under auditory distrac-
tion (Hsieh et al., 2009), as well as during performing divided
attention, dual-tasks involving both visual and auditory modal-
ities compared to performing single-modality tasks (Schubert
and Szameitat, 2003; Johnson and Zatorre, 2006). One important
caveat is that the prefrontal activity observed when the partici-
pants were performing simultaneous driving and auditory tasks
may not be entirely associated with the distraction, but may be at
least partly related to auditory attention needed for the secondary
task. Future studies will be required to analyze this issue in more
detail.

Supporting the findings and interpretation of the present
work, an observation of decreased activation in parietal-visual
areas and impaired driving performance in a dual-task driving
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condition involving concurrent language comprehension has also
been previously reported (Just et al., 2008). We provided data
within a single study demonstrating a response shift between
these brain areas from the posterior to the anterior networks
related to driving distraction. This interplay between anterior and
posterior brain regions is possibly related to a competition for
limited resources and attentional reallocation between the ante-
rior, executive attention in multitasking and the posterior, visual-
response attention system (Rees et al., 1997; Wickens, 2008). The
brain may face a “bottleneck” when multiple tasks simultaneously
compete for shared and limited resources, constraining available
resources for individual tasks (Just et al., 2001; Dux et al., 2006).
This view suggests that with cognitive distraction during driv-
ing, to support mental processing in the anterior brain, resources
of the posterior brain important for visual alertness and visual
attention were sacrificed.

The current finding has important implications regarding dis-
tracted driving. While changes in driving performance observed
in the undistracted conditions (slowing down from right turns to
left turns and traffic) were parallel to the results of brain activa-
tions in the posterior brain (increases in activated areas), brain
activity shifted to the anterior network when there was no behav-
ioral change from the undistracted to the distracted condition.
Eye-tracking studies have shown that hands-free conversations
using cell phones impair attention to visual inputs (Strayer et al.,
2003). These distracted drivers experience “inattention blind-
ness”: their field of view narrows (Maples et al., 2008), and they
tend to “look at” but not “see” the information in their driv-
ing environment (Strayer, 2007), and miss visual cues important
for safe driving (Jacobson and Gostin, 2010). As a result, epi-
demiological findings of real-world collisions show that drivers
using hands-free phones are just as likely to experience vehi-
cle crashes as those using hand-held devices (Redelmeier and
Tibshirani, 1997; McEvoy et al., 2005). The present study provides
neuroimaging evidence supporting previous behavioral observa-
tions suggesting that multitasking while driving may potentially
compromise visual attention and alertness due to a reduction
in brain activation supporting critical visual processing areas,
even without significant behavioral changes. Therefore the dan-
gers introduced by distracted driving should be regarded in terms
of increased cognitive distractions (i.e., using hands-free cell
phones) rather than motor distractions (i.e., physically holding
a device) (Strayer and Johnston, 2001).

Previous studies have reported measures that may be able
to predict those who passed on-road assessments from those
who failed (Baldock et al., 2006). These tests include, for exam-
ple, The Trail Making Test-B (Richardson and Marottoli, 2003;
Staplin et al., 2003; Whelihan et al., 2005), Ergovision Movement
Perception Test (De Raedt and Ponjaert-Kristoffersen, 2000),
UFOV (De Raedt and Ponjaert-Kristoffersen, 2000), Complex
Reaction Time Task (De Raedt and Ponjaert-Kristoffersen, 2000),
Paper Folding Task (De Raedt and Ponjaert-Kristoffersen, 2000),
Dot Counting (De Raedt and Ponjaert-Kristoffersen, 2000), WMS
Visual Reproduction (Richardson and Marottoli, 2003), and
Computerized Visual Attention Test Single Task (Mathias and
Lucas, 2009). It is clinically important to understand the specific
cognitive functions required in different driving circumstances in

order to identify “borderline” drivers or those with “restricted”
capacities who may be at risk in certain driving conditions. Recent
evidence shows that smaller gray matter volume in frontal brain
regions was associated with lower executive function capacity
and a proclivity to risky driving (Sakai et al., 2012). Given the
current finding that prefrontal areas were only significantly acti-
vated during the distracted driving conditions, we propose that
future assessment should consider using neurocognitive tests that
tap into executive, frontal-lobe functions and divided attention
for evaluating “fitness for distracted driving.” Based on the cur-
rent study, it can be inferred that damage to the anterior brain
regions may result in specific or restricted impairment (i.e., this
type of patient may be unfit to drive safely in distracted circum-
stances), whereas damage to the posterior brain areas involving
the visual, spatial, and motor abilities would significantly com-
promise general fitness to drive. This implication is also critical
for establishing potential restricted driving licensing (Marshall
et al., 2002).

In addition, while regular driving (e.g., simple right/left turn
without traffic) relies on more learned and automatic processes
that activate a driving network in the posterior brain, the mid-
cingulate cortex was only differentially activated when the driving
conditions became more demanding (left turn with oncoming
traffic). This brain region has a major role to play in response
selection (Paus et al., 1993; Vogt et al., 2004), attention-for-action
(Posner et al., 1988), and working memory (Petit et al., 1998);
therefore neurocognitive tests associated with selective attention,
response inhibition, and visual-motor abilities can be targeted to
evaluate the ability to drive safely in demanding circumstances,
even without distraction.

A limitation of the present study is the use of young drivers,
which may reduce the generalizability to older populations.
Another limitation is that by using simulated driving we were
unable to replicate the potential anxiety associated with driving
under conditions of increasing complexity, given that there is no
real crash risk. Although the use of simulated driving during fMRI
may not perfectly generalize to real-world driving, it allows for
the investigation of complex driving conditions that are not usu-
ally tested during on-road assessments (i.e., left turns during peak
traffic or driving while talking on a cell phone). Indeed, previous
research suggests that there is a significant correlation between
on-road test performance and performance in the driving sim-
ulator (Freund et al., 2002). Lundqvist and colleagues have sug-
gested that the predictive ability of driving simulators in assessing
actual driving behavior was superior to that of on-road driving
tests, partially due to the well-controlled complexity levels in the
simulated driving scenarios (Lundqvist et al., 2000). Driving sim-
ulators provide a more standardized environment (Michon, 1989;
Ranney, 1994) compared to on-road driving tests, offering an eco-
logically valid and safe way to study human driving behavior in a
variety of challenging conditions (Grealy et al., 1999).

CONCLUSIONS
The present study provides new neuroimaging data of the com-
plex brain activity associated with distracted driving and driv-
ing under different levels of complexity. We found that brain
activations during driving rely on areas important for various
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cognitive functions including the posterior visual-spatial atten-
tional system vs. the anterior, frontal-lobe functions in multi-
tasking and divided attention. For most people, driving involves
highly practiced skills that generally draw on automatic or prac-
ticed abilities relying on a posterior network, and does not
heavily require the anterior frontal system for more effortful men-
tal processing. However, there are potentially many distractions
present during driving (Editorial, 2001), including conversations
with passengers, or unpredictable events that increase the risk of
crashes. The current findings may be applied to future research
on clinical populations with various brain disorders (e.g., Ott
et al., 2000; Bedard et al., 2011) to determine how brain damage
affects the ability to adapt to daily driving tasks. The shift in brain
activation indicates that the assessment of fitness to drive should
consider different levels of driving demands and more selective
evaluations of driving ability (e.g., in different traffic conditions,
or driving while conversing with the examiner). As the brain has
limited cognitive resources, this fundamental constraint limits the
capacity during driving to carrying out any other cognitive oper-
ations such as language comprehension (Newman et al., 2007).

Lastly, automobile manufacturers also have a responsibility to
improve safety by refraining from installing various communi-
cation devices in vehicles, or by installing deactivation systems
if drivers attempt to use the devices while the car is in motion
(Jacobson and Gostin, 2010). More research is needed to deter-
mine if intervention programs (e.g., Devos et al., 2009) that apply
simulator protocols with attention training can improve fitness
to drive, for example, in improving left turns at busy intersec-
tions, or reducing vehicle collision risks for certain brain damaged
populations.
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APPENDIX
GENERAL LINEAR MODEL: REPEATED MEASURE ANOVA

Table A1 | ANOVA results showed a significant effect on speed across

four driving conditions.

Within-subjects factors

Speed condition Dependent variable

1 Right turn speed

2 Left turn speed

3 Left turn traffic speed

4 Left turn traffic distraction speed

Descriptive statistics

Mean Std. deviation N

Right turn speed 24.0366 3.32044 16

Left turn speed 26.7939 5.16746 16

Left turn traffic speed 29.3542 4.26414 16

Left turn traffic distraction speed 28.9814 3.75817 16

Tests of within-subjects effects

MEASURE: MEASURE_1

Source Type III sum df Mean

of squares square

SPEED CONDITION

Sphericity assumed 287.234 3 95.745

Greenhouse-geisser 287.234 2.579 111.382

Huynh–Feldt 287.234 3.000 95.745

Lower-bound 287.234 1.000 287.234

ERROR (SPEED CONDITION)

Sphericity assumed 324.448 45 7.210

Greenhouse-geisser 324.448 38.682 8.387

Huynh–Feldt 324.448 45.000 7.210

Lower-bound 324.448 15.000 21.630

Tests of within-subjects effects

MEASURE: MEASURE_1

Source F Sig.

SPEED CONDITION

Sphericity assumed 13.280 0.000

Greenhouse-geisser 13.280 0.000

Huynh–Feldt 13.280 0.000

Lower-bound 13.280 0.002

Table A2 | Post-hoc tests suggest that speed in the distracted

left-turn-traffic condition was significantly slower than both the left

and the right turn speed, and the left turn speed was significantly

slower than the right turn speed.

Pairwise comparisons

MEASURE: MEASURE_1

(I) Speed (J) Speed a

condition condition Mean difference (I-J) Std. error Sig.a

1 2 −2.757∗ 1.078 0.022

3 −5.318∗ 0.820 0.000

4 −4.945∗ 0.763 0.000

2 1 2.757∗ 1.078 0.022

3 −2.560∗ 0.997 0.021

4 −2.187 1.110 0.068

3 1 5.318∗ 0.820 0.000

2 2.560∗ 0.997 0.021

4 0.373 0.873 0.676

4 1 4.945∗ 0.763 0.000

2 2.187 1.110 0.068

3 −0.373 0.873 0.676

The right-turn speed was the slowest (p < 0.05, LSD post-hoc tests).

Based on estimated marginal means:
∗The mean difference is significant at the 0.05 level.
aAdjustment for multiple comparisons: least significant difference (equivalent to

no adjustments).
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Table A3 | The straight driving speed and lane position measures were not significantly different from those during the distracted straight

driving conditions.

Pairwise comparisons

MEASURE: MEASURE_1

(I) Speed (J) Speed 95% Confidence interval

condition condition for differencea

Lower bound Upper bound

1 2 −5.056 −0.459

3 −7.066 −3.569

4 −6.571 −3.318

2 1 0.459 5.056

3 −4.686 −0.435

4 −4.554 0.179

3 1 3.569 7.066

2 0.435 4.686

4 −1.489 2.234

4 1 3.318 6.571

2 −0.179 4.554

3 −2.234 1.489

Descriptive statistics

N Minimum Maximum Mean Std. deviation Std. error mean

Straight speed 16 54.37 67.78 58.5669 3.36209 0.84052

Straight distraction speed 16 55.67 63.50 58.6931 2.33586 0.58397

Straight lane position 16 1.91 2.95 2.3519 0.31327 0.07832

Straight distraction position 16 1.82 3.26 2.5069 0.42180 0.10545

Paired samples test

Paired differences

Mean Std. deviation Std. error mean

Pair 1 Straight speed—straight distraction speed −0.12625 2.91779 0.72945

Pair 2 Straight lane position—straight distraction position −0.15500 0.34065 0.08516

Paired samples test

Paired differences

95 Confidence interval of the difference

Lower Upper

Pair 1 Straight speed—straight distraction speed −1.68103 1.42853

Pair 2 Straight lane position—straight distraction position −0.33652 0.02652

Paired samples test

t df Sig. (2-tailed)

Pair 1 Straight speed—straight distraction speed −0.173 15 0.865

Pair 2 Straight lane position—straight distraction position −1.820 15 0.089

Based on estimated marginal means:
aAdjustment for multiple comparisons: least significant difference (equivalent to no adjustments).
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