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INTRODUCTION

Real-time brain functional MRI (rt-fMRI) allows in vivo non-invasive monitoring of neural
networks. The use of multivariate data-driven analysis methods such as independent
component analysis (ICA) offers an attractive trade-off between data interpretability and
information extraction, and can be used during both task-based and rest experiments. The
purpose of this study was to assess the effectiveness of different ICA-based procedures to
monitor in real-time a target IC defined from a functional localizer which also used ICA. Four
novel methods were implemented to monitor ongoing brain activity in a sliding window
approach. The methods differed in the ways in which a priori information, derived from
ICA algorithms, was used to monitor a target independent component (IC). We imple-
mented four different algorithms, all based on ICA. One Back-projection method used ICA
to derive static spatial information from the functional localizer, off-line, which was then
back-projected dynamically during the real-time acquisition. The other three methods used
real-time ICA algorithms that dynamically exploited temporal, spatial, or spatial-temporal
priors during the real-time acquisition. The methods were evaluated by simulating a rt-fMRI
experiment that used real fMRI data. The performance of each method was character
ized by the spatial and/or temporal correlation with the target IC component monitored,
computation time, and intrinsic stochastic variability of the algorithms. In this study the
Back-projection method, which could monitor more than one IC of interest, outperformed
the other methods. These results are consistent with a functional task that gives stable
target ICs over time. The dynamic adaptation possibilities offered by the other ICA methods
proposed may offer better performance than the Back-projection in conditions where the
functional activation shows higher spatial and/or temporal variability.

Keywords: real-time fMRI, ICA, a priori knowledge, dynamic monitoring, adaptive algorithms

advancements have provided a way to overcome this issue by mak-

Real-time fMRI (rt-fMRI) is an emerging neuroimaging tool based
on the estimation of brain activity in real-time (typically around
1-2 s; Weiskopf et al., 2004, 2007; deCharms, 2008; LaConte, 2011).
This tool can be used not only for overall monitoring of fMRI data
quality (Weiskopf et al., 2007) but also for manipulating the cogni-
tive state of the subject based on their own brain activity (Shibata
etal.,2011). The neurofeedback approach has been used in various
fields of cognitive neuroscience such as attention (Thompson et al.,
2009) and emotion (Posse et al., 2003). Neurofeedback approaches
have also been used with rt-fMRI in clinical research, such as the
study of control of chronic pain (deCharms et al., 2005) and the
control of craving (Chiu et al., 2010; Anderson et al., 2011).

Since its advent, rt-fMRI has had to face a number of techni-
cal challenges, mainly due to the computational load of the data
analysis which directly competes against the goal of providing
real-time feedback (i.e., <1 TR). However, recent technological

ing large scale computations possible even on standard platforms
(Weiskopf et al., 2007; Weiskopf, 2012). These technical advances
have enabled us to shift our focus of attention from technical issues
to data analysis aspects.

The usual goal of a real-time system is to permit the iden-
tification and monitoring of an activity of interest during its
ongoing development and actuation. The identification is defined
as an initialization phase where the real-time analysis and derived
spatial-temporal features to be monitored are defined, usually with
afunctional localizer (FL) or a classification training step (LaConte
et al., 2007). The monitoring represents the execution of the on-
line analysis of the event of interest and the real-time delivery of
results that can eventually operate on the stimulation paradigm.
From a conceptual point of view, it is thus possible to discriminate
the identification and monitoring phases and to develop different
algorithms and strategies to deal with them.
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The initial and still most common analysis framework for rt-
fMRI is based on univariate hypothesis-driven approaches, with
adaptation of standard algorithms, such as the general linear
model family (GLM), to the real-time domain (Cox et al., 1995;
Gembris et al., 2000; Hinds et al., 2011). These methods are
common mostly because they are associated with ease of inter-
pretability and fast computation. In these approaches both the
identification and monitoring phases are typically implemented
using hemodynamic response-based models of the expected cog-
nitive tasks and eventual nuisance variables taking place during
the rt-fMRI experiment.

Another family of data analysis techniques is represented by
the multivariate data-driven algorithms, which have shown a great
capability of exploiting the full information content intrinsically
present in the data to be analyzed without assuming the explicit
shape or timing of the hemodynamic response to a stimulus (McK-
eown et al., 1998; Mouro-Miranda et al., 2005; Norman et al.,
2006). The driving motivation behind these methods is that they
allow characterizing functions that may not be detectable without
exploiting both second order (variance) and higher-order sta-
tistics, thus relying on a greater amount of information. These
properties make the multivariate data-driven techniques very
appealing for use in the real-time domain. Within this concept sev-
eral machine learning algorithms have been successfully adopted
and exploited in the real-time data analysis framework. The most
successful implementations are based on support vector machines
(SVM; LaConte et al., 2007; Magland et al., 2011; Sitaram et al.,
2011). SVM provides a powerful solution to a number of applica-
tions that are subject specific, at the cost of training the classifier
and imposing some interpretability issues on the results. In this
context, the two phases of the canonical rt-fMRI framework are
represented by the two steps of a classifier, i.e., the first phase is
the training of the classifier, and the second phase is the test or
execution of the classifier (i.e., the classification itself).

In addition to SVM, independent component analysis (ICA),
another multivariate data-driven technique, has proven to be very
effective in fully exploiting the complete amount of informa-
tion which is present in the data. ICA enables the extraction of
knowledge other than that merely modeled in a classical uni-
variate approach (Hyvrinen and Oja, 2000; Calhoun et al., 2001;
Beckmann and Smith, 2004). Furthermore, ICA methods can also
be applied in a series of problems for which univariate inference
cannot offer a solution, i.e., in experiments that lack a regressor
model to be adopted in the univariate analysis. This is the case for
resting data analysis or also experiments with particular patient
populations (Calhoun et al., 2009).

The idea of translating ICA properties to a real-time implemen-
tation was firstly proposed by Esposito et al. (2003) in a seminal
paper and implemented as a plug-in in Turbo Brain Voyager soft-
ware (Goebel, 2012). In this initial work the authors presented
a FastICA based rt-fMRI analysis tool exploiting precise design
choices and including an identification phase and a monitoring
phase. The first identification phase solved the problem of rank-
ing ICs of interest, i.e., a canonical univariate functional localizer
step was implemented to define areas of interest. Other ways to
solve the problem of ICs ranking could be represented by exploita-
tion of expected characteristic features of the ICs of interest via a

classifier (DeMartino et al., 2007). The second monitoring phase
used on-line execution of FastICA (implemented in a sliding win-
dow fashion) for extracting different ICs. The ICs were ordered on
the basis of their spatial overlap with the IC of interest, which in
this case consisted of single-slice representation of motor activity
derived from a finger tapping localizer.

The work presented by Esposito et al. (2003) was recently
extended to evaluate the performance of 14 different ICA algo-
rithms considering as additional variables the model order and
different types of a priori knowledge (spatial/temporal; Soldati
et al., 2013). This work showed that ICA algorithms such as EVD,
amuse, jadeopac, and FastICA were suitable when implemented
in the identification phase via a functional localizer since they
performed well even without extensive use of a priori knowl-
edge. It is interesting to note that FastICA algorithm represented
a good trade-off and its performance was valid in both functional
localizer and dynamic monitoring phases. Other algorithms like
constrained ICA performed worse without a priori knowledge and
may thus be more suited for the dynamic monitoring phase due
to their ability to incorporate a priori knowledge. Such a priori
knowledge may help guiding the algorithm to detect a specific tar-
get IC with higher priority over the other ICs present in the data.
However, there are several types of prior information that are avail-
able including spatial domain, the temporal domain, or both, and
any of these could be used in different ways (as constant references
from a localizer or derived dynamically). It is however not clear
how these various ways of using priors may affect the performance
of the results both in terms of computation time and correlation to
a reference optimal ICA. Moreover, the ICA algorithm (FastICA)
is stochastic, which means that multiple repetitions of the analy-
sis on the same dataset can give slightly different results, both in
the spatial and temporal domains. The problem has been exten-
sively discussed in the literature, with one of the main proposed
solutions being based on multiple ICA runs and clustering of the
obtained components, with the aim of reducing the issue of sto-
chastic variability (Himberg et al., 2004). Such instabilities can
be characterized by the standard deviation of the derived (STD)
results (spatial and/or temporal) when the analysis is repeated
multiple times on the same dataset. The STD can be considered
as a stability performance parameter of the algorithm, lower STD
algorithms corresponding to more stable ones. This parameter
may be particularly relevant if different ICA-based algorithms are
to be considered and compared for real-time fMRI, where the
analysis is repeated dynamically during data acquisition.

This study extends previous work (Esposito et al., 2003) in two
ways. Firstly, the target IC to be monitored dynamically is identi-
fied from a functional localizer using an ICA-based method instead
of using a GLM of the hemodynamic response. This approach
allows the full analysis pipeline to be multivariate and data-driven.
Secondly, novel ICA-based algorithms are proposed that introduce
different types of a priori knowledge for the dynamic monitoring
of ongoing fMRI activity. The main goal of this study was to eval-
uate how these algorithms perform with respect to an off-line ICA
analysis after the acquisition is complete. The a priori information
considered was either temporal, spatial, or both spatial and tem-
poral. In addition, the a priori information was considered both
in its static version when derived from the functional localizer, as
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well as dynamic when estimated recursively as the sliding window
progresses over the time course throughout the run. The different
ICA-based analysis methods proposed here were tested by arti-
ficially simulating a real-time fMRI experiment using real fMRI
data from a visual motor study (Calhoun et al., 2001). The origi-
nal data used is unrelated to a real-time fMRI experiment, but was
adopted because it is public and offers robust functional activation
in well-known anatomical areas. The measures of performance to
compare the various real-time methods were based on the follow-
ing three metrics: (i) spatial and/or temporal correlation between
the independent component (IC) estimated dynamically and the
target IC derived from the localizer, (ii) computation time, and
(iii) intrinsic stochastic variability of the algorithms as estimated
from multiple analysis runs.

MATERIALS AND METHODS

DATASET

One of the aims of this work was to test a variety of ICA imple-
mentations in a fashion which can be directly applied to real world
conditions. For the simulation of the rt-fMRI experiment we used
a dataset coming from a real publicly available fMRI experiment,
with tasks that show robust activation in well-known brain net-
works. We chose to use the data that comes as part of the GIFT
package (Calhoun and Adali, 2006) because the ICA characteriza-
tion of the task-induced activation networks was extensively tested.
The dataset is thus publicly available and in the release it is stated
that The Johns Hopkins Institutional Review Board approved the
protocol and all participants provided written informed consent.

Imaging parameters

Scans were acquired on a Philips NT 1.5-T scanner. A sagit-
tal localizer scan was performed first, followed by a T1-
weighted anatomic scan [repeat time (TR)=500ms, echo time
(TE) =30ms, field of view =24 cm, matrix =256 x 256, slice
thickness = 5 mm, gap = 0.5 mm] consisting of 18 slices through
the entire brain including most of the cerebellum. Next, we
acquired functional scans over the same 18 slices consist-
ing of a single-shot, echoplanar scan (TR=1s, TE =39 ms,
field of view =24 cm, matrix = 64 x 64, slice thickness =5 mm,
gap = 0.5 mm, flip angle=90") obtained consistently over a 3-
min, 40-s period for a total of 220 scans. Ten “dummy” scans were
performed at the beginning to allow for longitudinal equilibrium,
after which the paradigm was automatically triggered to start by
the scanner.

Experiment setup

The GIFT package contains three subjects example data-sets that
employ a visuo-motor paradigm derived from other studies (Cal-
houn et al., 2001). The paradigm contains two identical but
spatially offset, periodic, visual stimuli, shifted by 20 s from one
another. The stimuli consisted of an 8 Hz reversing checker-board
pattern presented for 15 s in the right visual hemi-field, followed by
55 of a central asterisk fixation, followed by 15 s of checker-board
presented to the left visual hemi-field, followed by 20 s of a central
asterisk fixation. The 55 s set of events was repeated four times for
atotal of 220 s. The motor stimuli consisted of participants touch-
ing their thumb to each of their four fingers sequentially, back and

forth, at a self-paced rate using the hand on the same side on which
the visual stimulus is presented.

Pre-processing

The images were first corrected for timing differences between
the slices using windowed Fourier interpolation to minimize the
dependence upon the reference slice chosen. Next, the data were
imported into the statistical parametric mapping software pack-
age, SPM99. Data were motion corrected, spatially smoothed with
a 6mm x 6 mm x 10 mm Gaussian kernel, and spatially normal-
ized into the standard Montreal Neurologic Institute space. The
data were slightly subsampled to 3 mm x 3 mm x 5 mm, resulting
in 53 x 63 x 28 voxels.

In this study the pre-processing steps were not included as part
of the real-time fMRI simulations for several reasons: (i) the pre-
processed and not the raw data are publicly available as part of
the GIFT package (Calhoun et al., 2001) thereby being a reference
starting point for various analysis tools, (ii) these pre-processing
steps can be performed in real-time as several review studies
describe (LaConte, 2011; Caria et al., 2012; Maclaren et al., 2013),
(iii) the focus of this simulation study was on the data-driven net-
work characterization through various real-time algorithms. For
these reasons, and to keep a manageable number of variables in this
study we limit our simulations to the manipulation of real-time
analyses that follow the standard pre-processing steps.

TOOLBOX AND PC

The entire simulation work was based on an in-house implemen-
tation with MATLAB (2010) of the tested algorithm based on the
code of GIFT toolbox (Calhoun and Adali, 2006). Given the ICA
algorithms code present in the toolbox, all the data analysis steps
(presented in Materials and Methods section) were implemented
in an automatic fashion to permit a testing routine to be run by
varying parameters, techniques, a priori knowledge, and different
subjects. The PC adopted to run the simulations was an Intel(R)
Core(TM) i5 CPU M460 @ 2.53 GHz equipped with 6 GB of RAM
and running a Windows 7 64-bit OS.

ICA MATHEMATICAL PRELIMINARIES

Since all the methods share a common core based on ICA princi-
ples, we briefly recall the main concept associated with the ICA.
Let’s assume that we have a set of fMRI measurements Y; where
i=1, ..., v is the index of voxels and each Y; is a vector of y;;
elements, where j=1, .. ., t is the index of time points. The entire
dataset can thus be represented as a matrix Y of dimensions time
points by voxels. Now, let’s assume that the signal measured in
the dataset is generated by a subset of # underlying sources which
are linearly mixed and summed up. This reflects in the following
canonical formulation using the vector-matrix notation.

Y = AX (1)

where Y is the acquired data matrix of dimension equal to the
number of time points by the number of voxels, A is the mix-
ing matrix of dimension equal to the number of time points by
the number of sources to be recovered and X is the matrix of
the sources (i.e., ICs) of dimension the number of sources by the
number of voxels. Each jth row of Y is a vector yji— ., representing
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an fMRI volume in a jth time point and is thus obtained by
the linear weighted combination of hidden sources spatial maps
yj=ajix1 +. . .+ ajx,V;. This means

n
Y = Zajxj (2)
j=1

Given this definition and assuming that the sources x,, are
mutually independent, it is possible to recover those hidden
sources by computing an estimation of the unmixing matrix
W=A""!such that

X =WY (3)

is an estimate of the sources. The estimation of W can be obtained
via different algorithms, leading to different ICA implementations
with different properties and effectiveness (see Bell and Sejnowski,
1995 for details). In this paper the selection of FastICA (Hyvrinen
and Oja, 2000) as the core ICA algorithm has been driven by a
recent study that compared the performance of 14 different ICA
algorithms, and found FastICA to be amongst the most stable
ones (Soldati et al., 2013). The FastICA algorithm exploits the
non-Gaussianity as a metric of independence of the sources. This
means, in the simplified iterative algorithm for several units, that
the estimation of W is obtained through the following steps

1. initialize randomly W

2. given W = ——%__
Tww]

3. repeat until convergence W = %W — % WWTW and step 1-3.

Other approximations of the solution can be obtained, but a
detailed description of the methods to obtain FastICA decompo-
sition is anyway beyond the scope of the present paper.

ANALYSIS FRAMEWORK

The purpose of our analysis was to perform an extensive com-
parison between the standard off-line ICA analysis and several
novel on-line ICA methods. The main goals of this study were to
evaluate the feasibility of on-line ICA and identify the best per-
forming algorithm from those proposed. For the purpose of our
rt-fMRI simulations we proceeded with three different stages: cal-
culation of reference ICs for performance evaluation, calculation
of the target ICs from a functional localizer, and estimation of
a dynamic IC on real-time. The first stage used FastICA on the
complete fMRI time series to identify spatial and temporal IC
templates from the networks that were later monitored dynami-
cally. These templates were derived from the full dataset so they
were in this sense considered as gold standard references against
which the dynamically extracted components were later compared
for spatial-temporal accuracy evaluations. The second and third
stages were more strictly related to the rt-fMRI simulations. The
second stage simulated a functional localizer (FL) session by taking
the first 60 TRs of the fMRI time series. FastICA was used on the
simulated FL to extract target ICs that was later monitored dynam-
ically. The third stage represented the real-time fMRI simulation,
the on-line ICA decomposition that used the information coming

from the simulated FL. This last stage of real-time ICA decomposi-
tion was performed using the different novel techniques proposed
and described in the next subsections.

The proposed framework for performing rt-fMRI used a mul-
tivariate and data-driven approach schematically presented in
Figure 1. The general structure and workflow can be outlined
as follows: (1) The MR data acquired by the scanner was stored
during acquisition and made available to the data analysis system
as soon as the images were reconstructed. (2) At the beginning of
the experiment a short period (typically about 5 min or less) was
devoted to acquire data from a FL. In the proposed framework the
FL data was analyzed using a blind (unconstrained) ICA algorithm
to preserve the multivariate data-driven advantages. Others used
univariate methods at this stage (Esposito et al., 2003). (3) An IC
of interest was selected from the FL analysis, this IC became the
data-informed multivariate ROI whose activity was meant to be
monitored dynamically. (4) The IC of interest, along with pos-
sible a priori information, could be incorporated in the rt-ICA
data analysis algorithm. The ICA algorithm used a sliding win-
dow approach and a blind source extraction (BSE) perspective to
deliver results at each TR while updating the best match to the
target component. This monitored component or other a priori
knowledge was then provided recursively to the algorithm, which
extracted the actual version of the monitored IC updated by the
actual values of data. (5) The monitored IC could be used as in
classical rt-fMRI paradigms for visualization, neurofeedback, or
brain computer interfaces. The component selected in real-time
was the one that has a spatial map which maximally correlates with
the reference spatial map component identified during the Func-
tional Localizer (FL) step. The spatial FL component corresponds
in turn to the FL component whose temporal correlation with the
timing of the paradigm was highest.

In this study two main different approaches were investigated
to dynamically extract in real-time a target IC: static methods
based on Back-projection and dynamic methods based on iter-
atively performed ICA. In particular, for the dynamic methods,
FastICA, and constrained ICA were updated for a sliding window
real-time fMRI implementation. The size of the sliding window
was fixed and it was chosen based on previous work that sys-
tematically evaluated the performance of multiple ICA algorithms
as function of window length amongst other variables (Soldati
et al., 2013). This study showed that the sliding window length
that gave the optimal trade-off between computational speed and
spatial/temporal correlation with the results from the whole time
course was approximately equal to the period of the behavioral task
to be monitored. In our experiment this could be approximated
to around 30s, i.e., 15 TRs. It is worth noting that the size of this
window, as pointed out in the discussion, was strongly related to
the period of the behavior to be monitored.

Template creation and accuracy estimation

To estimate the accuracy of one technique in correctly describ-
ing a monitored IC at one arbitrary time point we generated
task related network templates which represented the principal
spatial and temporal characteristics of the ICs to be monitored
during the simulation. These templates of task related ICs were
thus taken into account as reference data to evaluate the quality
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A Priori
Info

Functional

Scanner Localizer

FIGURE 1 | The experimental design framework. In this structure it is
possible to identify two main phases (or steps). The first step is to identify
what to monitor, i.e., performing a Functional Localization. This can be done

(i.e. extracted IC to monitor)

To: -Subject (neurofeedback)
-BCI
-Visualization

Recursive Info

with or without incorporating some kind of a priori knowledge. The second
step is to monitor the phenomenon we identified in the previous step using a
suitable on-line analysis method.

of rt techniques. This evaluation was obtained via comparing the
dynamically reconstructed ICs with these templates using tempo-
ral correlation and spatial overlap. To create the templates an ICA
analysis was performed on the single subject level by considering all
time points (i.e., 220 TR), but using FastICA with the same model
order to be used in the on-line implementation (i.e., 5). Three dif-
ferent target ICs were manually selected to simulate their dynamic
monitoring see Figure 2: two task related components (RVMT and
IVMT) and the task-induced default mode network (DMN).

Functional localizer

In a rt-fMRI experiment the functional localizer could be used to
identify the IC to be later dynamically monitored. For the analysis
of the FL we considered the use of whole brain ICA to maintain a
multivariate data-driven method. Previous simulations suggested
that the ICA analysis of the FL data is most accurate when using
algorithms such as evd, jadeopac, or FastICA (Soldati et al., 2013).
We thus performed the FL applying the FastICA algorithm with
a model order of 5, the same algorithm used in the template cre-
ation, to the first 60 TRs of the time series. With the application of
FastICA as FL an unmixing matrix W was estimated of dimension
5 by number of time points. Each row of the matrix represented
a time course of a hidden source, and the associated row of the
X derived matrix represented the corresponding spatial map. The
target IC to be monitored was then automatically selected as the
one whose spatial map maximally correlated with the reference
template and was monitored later dynamically with the on-line
techniques. In this study three components were extracted from
the FL for separate evaluations in the dynamic monitoring: the
default mode network, the right, and left hemisphere visual motor
networks activated by the cognitive task.

On-line techniques

In this section we present the main developed work, that is the
methods implemented to perform the on-line monitoring of the
sources. To simulate the on-line ICA analysis, coming after the FL,
the rest of the time course (i.e., 220-60 TRs) was used to dynam-
ically monitor the FL-derived target ICs using a sliding window
approach. Given that the target was to properly exploit the a priori

DMN

RVMT

LVMT

FIGURE 2 | The monitored ICs. An illustrative example of the monitored
ICs is reported. Spatial maps of ICs considered in the simulation are
obtained from Group ICA 20 ICs. For ease of visualization only the relevant
slices are reported here. First column depicts Default Mode Network
(DMN). Second and third columns depict the two task related ICs, Right
Visuo-Motor Task (RVMT) and Left Visuo-Motor Task (LVMT).

knowledge, different approaches to combine this knowledge and
the ICA algorithms were developed. In a comprehensive perspec-
tive all the possible combinations were explored. Starting from
the concept of sliding window ICA as it was presented by Espos-
ito et al. (2003), more sophisticated and different methods were
implemented. The target was to obtain an actual temporal value
of the activation of interest and/or an actual spatial map of this
component. Two main criteria were the guidelines in these imple-
mentations, that is the dynamic of the data and the type of a priori
knowledge. The dynamic criterion means how much novel infor-
mation is exploited and weighted into the on-line method, while
the type of information exploited denote the nature of the a priori
knowledge, i.e., temporal, spatial, or both. The implementation
exploited state of the art ICA algorithms (FastICA, Constrained
ICA) with the target of making the implementation easy to reply
and distribute.

The following subsections present the details of the different
on-line monitoring techniques proposed.

Static method: back-projection. The basic assumption behind
this static method was that the brain activation of interest main-
tains its basic characteristics, in particular its spatial map (SM),
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relatively stable during the fMRI experiment. If this assumption
holds, the spatial ICA performed in the FL step is enough to extract
aprecise representation of that spatial map that will be later tracked
dynamically during the real-time experiment. ICA would be in fact
able to create a space described by the directions of the extracted
ICs that is fairly representative of the brain state during the perfor-
mance of the task of interest. Given this assumption, the SM of an
IC of interest obtained from the FL can be kept fixed and it should
then be possible to simply back project each newly acquired vol-
ume of data into this space (i.e., onto the SM of the IC of interest)
to be able to quantify the contribution of the new data to the brain
activity of interest. This means that no ICA analysis must be per-
formed in real-time, and the results will only depend on the ICA
performed in the Functional Localizer session. This contribution
will thus represent the time course of the IC. In more detail, the
processing steps can be outlined as follows:

1. FastICA was used on the FL to estimate an unmixing matrix
W= A1 and thus the associated SM of the sources Xa1c,y with
nlC equal to the number of extracted components (5 in this
case) and v equal to the number of voxels.

2. The SM of the desired component was then chosen as the source
whose associated time course was the most correlated to the
task of the FL, that is we have X, jc=sel,v. The chosen spatial
map was therefore an independent component computed by
the FastICA algorithm, which gives it unitary variance and null
mean value characteristics.

3. At this point, for each newly acquired volume Y}y, of dimension
one by number of voxels we could compute:

¥
Aith = Yi”’XnIC:sel,v (4)

where ajy, is the actual single time value of the IC of interest and
t denotes the pseudo-inverse. It is worth noting that this can be
straightforwardly extended to cases in which multiple compo-
nents are monitored simultaneously via parallelizing equation
(4) for different SM or obtaining a meta-SM via combining
different SM, i.e., X matrices.

Dynamic method: recursive temporally constrained. This algo-
rithm is a direct extension of that used by Esposito et al. (2003).
The main differences are that here it was applied to the whole
brain and that the computation of a priori temporal knowl-
edge was not model-driven, but it was rather data-driven and
obtained with an approach based on the previously presented
Back-projection method. The actual difference with the previ-
ously presented Back-projection method, in which the SM was
static, was that we obtained an actual updated dynamic SM via
iterative ICA computation. The details of the method are as
follows:

1. From the FL a SM was obtained, which was used as in Back-
projection method to obtain temporal a priori information in
subsequent steps

2. During the experiment
(a) using the Back-projection the time course of the brain

activation was extracted

(b) a FastICA algorithm with model order 5 and time window
length 15 TR was applied to the data with a sliding win-
dow approach. The FastICA was temporally constrained
using the a priori temporal constraint (obtained using the
Back-projection) to initialize the mixing matrix A.

In practice a sliding window of dimension A was updated
for each newly acquired volume # leading to a matrix Y[,.a u),v
of dimension A by number of voxels. This matrix and the SM
obtained in the FL step (i.e., Xjjc=s1,») Were used to extract a time
course in a data-driven way in the same fashion as for the Back-
projection algorithm, resulting in a time course a, of dimension
nTP by one. With the actual data matrix Y|,,1pn4x7p),v and the
time course ay, it was then possible to apply FastICA to extract the
actual SM of the component of interest. This was done by initial-
izing the first entry of the W matrix with the inverse of a,, given
that W= A"!, in the routine presented in the ICA mathematical
preliminaries section. The result was the actual SM IC (i.e., Xnew)
present in the data whose behavior was closest to the reference time
course. In other words the extracted IC was constrained to be as
close as possible to the reference one at the initial step, permitting
a much more dynamic computation of the IC and thus update of
the monitoring. In this approach the SM was dynamically updated
each time a new volume was acquired.

Dynamic method: recursive spatially constrained. As in the
previous method, also in this dynamic method, the on-line mon-
itoring required a continuous update of the ICA decomposition
matrix. There were two main differences with respect to the RTC
method: (i) the ICA algorithm was a spatially constrained ICA (Lin
etal., 2010), and (ii) the a priori knowledge was spatial instead of
temporal. In this approach, the knowledge of an a priori SM of
the IC of interest (obtained by the FL) permitted constraining the
computation of the ICA algorithm. The constrained ICA algo-
rithm was applied on time windows of data still of length 15 TR
with a sliding window approach. The extracted IC, although based
on newly acquired data, was forced to be spatially as close as pos-
sible to the spatial a priori given map (i.e., to the SM obtained
during FL). This means that the dynamically extracted IC repre-
sented the SM of the brain activity of interest in the shape that
was actually present in the novel data, thus dynamically updated.
The associated time value was given by an approach similar to
the Back-projection method but depending on the dynamically
updated SM, i.e., given the new SM (i.e., Xnew), by computing

Aith = YithX;ew-
Dynamic method: recursive spatio-temporal method. This algo-
rithm implemented the possibility of obtaining actual dynamic
values from both the time course and the spatial map with two
concatenated steps. This was obtained by combining the previous
methods to obtain a fully updated on-line method based on the
following steps:

1. Back project the actual data on the SM of FL, obtaining the

. . T
actual value of time course in the FL space ap; = YienX o re— ety

(note that in the BP algorithm we assumed little or no difference
between the template space and the actual subject space)
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2. Apply the temporally constrained algorithm (i.e., initialize the
W matrix exploiting the apr) to obtain the SM (i.e., X;,3) in
the actual subject space (note that this is different from the FL
space)

3. Apply the spatially constrained ICA with the SM in the actual
subject space to obtain the actual time course value in the

subject space, that is ay,, = YithX:u;,-

Adopting the described steps it was thus possible to obtain
temporal and spatial values of the brain activation of interest fully
exploiting the actual data, thus adapting to the dynamic changes
which could occur, but keeping as a target the characteristics
defined in the FL session.

VARIABILITY EFFECTS FROM THE STOCHASTIC NATURE OF ICA

ICA methods (with some exceptions like the jade algorithm) are
typically non-deterministic since there is a stochastic component
in the analysis. This introduces variability each time the algo-
rithm is run, which in turn can affect the computation time and
the performance of the dynamic monitoring of a target IC. Such
variability effects were investigated by repeating the analysis 10
times for each subject on the same data, and then computing the
standard deviation across repeated trials for the mean correlation
between dynamic and template spatial maps and temporal time
course.

RESULTS
Using publicly available fMRI data from a previous experiment
(Calhoun et al., 2001) we simulated a real-time acquisition in

a sliding window approach to evaluate the performance of four
implementations of ICA with different uses of a priori informa-
tion: (i) Back-projection of constant spatial information derived
from a functional localizer (BP), (ii) dynamic use of temporal
(RTC), (iii) spatial (RSC), or (iv) spatio-temporal ICA constrained
data (RSTC).

Given the stochastic nature of the ICA algorithms used, the vari-
ability of the spatial and temporal results was evaluated for each
subject on each of the target networks (Default Mode Network
(DMN), Right Visual Motor and Left Visual Motor Task related
components (RVMT and LVMT respectively)) and for each of the
four ICA implementations. The results showed in Figure 3 point
out that stochastic effects can introduce variability in the perfor-
mance of the IC order ranking accuracy up to 10%, sometimes
producing large fluctuations. This behavior suggested that none
of the four ICA implementations gave consistently the lowest sen-
sitivity to fluctuations due to stochastic effects, although the BP
method tended to be the lowest in 15 out of 18 cases.

Proceeding with further analysis it was possible to focus on
the evaluation of stability of results across subjects and across
different monitored ICs, as presented in Figure 4. This figure
reports the standard deviation across subjects of the mean (across
trials, for each subject) spatial and temporal correlation for the
monitored ICs.

Finally the performance evaluation numbers were reported
in Figure 5 and Table 1, in which one can see the spatial and
temporal correlation between the reconstructed time courses and
spatial maps of the monitored ICs and the reference templates of
those ICs.
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FIGURE 3 | Variability of dynamic tracking performance results due to the
stochastic nature of ICA. Performance is here represented by two metrics:
spatial or temporal correlation between the template and the dynamically
tracked IC, averaged along the time course. The calculations were repeated 10
times for each subject, for each of the three networks evaluated (default mode
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or DMN, right visual motor or RVMT, and left visual motor or LVMT), and for
each ICA implementation (Back-projection or BP, temporally constrained or TC,
spatially constrained or SC, spatio-temporal constrained or STC). The variability
of the dynamic tracking performance results is expressed as the standard
deviation across trials, per subject, brain network, and ICA implementation.
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FIGURE 4 | Variability of dynamic tracking performance results due to
subjects. Similar to Figure 2, but here mean results across trials are used
to compute variability across subjects, expressed as standard deviation. The
subject variability is shown for each of the three networks evaluated
(default mode or DMN, right visual motor or RVMT, and left visual motor or
LVMT) and for each of the four ICA implementations (Back-projection or BR
temporally constrained or TC, spatially constrained or SC, spatio-temporal
constrained or STC).
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FIGURE 5 | Overall dynamic tracking performance in reconstructing
ICs. The mean and standard deviation performance results are shown
across subjects and trials in terms of both spatial and temporal correlation
with the template ICs. The results are shown for each of the three
networks evaluated (default mode or DMN, right visual motor or RVMT, and
left visual motor or LVMT) and for each of the four ICA implementations
(Back-projection or BR, temporally constrained or RTC, spatially constrained
or RSC, and spatio-temporal constrained or RSTC).

The table reports the performances in terms of computational
time necessary to update the actual value of time course or spatial
maps for each new available data volume. This represents another
critical issue of a real-time analysis.

The results show that the Back-projection method offered the
highest performance both in terms of time course reconstruc-
tion (correlation value to the template time course was significant
and quite high, around 0.9), and speed (computation of update
value was far below the TR). This method was very fast and effec-
tive as long as the monitored IC had a strong and well defined
behavior and/or it was well extracted in the FL, since it relied
on an accurate description of the spatial behavior. The fluctua-
tion reported in the figures represents error fluctuations in the
FL phase which directly reflect in the Back-projection method.
The dynamic methods offered comparable performances at cost
of higher computational time (CT) (around 2s for RTC). In
particular the spatio-temporal method performed comparably
in terms of CT to Back-projection, offering more variable per-
formances in terms of reconstruction of spatial maps and time
courses.

Table 1 | Performance.

On-line method CT[s]

DMN RVMT LVMT

Back-projection 0.0056 (0.0002) 0.0054 (0.0004) 0.0054 (0.0007)

Temporally 2.3(0.4) 2.1(0.1) 2.0(0.3)
constrained

Spatially constrained 0.119 (0.003) 0.1167 (0.0002) 0.1169 (0.0003)
Spatio-temporally 0.123 (0.003) 0.1207 (0.0002) 0.1208 (0.0002)

constrained

This table summarizes the performance results in terms of computational time
(CT) from all the investigated rt-ICA techniques relative to the different monitored
ICs. Mean values of updating CT are reported for simulations on three subjects
and ten trials per subject. Standard deviations associated to mean values across
subjects and trials are shown in parenthesis. The selected ICs to monitor were
default mode network (DMN), right visuo-motor task (RVMT), and left visuo-motor
task (LVMT).

DISCUSSION

In the present work we presented and evaluated different meth-
ods to combine ICA-based algorithms for real-time fMRI. The
motivation for this work was to investigate how the advantages
of such multivariate data-driven based methods can be adapted
to real-time fMRI applications, extending previous work (Espos-
ito et al., 2003). One goal of this work was to simulate a realistic
scenario fully based on ICA consisting of two essential steps. The
first step was dedicated to identifying brain networks of interest
from the ICA of a functional localizer. The second step consisted
in dynamically monitoring a target IC (derived from the first step)
with the use of different types of a priori knowledge in the com-
putations. The a priori information considered ranged from static
to dynamic, where spatial maps and time courses can be updated
separately or together to give more weight to the dynamic moni-
toring of data within a pre-established time window in the fMRI
time course. The incorporation of a priori information was moti-
vated to address the challenge of identifying and keeping track
of a specific IC of interest, despite all the other ICs that might
be present in the data. This work therefore focused on evaluating
different ways of using prior information about the target IC to
monitor such that during the dynamic monitoring phase the tar-
get IC could be effectively detected with higher priority relatively
to other possible ICs.

The ICA-based techniques presented for the on-line monitor-
ing were characterized by different advantages and disadvantages.
Overall findings confirmed two general expected features: (i)
the dynamic monitoring performance was directly related to the
strength of activation of the target IC identified in the functional
localizer, stressing the importance of this first step, and (ii) as algo-
rithms became more adaptive in the use of spatial and/or temporal
priors in the dynamic monitoring, they introduced less stabil-
ity in the performance results compared to off-line results. This
reflected the intrinsic differences between static off-line analysis
and dynamic one.

Back-projection is the only method presented for which the
ICA is computed only once in the FL session, and not updated
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later during the on-line monitoring. This means that this method
as implemented here is based on ICA since it depends on the
quality of ICA performed in the FL session, but it is not a fun-
damentally ICA method. Back-projection could in principle also
be used by defining a target brain network from the functional
localizer with a standard general linear model that makes assump-
tions on the hemodynamic responses. The use of ICA, however,
allowed the analysis to be fully data-driven (Esposito et al., 2003;
Beckmann and Smith, 2004; Norman et al., 2006; Calhoun et al.,
2009; Magland et al., 2011; Sitaram et al., 2011) and this represents
an advantage in all those experimental designs where the classical
ICA showed to be robust, as in all cases lacking a defined regres-
sor. The Back-projection technique had the positive features of
being stable in terms of lowest fluctuation across trial and sub-
jects, very fast relative to the TR of fMRI data acquisition (since
it just involves a matrix multiplication), conceptually simple, and
being able to monitor more than one IC of interest. The main
potential disadvantage of the Back-projection method was related
to its non-adaptivity, since it assumed that the target IC of interest
was always present with the same properties, i.e., a fixed spatial
map was considered.

The temporally constrained ICA was more adaptive to data with
respect to Back-projection. Even if similar to what was presented
by Esposito et al. (2003) this method offered different character-
istics. The main one was that the reference time course used as
constraint was not obtained using a hemodynamic model, but
it was extracted from the data in a multivariate data-driven way
by the FL. Moreover in this method the reference time course
was updated in a similar way to Back-projection, while the cru-
cial difference was that the spatial map updates iteratively each
time new data become available. A characteristic of the tempo-
rally constrained ICA was that the dynamic spatial map generated
was derived from the time course used to initialize the ICA algo-
rithm. This time course, being derived from the Back-projection
of actual data on a static space (i.e., keeping the spatial map of
the IC of interest fixed), was strictly related to the quality of the
FL. For this reason the time course reconstructed was in the tem-
plate space (i.e., FL space), while the spatial map was in the subject
space, being obtained by exploiting the reconstructed time course
as a priori knowledge during the application of the ICA algorithm.
A limitation of the temporally constrained algorithm was that its
mean computation time was more than one order of magnitude
higher relative to all the other methods tested. This is due to the
fact that the FastICA algorithm adopted in it, while performing
generally lower than a TR, sometimes (around 2-3% of the times)
got stuck in a local minimum thus increasing the time to perform
the decomposition (in some cases from 1.5 upto 8s). A possible
solution to this would be to skip the updating of the information
for those volumes which exceed a pre-determined temporal limit
to update.

The spatially constrained ICA assumed a fixed spatial map
of the IC of interest. This approach suffered from the small
amount of data available for the decomposition. The main advan-
tages included low computational time and low variability of the
results, qualities that make it a good candidate for use in real-time
experiments.

The combined implementation of spatial and temporal con-
strained ICA permitted a better description of the actual dynamic
behavior of data, thus focusing on data characteristics which were
strongly transient and for this reason probably not modeled in
the off-line static analysis, which privileged extraction of static
periodic or quasi-periodic behaviors. This method enabled us to
obtain valuable results both in terms of accuracy and compu-
tational time. Its main disadvantage was that it was less able to
characterize static aspects of the data.

A further consideration is needed related to the variability of
monitoring performance. Three kinds of variability were investi-
gated in the simulations. The first one was due to the stochastic
nature of principal ICA algorithms, which caused different results
to be obtained in different runs of the algorithm on the same data.
Multiple repetitions of the analysis showed that this variability can
affect computation time, but the obtained performance had a sta-
bility better than 10%. The second kind of variability identified
was subject specific which caused about 20% of the variability.
The third source of variability in the dynamic performance mon-
itoring related to the specific target IC within a subject. Across
different monitored ICs within the same subject, the results of
Table 1 and Figure 2 confirm that the difference in behavior of
different subjects was consistent across ICs. Indeed the perfor-
mance improved for all the subjects when monitoring task related
RVMT and LVMT (Figure 1) with respect to Resting State Net-
work (RSN) related Default Mode Network (DMN) (Figure 2)
thus proving that difference in the nature of monitored IC was
the strongest source of variability (up to 30%) for these kind
of presented methods. This may be due to the fact that differ-
ent activations have particular statistical distribution properties,
being more or less suitable to be extracted by ICA algorithms. In
addition, a reason for the difficulty in extracting spatial charac-
terization of the DMN is its low frequency relative to the sliding
time window length, thus making it difficult for the algorithm to
correctly follow it.

This work has some limitations. One limitation is related to the
definition of dynamic monitoring performance, which depends on
temporal or spatial correlations with a template reference derived
from the whole time course. It is not necessarily correct to expect
that spatial-temporal characteristics derived from the sliding win-
dow along the time course should match the ones derived from
the whole time course. For this reason the performance measures
are only indicative.

The possibility that the actual dynamic brain activation is
correctly identified by these on-line methods opens the door to
future definition of techniques and experiments. These exper-
iments could exploit these methods to have a confirmation of
transient activation identification independently of the off-line
analysis, which represents a general reference for evaluation of
results, but may also represent a bias.

Another limitation relates to the simulation nature of the work,
which should be further evaluated on a real implementation in
which the performance of the different methods can be studied,
for example using a neurofeedback setup.

The comparison of ICA with non-ICA approaches in rt-fMRI
setups was beyond the scope of this study. Given the known
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potential advantages of data-driven analysis (Norman et al., 20065
Magland et al., 2011; Sitaram et al., 2011), and in particular
ICA methods (Esposito et al., 2003; Beckmann and Smith, 2004;
Calhoun et al., 2009), this simulation study is limited to the
comparison of novel ICA-based methods for rt-fMRI using robust
activation in well-known visual motor areas. Future studies will be
needed to evaluate these ICA methods with brain activation that
could be more challenging to identify.

This work proposed and evaluated several strategies for using
a priori information for the monitoring of brain networks in
real-time fMRI experiments. The performance of the methods
was characterized by both computation speed and correlation
between the spatial-temporal properties of a target independent
component derived dynamically and a reference component. The
method that gave the highest performance was based on the Back-
projection of a constant target spatial map derived by the spatial
localizer. In this method the use of ICA was exploited only in
the Functional Localizer phase, while during the on-line monitor-
ing the reference component was kept constant and not updated
with any ICA algorithm. This combination of both ICA and
non-ICA methods shows thus to be very helpful and promising.
This method had the limitation that its reference was constant
and this means that it may not be optimal to follow dynamic
changes as it cannot adapt to changes in brain. The other tested
methods were based on the use of adaptive spatial, temporal, or
spatial-temporal priors and may have useful applications in stud-
ies where there is a need of higher flexibility to monitor variable
activation.
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