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Important decisions in the heat of battle occur rapidly and a key aptitude of a good combat
soldier is the ability to determine whether he is under fire. This rapid decision requires the
soldier to make a judgment in a fraction of a second, based on a barrage of multisensory
cues coming from multiple modalities. The present study uses an oddball paradigm to
examine listener ability to differentiate shooter locations from audio recordings of small
arms fire. More importantly, we address the neural correlates involved in this rapid
decision process by employing single-trial analysis of electroencephalography (EEG). In
particular, we examine small arms expert listeners as they differentiate the sounds of
small arms firing events recorded at different observer positions relative to a shooter.
Using signal detection theory, we find clear neural signatures related to shooter firing
angle by identifying the times of neural discrimination on a trial-to-trial basis. Similar
to previous results in oddball experiments, we find common windows relative to the
response and the stimulus when neural activity discriminates between target stimuli
(forward fire: observer 0◦ to firing angle) vs. standards (off-axis fire: observer 90◦ to
firing angle). We also find, using windows of maximum discrimination, that auditory
target vs. standard discrimination yields neural sources in Brodmann Area 19 (BA 19),
i.e., in the visual cortex. In summary, we show that single-trial analysis of EEG yields
informative scalp distributions and source current localization of discriminating activity
when the small arms experts discriminate between forward and off-axis fire observer
positions. Furthermore, this perceptual decision implicates brain regions involved in visual
processing, even though the task is purely auditory. Finally, we utilize these techniques to
quantify the level of expertise in these subjects for the chosen task, having implications
for human performance monitoring in combat.

Keywords: EEG, auditory oddball, expertise, military medicine, military personnel, generalized linear models

(GLMs), source localization

INTRODUCTION
In hostile environments where small arms fire is present, sol-
diers, and other operators (e.g., policemen), must rely on a rapid
decision-making process that tracks the origin of a weapons
fire, determine whether they are the intended targets, and finally
decide how to respond. While automatic systems have been devel-
oped in recent years to assist in the localization of small arms fire
(Bedard, 2006; Völgyeshi et al., 2007), these types of systems can-
not fully replace the abilities of an unaided observer who must
make rapid perceptual decisions in hostile environments.

Despite the practical importance of such observers to make
decisions about small arms fire events, there has been little
research addressing listener perception in this context. To the
extent that this environment has been studied rigorously, per-
ceptual analyses have been mostly limited to high-level metrics
available from group dynamics measurements (Wilson et al.,
2007) and descriptive surveys of friendly fire anecdotes (Hawley,
2008). The key point from the Wilson et al. study is that fratricide

(i.e., friendly fire incidents) can be avoided when shared cogni-
tive load is high, even when automatic localizers are used. There
was no attention given to the actual neural processes underlying
the perception of such an environment. In Hawley, there was even
less consideration for cognitive factors.

To date, quantitative perceptual research on small arms firing
events has focused on measuring and predicting hearing hazard
from these intense impulsive events (Coles et al., 1968; Ward,
1968; Price, 2007). Closest to our aim in this study, Fluitt and
Gaston have investigated listener ability to recognize and identify
differences between small arms weapons for single-shot events
(Fluitt, 2010; Gaston, 2012). There is at least one study that
investigated listener ability to accurately localize a shooter across
a limited range of conditions (Garinther and Moreland, 1966).
Finally, more recently, Talcott and colleagues (Talcott, 2012) mea-
sured listener ability to localize a shooter based on the sounds
of blank rounds, with and without the use of various hearing
protectors.
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Given the limited behavioral literature for the perception of
small arms firing events, it is not surprising that to our knowl-
edge, there is no work addressing the neural correlates of small
arms fire events. The present work seeks to address this gap by
measuring the neural correlates of subjects performing a listen-
ing task to differentiate the location of the sounds of recorded
small arms fire. To this end, we modified the auditory oddball
paradigm (Strobel et al., 2008; Goldman et al., 2009; Mangalathu-
Arumana et al., 2012) where the target and oddball stimuli are
firing events recorded from different relative locations. In a tra-
ditional auditory oddball paradigm, the difference between the
targets and standards is obvious to a large population of sub-
jects, but this is not necessarily the case for localizing arms fire,
at least without possibly prolonged periods of preliminary train-
ing. This is due to the fact that in the absence of unambiguous
spatial cues, the listening decision must be based on relatively
subtle spectral differences created by different listening posi-
tions. This process of auditory source localization differs from
earlier studies on the topic (not using small arms fire record-
ings) in which spatial location is communicated via inter-aural
timing differences (Zatorre et al., 1999; Alain et al., 2001). In
the absence of communicating location via these timing dif-
ferences, our subjects were therefore recruited based on their
extensive small arms experience, so that they could more read-
ily perform the task using the subtle spectral differences of the
stimuli.

In this paper we employ a forced-choice decision-making task,
in which subjects must choose between the sounds of small arms
being fired at forward-fire and off-axis “listener” positions in
a timed task. We utilize a multivariate classifier to project the
neural data (measured via EEG) into a space that optimally sep-
arates trials into their predicted angle class (Parra et al., 2005;
Conroy and Sajda, 2012). By not limiting our analysis to spe-
cific electrode sites, we can derive what regions of the subjects’
scalp activity indicate localization specific to infrequent incom-
ing fire. Furthermore, we utilize source reconstruction techniques
(Pascual-Marqui et al., 1999; Pascual-Marqui, 2002) to identify
the neural generators of the decision-making process when the
subjects correctly respond to forward-fire sound events. Finally,
we utilize statistical hypothesis testing to investigate the extent to
which neural activity predicts task performance. We also use this
technique to determine whether self-reported expertise is a reli-
able predictor for either behavioral and/or neural performance
metrics.

MATERIALS AND METHODS
SUBJECTS
Eleven subjects (N = 11) participated in the study (two female,
mean age −34.6 ± 9.0 years). All subjects were recruited based
on the criterion that they have extensive experience using small
arms fire. All subjects had either served in the US Armed Forces or
were US government employees. All subjects self-reported expe-
rience using a mean of 7 ± 1 weapons. Of the subjects, eight
self-reported the highest level of expertise (4) with at least one
weapon on a scale of 1–4. All subjects reported normal hearing
and no history of neurological problems. Informed consent was
obtained from all participants in accordance with the guidelines

and approval of the US Army Research Laboratory Institutional
Review Board.

SOUND CHARACTERISTICS OF SMALL ARMS FIRE: DIFFERENTIATING
TARGETS AND STANDARDS
We chose to use recordings of small arms fire as the stimulus
event in an auditory oddball paradigm because of the temporal
and spectral changes arising from the physics of a firing event
from different relative locations. The sounds of small arms fire
are the result of two events: (1) an explosive release of the buildup
of pressure that propels a bullet from the weapon’s muzzle and
(2) the wake-like disturbance of air as the bullet moves toward the
target. The direct acoustic consequence is an intense muzzle blast
that propagates roughly spherically from the weapon’s muzzle
and has total duration of approximately 3–5 ms (Maher, 2006).
As is true of the majority of small arms infantry rifles, if the bullet
is supersonic, passage of the bullet through the air produces a
sonic boom that propagates outward from the traveling bullet.
This acoustic component is called a ballistic crack. It has a
characteristic N-wave shape (peak pressure extremes correspond
to the bow and stern of the traveling bullet), and has an extremely
brief rise time (1–2 μs) and brief total duration (200–300 μs). As
opposed to the spherically propagating muzzle blast, the ballistic
crack propagates in a cone shape behind the bullet and expands
away from the target line.

The top panel of Figure 1 depicts the waveform of a fired M4
carbine measured at a position along the target line of fire. The
bottom panel depicts the waveform of the same weapon being
fired and measured at a position 90◦ to the left of the target line.
The propagation of the ballistic crack occurs in a critical angle
on either side of the target line, forward of the muzzle (Garinther
and Moreland, 1966). Within the bounds of this critical angle, the
ballistic crack is present and beyond this angle, the ballistic crack
is absent. The critical angle is approximately 60◦ from the shooter
to the left and the right of the target line. Based on these phys-
ical relationships, we can define two distinct listener positions:
(1) A forward-fire position, where there is a ballistic crack fol-
lowed by a muzzle blast, and (2) An off-axis position, where there
is only a muzzle blast. Functionally, these two gross distinctions
between listening positions can be indicative of relative safety (i.e.,
either nearer to, or further from, the shooter’s target line of fire).

STIMULI OVERVIEW AND BEHAVIORAL PARADIGM
The basic audio stimulus set consisted of the recorded sounds
(24 bit, 96 kHz) of an M4 carbine being fired at a small arms
research facility at the US Army Aberdeen Proving Ground.
Recordings were made at microphone locations 16 m directly in
front of the shooter (0◦ relative to the shooter target line) and
16 m perpendicular to the shooter (90◦ relative to the shooter
target line). Four 3-round bursts of fire were recorded at both
of the microphone positions simultaneously. For the 0◦ stimuli,
the average peak level of the ballistic crack was 149.4 ± 0.3 dB,
and the average time between ballistic cracks and muzzle blasts
was 20.3 ± 0.3 ms. Across both the 0◦ and 90◦ stimuli the aver-
age peak level of the muzzle blast was 149.3 ± 0.3 dB and the
average time between muzzle blasts was 75.0 ± 0.5 ms. In addi-
tion to the firing events, three 120 s long recordings were made
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FIGURE 1 | (A) Waveform of a 3-round burst of fire for a M4 carbine
recorded 16 m in front of the shooter directly along the target line
(0◦ incidence). The ballistic crack, ballistic crack reflection, and muzzle

blast are labeled. (B) Waveform of a 3-round burst of fire for a M4 carbine
recorded 16 m perpendicular to the left of the shooter target line (90◦
incidence). The muzzle blast is labeled.

of the ambient background at the small arms range and the aver-
age level across the background was 71.0 ± 0.2 dBA. The actual
audio levels presented to listeners were much quieter than these
measured levels due to power constraints of playback speakers.
Also, the playback level was such that the continuous noise lev-
els never exceeded 85 dB and peak levels never exceeded 110 dB.
Importantly for target detection, the average peak level of the fir-
ing sounds was greater than 78 dB above the average background
noise level, and thus there was a signal to noise ratio of greater
than 2:1 in each trial.

All stimuli were down-sampled to 16-bit, 44.1 kHz for exper-
imental playback to subjects. Using a digital audio workstation
(Logic Express 9.0, Cupertino, CA), audio scenes were created
by mixing the eight unique firing events and three unique back-
grounds. Each audio scene had at minimum 21 and at maximum
26 small arms 3-round bursts of fire. Two categories of firing
events were used in each block, shots from 0◦ (targets) and 90◦
(standards). A sample audio scene is included as Supplementary
Material with a key identifying the sequence of 0◦ and 90◦ shots
(Table A1). The 0◦ shots were made to be the targets to more
directly test perceptual decision making within the context of
incoming fire. The firing events occurred on a jittered inter-
stimulus interval (ISI) of 3104 ± 43 ms. There were a total of 663
stimulus events (513 standards, 150 targets) across the 27 unique
audio scenes presented to subjects. The number of standards

preceding a target in a sequence was 3.4 ± 0.3, with the mini-
mum being 0 (12 times) and the maximum being 9 (1 time). The
presentation order of scenes to subjects was randomized and no
scene was heard twice.

The subjects were instructed to identify the relative angle of
the firing event as quickly as possible via a keyboard button
response, where each angle choice was mapped to a unique button
(“1” and “2”). All button responses were executed with the right
hand index and middle finger, regardless of handedness. After
an initial training phase where subjects acclimated to the audio
environment by hearing examples, and after a short initial prac-
tice session in which they responded with the button response
and received feedback, the 27 blocks began and EEG data were
recorded. During the EEG recording, the subjects received no
feedback on their performance.

All audio stimuli were presented on a Dell A525 speaker sys-
tem that included two satellite speakers placed to the left and
right, directly in front of the subjects (12′′ away), and a pow-
ered subwoofer placed on the floor in front of the listeners. There
was no level panning to provide spatial information about the
relative angle of the firing event. Rather, subjects could only
determine the relative direction of the firing events based on non-
spatial cues, specifically the presence or absence of the ballistic
crack in the sound recording. Figure 2 shows the scene described
to the subjects in which they were making decisions, with an
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FIGURE 2 | Schematic of the simulated small arms fire localization

task. θ denotes the angle of incidence between the subject (S) and the
firing event as conveyed by audio recording. Firing events from θ = 0◦ were
labeled “enemy” (E) and θ = 90◦ were labeled “friendly” (F). Subjects were
instructed to identify the angle of incidence of the firing event from these
two possible choices as quickly as possible.

enemy shooting up-range at an observer at a relative angle of 0◦
(forward-fire position) and a friendly shooting down-range from
the observer at a relative angle of 90◦ (off-axis fire), both equidis-
tant from the subject (16 m). Therefore, a button response to 0◦
was labeled “shoot back” and to 90◦ “all OK” to provide the sub-
jects a more realistic experimental context. A Dell Precision 530
Workstation was used to present the audio stimuli with E-Prime
2.0 (Sharpsburg, PA). The subjects sat in an RF-shielded room
with their eyes closed to minimize eye-blink artifacts. Despite
increased alpha power, this technique has been used extensively in
auditory perception tasks with EEG, mitigating any potential con-
cerns of overpowering the ERP (Goldman et al., 2009; Maidhof
et al., 2010).

The start of each 3-round burst of fire was the stimulus event
by which EEG locking occurred. Stimulus events were passed to
the EEG recording through a TTL pulse in the event channel. In
post-hoc analysis, response events were added to the EEG via their
latencies from the stimulus event.

DATA ACQUISITION
EEG data were acquired in an electrostatically shielded room
using a BioSemi Active Two AD Box ADC-12 (BioSemi, The
Netherlands) amplifier from 64 active scalp electrodes. All chan-
nels were referenced to BioSemi’s ground electrodes made for use
with the Active Two. Data were sampled at 2048 Hz. A software-
based 0.5 Hz high pass filter was used to remove DC drifts and
60 and 120 Hz (harmonic) notch filters were applied to minimize
line noise artifacts. These filters were designed to be linear-phase
to minimize delay distortions. Stimulus events—i.e., the first of
the three-shot firing event—were recorded on separate channels.

In stimulus-locked epoching (−1000 to 1000 ms), the aver-
age pre-stimulus baseline was removed (−1000 to 0 ms). An

alternative analysis also examined stimulus-locked epoching
without an average baseline removal, but all results below are for
the baseline-removed stimulus-locked epoching, unless otherwise
indicated. After epoching to stimulus events, an automatic artifact
epoch rejection algorithm from EEGLAB (Delorme and Makeig,
2004) was run to remove all epochs that exceeded a probability
threshold of 5 standard deviations from the average. Similarly, in
response-locked epoching (−1000 to 1000 ms), the average base-
line was removed from −1000 to 0 ms and the same automatic
artifact epoch rejection algorithm was run.

BEHAVIORAL DATA ANALYSIS
We tracked behavioral performance in two ways, the first less
stringent than the second. First, we tracked relative firing angle
identification (i.e., forward fire, 0◦, or off-axis, 90◦) regardless
of response time. Second, we enforced an additional criterion
on angle identification that the response time had to be within
1000 ms of the stimulus onset. We chose this threshold because
preceding analyses that employ overt responses and neural data
discrimination do not consider trials that exceed this time after
the stimulus onset (Goldman et al., 2009; Ratcliff et al., 2009;
Sajda et al., 2009). Furthermore, the need to respond quickly to
the stimulus provides a better simulation to combat. Therefore,
we did the threshold analysis to more directly compare behavioral
and neural results both with each other and with other similar
experiments, all of which use this response time criterion. Thus,
responses after 1000 ms from the stimulus event were deemed
incorrect.

As a further analysis, we employed a statistical hypothesis test
(paired t-test) on the response times without the time-threshold
to determine if there was an inherent bias in response timing to
either the target or standard stimuli.

NEURAL DATA ANALYSIS
We performed a single-trial analysis of the filtered, epoched and
artifact-removed EEG to discriminate neural response based on
correct localization. To do so, we considered only behaviorally
correct firing event responses, where the user’s response was
within 1000 ms of the first shot, and trained the classifier to dis-
criminate a 90◦ relative firing angle (standard correct or SC) from
one at 0◦ (target correct or TC).

Logistic regression was used as a classifier to find an optimal
projection for discriminating between TC and SC conditions over
a specific temporal window (Parra et al., 2002, 2005). Specifically,
we defined a training window starting at either a pre-stimulus or
post-stimulus onset time τ, with a duration of δ, and used logis-
tic regression to estimate a spatial weighting vector −→w T

τ,δ which
maximally discriminates between EEG sensor array signals X for
each class:

Equation 1: projection equation for component

−→y = −→w T
τ,δX

In Equation 1, X is an N × T matrix (N sensors and T time
samples). The result is a “discriminating component” −→y that is
specific to activity correlated with each condition, while mini-
mizing activity correlated with both task conditions. The term
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“component” is used instead of “source” to make it clear that this
is a projection of all activity correlated with the underlying source.
For our experiment, the duration of the training window (δ) was
50 ms. The window onset time (τ) was varied across time in 25 ms
steps for both stimulus-locked and response-locked epochs, cov-
ering (0, 1000) ms in the former and (−1000, 1000) ms in the
latter. We used the re-weighted least squares algorithm to learn
the optimal discriminating spatial weighting vector −→w T

τ,δ
(Jordan

and Jacobs, 1994).
After solving for optimal discriminating spatial vectors in each

window, there are additional analyses that we used for insight into
our data. In order to provide a functional neuroanatomical inter-
pretation of the resultant discriminating activity, and due to the
linearity of the model, we compute the electrical coupling coeffi-
cients as shown in Equation 2. This calculation is also called the
“forward model.”

Equation 2: sensor projection onto discriminating component

−→a = X−→y
−→y • −→y

This equation describes the electrical coupling −→a of the dis-
criminating component −→y that explains most of the activity X.
Therefore, −→a allows a topological representation of how strongly
each electrode discriminates for one condition vs. another.

To complement the forward model analysis, we used the train-
ing window of optimum discrimination in epoch-time to inform
an ERP-based source localization analysis. Specifically, we used
the classification results of behaviorally correct trials (i.e., TC
and SC). This was done on a subject-specific basis. Then we
selected the window at which the leave-one-out Az value was
maximum for that subject. Using this marker in time, we trial-
averaged the sensor data across all epochs that were either TC
or SC, creating a grand average ERP for each subject and for
each firing event angle. For 11 subjects and two conditions, this
resulted in a total of 22 ERPs for each condition. Using grand
average ERP values from subject-specific optimum windows, we
utilized a source localization algorithm (sLORETA) (Pascual-
Marqui et al., 1999) to calculate the most likely cortical source
distributions. We did a paired t-test for TC vs. SC source distri-
butions and calculated the resulting t-distribution of the log of
the F-ratio using 2000 permutations to establish significance lev-
els (p < 0.01) for the null hypothesis (h0: no difference in activity
between TC and SC).

We quantified the performance of the linear discriminator by
the area under the receiver operator characteristic (ROC) curve,
referred to here as Az using a leave-one-out approach (Duda,
2001). We used the ROC Az metric to characterize the discrim-
ination performance while sliding our training window from
0 ms pre-stimulus to 1000 ms post-stimulus (i.e., varying τ) for
stimulus-locked and −1000 ms pre-response to 1000 ms post-
response for response-locked. For stimulus-locked analysis, the
former time period provided substantial time after the stimulus to
observe any electrophysiological response to the firing event. For
response-locked analysis, the latter time period provided ample
time both before and after the behavioral response (button press)

to observe any electrophysiological activity related to the decision
in reaction to the firing event.

We quantified the statistical significance of Az in each win-
dow (τ) by a relabeling procedure. Specifically, we randomized
the truth labels between epochs of each class and retrained the
classifier. For response-locked analysis, this was done 50 times for
each of the 79 windows of each subject (N = 11), giving a total
of 43450 permutations for a group level analysis. This number
of permutations provides a large enough distribution to obtain a
suitable number of samples after applying the Bonferroni thresh-
old correction. Specifically, the Az values from these permutations
were used to establish a threshold for the p < 0.01/79 significance
threshold. All significant results are thus reported at p < 0.01
Bonferroni corrected for multiple comparisons.

For stimulus-locked analysis, 250 permutations were done for
each of the 39 windows of each subject. The false discovery
rate (FDR) was then used within each window of each sub-
ject’s epoch to adjust the p = 0.05 threshold line (Benjamini
and Hochberg, 1995). The mean of this line across time points
was then used as the corrected p = 0.05 significance line across
the entire epoch within each subject. For group level analysis,
we used the same procedure as was used for response-locked
analysis, except subjects not discriminating after FDR correction
were excluded from that analysis. Still, due to the higher number
of within-subject label permutations (i.e., 250 stimulus-locked
compared to 50 response-locked), we had a suitable number
of permutations at our disposal for establishing the group-level
Bonferroni thresholds.

COMBINED BEHAVIORAL AND NEURAL DATA ANALYSIS
We also investigated whether the neural data could predict the
behavioral data. To this end, we used the Pearson correlation coef-
ficient to determine a relationship between the within-subject
number of FDR-significant discriminating windows and each
behavioral metric reported in Table 1. We did this using data from
all subjects.

We also used the Pearson correlation to test the relationship
between self-reported expertise and both neural and behav-
ioral metrics of performance. Specifically, we correlated both a
subject’s number of reported weapons experience (mean 7 ± 1
weapons across our population) and his/her mean weapon expe-
rience (reported on a scale of 1–4, see “Materials and Methods”)
with both neural and behavioral metrics of target discrimination.
For our neural metric, we used the number of significant windows
among those subjects showing stimulus-locked discrimination.
For our behavioral metric, we utilized both TC and SC accuracy
both with and without the time threshold.

RESULTS
BEHAVIORAL PERFORMANCE
Without the threshold for response time, the right two bars of
Figure 3 show that overall accuracy by event type was 0.93 ± 0.02
for 0◦ events and 0.94 ± 0.04 for 90◦ events. Though not shown,
total accuracy regardless of event type was 0.93 ± 0.04. Requiring
responses to be within 1000 ms of the stimulus, the behavioral
data summarized in the light gray bars of Figure 3 show accuracy
was 0.86 ± 0.04 for 0◦ events, and 0.88 ± 0.05 for 90◦ events.
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Table 1 | Behavioral results and stimulus-locked discrimination summary.

Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Fraction TC 0.844 0.887 0.927 0.933 0.973 0.860 0.987 0.893 0.920 0.980 0.973

Fraction SC 0.790 0.988 0.612 0.994 0.994 0.998 0.998 0.990 0.994 0.996 0.998

Fraction TC (RT ≤ 1000 ms) 0.585 0.847 0.793 0.933 0.953 0.660 0.973 0.867 0.900 0.980 0.973

Fraction SC (RT ≤ 1000 ms) 0.594 0.938 0.497 0.988 0.951 0.848 0.944 0.959 0.990 0.977 0.986

Max. Az N/A 0.69 N/A 0.73 0.68 N/A 0.67 0.71 0.72 0.72 0.76

Max. Az time (ms) N/A 600 N/A 550 675 N/A 700 500 550 700 600

FDR significant windows 0 16 0 30 21 0 14 30 32 33 34

N/A, No FDR-corrected significant windows.

FIGURE 3 | Neural and behavioral discrimination accuracy across all

subjects. Az values are reported from stimulus-locked epochs for all
subjects with significant discrimination (false-discovery rate corrected,
p < 0.01). Behavioral accuracy is also shown for all trials across all subjects,
as well as response times within the 1000 ms threshold used for neural
discrimination.

Even with the criterion on response timing, 8 of the 11 subjects
had >94% of responses within this threshold (across all subjects,
92 ± 3%). Full details for all subjects’ accuracies with and without
the threshold can be seen in Table 1.

We also examined reaction times regardless of response accu-
racy. We found no difference in the mean response times to
targets, 0◦ firing events, and to standards, 90◦ firing events (two-
sample t-test, p = 0.71). Specifically, target response times were
712 ms (SEM, 37 ms), whereas standard responses were 689 ms
(SEM, 39 ms), after the stimulus onset.

NEURAL MARKERS OF CORRECTLY IDENTIFIED FIRING LOCALIZATION:
STIMULUS-LOCKED ANALYSIS
Table 1 shows the maximum Az values and the number of
FDR corrected significant windows for each subject. Time to

maximum Az was 609 ± 27 ms across subjects with signifi-
cant discrimination. Of these subjects, the number of significant
discriminating windows was 23 ± 3 out of a possible thirty-
nine 50-ms windows. All subjects, except S1, S3, and S6, exhibit
windows of neural activity discriminating for the target stimu-
lus. These three subjects exhibit the lowest behavioral accuracies
under the response-time threshold (see Table 1). Furthermore,
they all exhibit the lowest three accuracies in either TC or SC
across the population when there is no such threshold.

In an alternative analysis in which the baseline was not
removed, only S3 exhibited no FDR corrected discrimination.
This subject had the lowest accuracy of any other when there was
a 1000 ms response time threshold (0.497 for SC).

Having this range of behavioral performance, we tested the
relationship between neural discrimination and behavioral per-
formance. We found positive correlation between number of
significant windows and time-thresholded behavioral accuracy
for 0◦ (r = 0.795, p < 0.01) and 90◦ (r = 0.812, p < 0.01) stim-
uli. The correlation disappears or weakens though without the
response time threshold of 1000 ms: r = 0.545, p > 0.05 for 0◦
and r = 0.637, p < 0.05 for 90◦ stimuli. This result indicates the
importance of the threshold as a means to concentrate neural
activity in common time windows across trials so that discrim-
inating activity can be found with the classifier. Importantly
for performance monitoring in time-pressured situations, these
results also indicate that neural activity can be used as a predictive
indicator of behavioral performance.

We also investigated the extent to which self-reported exper-
tise predicted neural and/or behavioral performance. The tested
relationships can be found above in the Methods section, but
for none of these single hypotheses did we find a signifi-
cant correlation (p > 0.05 for each of them). Therefore, while
we find that neural metrics can predict behavioral perfor-
mance, we find no relationship between self-reported exper-
tises as quantified in this study with either behavioral or
neural performance.

Returning to the FDR corrected discriminating subjects, we
also found a common window of activity. By utilizing the 9750
permutations within each subject (hence, 78,000 across the dis-
criminating eight subjects), we confirm the significance of this
window at a p = 0.01, Bonferroni corrected threshold on a
group level. Figure 4 shows this group of windows across the
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discriminating eight subjects, lasting from 450 to 725 ms. This
result and the timing of peak Az across discriminating subjects
rests firmly in the latter portion of the P300 window (Linden,
2005). Accompanying forward model scalp projections confirm
P300 activity in most of this time period.

From these results, we can also consider the possibility of
a motor confound. Comparing the timing of this window
(450–725 ms) to the response times summarized in Figure 3
(712 ± 37 ms, targets; 689 ± 39 ms, standards), we can see that
the discriminating neural activity generally precedes the decision
response. Consequently, it is likely that the discriminating activ-
ity is pre-motor and therefore, not due to a motor confound but
rather, due to the subjects’ ability to discriminate the sound char-
acteristics of the different stimuli. Furthermore, forward model
scalp topographies do not indicate sensors over motor areas in
Figure 4.

Finally, from the perspective of performance monitoring, we
find a lack of aural expertise in both the behavioral and neu-
ral response of three subjects from this analysis (S1, S3, and S6),
despite these subjects’ self-reported experience with small arms.

NEURAL MARKERS OF CORRECTLY IDENTIFIED FIRING LOCALIZATION:
RESPONSE-LOCKED ANALYSIS
To further investigate the possibility of a motor confound in the
neural signal, we also classified EEG data locked to the response
times (Figure 5). Once again, using correctly identified stimuli,
we calculated the Az values across all subjects. Accompanying
forward models showing topological plots of target- and control-
discriminating electrodes show that a right-lateralized P300

FIGURE 4 | Mean (black) and standard error (gray shading)

stimulus-locked leave-one-out discrimination performance across all

discriminating subjects (p < 0.01, Bonferroni corrected). Included
subjects had at least one false discovery rate (FDR) corrected window on a
subject-level analysis. This leaves eight subjects from the original eleven,
yet due to this criterion the discriminating window across subjects now
more closely resembles the timing for the P300. Normalized forward
models across discriminating subjects show the progression of significant
discriminating activity, with higher values indicating discrimination for the
targets (TC) and lower values for the standards (SC).

activity precedes the response and then yields to motor-related
activity in the target condition. So while there is a possible motor
component to the discrimination, it largely happens after the
response and therefore cannot solely drive the discrimination of
any perceptual decision-making preceding it.

In contrast to the stimulus-locked results, we find signifi-
cant peaks (Bonferroni corrected, p = 0.01) across all subjects,
including those exhibiting no stimulus-locked discrimination.
For instance, all subjects (S1, S3, and S6 included) exhibit win-
dows of highly discriminating activity leading up to or just
following the response (maximum values of Az for S1, S3, and
S6 were 0.70, 0.79, and 0.96, respectively). So while these subjects
can perform the task, the stimulus-locked results show that, in
addition to exhibiting lower behavioral performance, they cannot
do it with the same rapidity as the other eight.

In the context of the stimulus-locked group analysis, this
response-locked group analysis demonstrates an evidence gath-
ering process that proceeds at different rates for different sub-
jects before executing their decision. By examining this process
with response-locked epoching, we find that the decision pro-
cess exhibits increasingly discriminating activity leading up to the
response (peak at −75 ms, Az = 0.79 ± 0.04), before tapering
off as the response is executed. For subjects excluded from the
stimulus-locked analysis, this decision process is more scattered
in stimulus-locked time and therefore not observed. But its pres-
ence in response-locked time indicates that despite slow response
times these slow-performing subjects exhibit discriminating neu-
ral activity when they do correctly localize. Furthermore, such
slow-performing subjects had target accuracies greater than 84%

FIGURE 5 | Mean (black) and standard error (gray shading)

response-locked leave-one-out discrimination performance across all

subjects. As opposed to the stimulus-locked leave-one-out analysis across
subjects, we find a response-locked significant common window leading up
to the decision and tapering off after it has been made (Bonferroni
corrected, p < 0.01). Normalized forward models across subjects at
indicated times show the progression of discriminating scalp activity, with
higher values indicating target discrimination and lower values indicating
standard discrimination.

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 67 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Sherwin and Gaston Soldiers and marksmen under fire

when there was no response time threshold (see Fraction TC in
Table 1 for these subjects), corroborating the claim that given
enough time they could sufficiently perform the task, albeit at
slightly lower behavioral accuracies than the other eight subjects.
Nevertheless, the trial-to-trial temporal variability of these sub-
jects’ neural processes makes it difficult to discriminate TC from
SC with stimulus locking.

FORWARD MODELS OF DISCRIMINATING ACTIVITY
We used the maximally discriminating component activity
to examine the spatial distribution of the neural response.
Specifically, we estimated the electrical coupling −→a (i.e., the for-
ward model) for each subject using behaviorally correct trials.
Figure 6 shows these forward models averaged across all discrim-
inating subjects (eight subjects for stimulus-locked in Figure 6A,
11 for response-locked in Figure 6B) at the window of maximum
Az (e.g., the times in Table 1 represent the stimulus-locked τ’s
for estimating the components in Equation 1 and the resulting
forward models −→a using Equation 2).

We found spatial distributions showing a strong occipito-
parietal component for the target stimuli (positive values = red,
dimensionless) for both stimulus- and response-locked windows
of maximum Az . Normalized by the within subject maximum
value of −→a , the forward model averages shown in Figure 6 are
not dominated by one or an otherwise subset of the subjects.

SOURCE LOCALIZATION OF DISCRIMINATING ACTIVITY
To complement the forward model analysis, we used source local-
ization to investigate the differences between behaviorally correct
trials (i.e., TC vs. SC). Stimulus-locked data was not used because
with only eight discriminating subjects there was not enough sta-
tistical power across the group to establish a significance threshold
with statistical non-parametric mapping (Holmes et al., 1996).
Therefore, response-locked data was used for all subjects because
group-level analysis showed significant discrimination at multiple
time windows (see Figure 5). Following the procedure described
in the “Materials and Methods,” we utilized the sLoreta source
localization algorithm and performed a paired t-test [F(1, 20)] to
determine activity specific to TC or SC. We show the response-
locked results from this hypothesis test in Figure 7.

As a check, we also ran a stimulus-locked analysis using
classification from the non-baseline removed EEG data, since
that analysis showed FDR corrected significant (though poorer)
discrimination across 10 of the 11 subjects. Due to there being
10 subjects, we could establish a p < 0.01 significance line
from permutation testing and statistical non-parametric mapping
(Holmes et al., 1996). We found that the stimulus-locked dis-
tribution looked similar to Figure 7, though not as statistically
significant (minimum voxel p-value was p = 0.012).

We used signed, one-tailed comparisons to evaluate the results
against the null hypothesis (h0). Though the hypothesis of SC >

TC shows no significant similarities (blue), a one-tailed t-test
for TC > SC (red) shows a common neuronal current source
located in the right visual cortex, particularly showing peaks in
Brodmann Areas 19 and 39 (BA 19 and 39). In particular, the
source activity peaks at MNI (−35, 80, 25), in the BA 19. While
surprising that an auditory task would show common activity in

FIGURE 6 | Stimulus-locked (A) and response-locked (B) forward model

across discriminating subjects at window of maximum Az for front

response-correct (target correct or TC) vs. side response-correct

(standard correct or SC) discrimination. Subjects are filtered by
within-subject false discovery rate threshold (All subjects used in
response-locked; S1, S3, and S6 removed from stimulus-locked). Forward
model values (unitless) are within-subject normalized at each electrode site
before averaging. More positive values indicate discriminating activity
coupled with correct identification of the target stimulus, while more
negative values indicate correct identification of the standard. The
distribution of electrode coupling with target stimuli reflects in both locking
conditions earlier work on auditory oddball scalp maps.

the visual areas, there is precedent for it in fMRI bold activation
(Goldman et al., 2009) and other auditory spatial localization
studies (Alain et al., 2001). Finally, this result indicates right-
lateralized common neuronal activity when subjects responded to
the infrequent 0◦ relative angle firing event, i.e., when they “shoot
back”. Since all subjects used their right index and middle finger
to respond, this activity is not consistent with a motor response.
Furthermore, since all subjects were utilized in the response-
locked analysis, this result is invariant to the level of expertise as
reflected by behavioral accuracies or response timeliness. Rather,
the data indicate that this result is consistent with a common
neuronal source when subjects aurally perceive infrequent incom-
ing fire, an ability that may require some level of aural expertise,
though not rapidity in decision-making.
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FIGURE 7 | Six-views of neuronal current paired t-tests (side

response-correct (standard correct or SC) in purple/blue, front

response-correct (target correct or TC) in orange/yellow) across all

discriminating subjects. In both plots, the t-distribution of the log of
the F -ratio for each voxel is shown [F(1, 20)] with brighter colors
indicating higher values of the t-statistic according to the color scale.
Significance was established with a permutation test (2000

permutations). The EEG data used for these neuronal source
calculations were the result of averaging scalp potentials at each
channel at the subject-specific peak discrimination time. The correctly
identified oddball stimulus (TC) is the only common activation across
the subject population and the occipital activation in visual cortical areas
resonates with previous findings in auditory oddball experiments (see
“Discussion”).

DISCUSSION
In this paper, we have shown that there are underlying neural dis-
criminators for localizing different infrequent firing events based
on aural, non-spatial stimuli. However, our results diverge slightly
from conventional auditory oddball results, as our experiment
does. Specifically, we find that the timing of stimulus-locked neu-
ral discrimination falls in the latter portion of the expected timing
window for a conventional oddball task, whereas the response-
locked trends are similar to those found in conventional stimuli
experiments. When focusing the analysis on subject-specific neu-
ral discrimination, we found that scalp activity discriminates
for the target stimuli much like what is seen in auditory odd-
ball tasks. We also showed that there appears to be a common
neural generator when subjects correctly responded to the infre-
quent 0◦ forward-fire stimuli. Finally, we find a relationship
between behavioral and neural indicators of performance, having
implications for human performance monitoring and training in
time-pressured environments (e.g., combat). We will now review
these results in the context of the relevant literature.

A NEURAL MARKER FOR INFREQUENT FIRING EVENT LOCALIZATION
To our knowledge, there have been no results published on the
neural markers of small arms fire localization. There is however,
an available literature on automatic, i.e., non-human, systems
for localization (Bedard, 2006; Völgyeshi et al., 2007). These
systems utilize assumptions about the physics of sound prop-
agation due to a firing event (e.g., muzzle blast and ballistic
crack) to determine the most likely point in three-dimensional
space from where the shot originated. Here, we have limited
the task to localization in two dimensions (i.e., there is no
azimuth). Also, we have specifically considered subjects with
experience in arms fire due to the level of aural expertise
likely necessary to distinguish between the stimuli categories,
especially in the absence of spatially localized sound sources.
The goal in our analysis has not been to make a more per-
fect localizer; rather it is to determine what neural activity,
if any, occurs when such localization occurs in an environ-
ment simulating the situational awareness of soldiers in a hos-
tile theater.
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There has been some work on the perception of small arms fir-
ing events at different firing angles (Fluitt, 2010; Gaston, 2012).
But the focus of that work was on discrimination and identifica-
tion of the weapon type fired, rather than weapon localization.
No neural data were recorded either. In the few instances where
small arms localization was studied, the events were either pro-
duced by blanks which are impoverished analogs to real gunfire
(Talcott, 2012) or localization was assessed under limited con-
ditions (Garinther and Moreland, 1966). Once again, no neural
data were recorded in these studies. Consequently, it is difficult
to validate our findings in the context of this and other parallel
research.

Another area of study that does provide a reference point is
auditory oddball research, especially because of our choice for
experimental paradigm. In particular, Goldman et al. investigated
the neural correlates of auditory oddball tasks with simultane-
ous EEG and fMRI (Goldman et al., 2009). In this study, and
other auditory oddball ones (Strobel et al., 2008; Goldman et al.,
2009; Mangalathu-Arumana et al., 2012), there is a rare (target)
stimulus that occurs with variable frequency amidst otherwise
repeated common (standard) stimuli. In such tasks, the frequency
characteristics of the stimuli are simple and all standards/targets
are spectrally similar. This was not the case though for our
experiment, in which standards are sampled from four unique
recordings of an M4 carbine fired at a 90◦ relative angle (off-
axis fire) from a distance of 16 m. Similarly, our targets were
also sampled from four unique recordings at 0◦ (forward-fire)
from a distance of 16 m. Finally, conventional auditory oddball
tasks incorporate no background stimuli, as we have done by
mixing three unique background stimuli with nine unique firing
sequences to create 27 unique audio scenes.

Despite this added level of aural complexity, we find that most
neural results we found have analogs in the conventional auditory
oddball paradigm. For instance, Goldman et al. found stimulus-
and response-locked forward models comparable to the ones we
found (compare Figures 6A,B to Figures 6 and 7 in Goldman,
for stimulus- and response-locked, respectively), exhibiting left-
lateralized occipito-parietal activity in the former and right-
lateralized in the latter. Similarly, a conventional auditory oddball
task exhibits group-level common windows of discrimination for
response-locked analysis (see Figure 2 in Goldman), as we found
(Figure 5). We see similar trends for stimulus-locked analysis, as
we found common windows of discrimination across those sub-
jects that showed within-subject FDR corrected discrimination
(Figure 4). However, these common windows fall in the latter
portion of the P300 (Linden, 2005). For these subjects, accuracy
results are closer to those observed in conventional oddball tasks
(e.g., Goldman et al.).

Finally, the connection we find between behavioral perfor-
mance and neural discrimination (via number of FDR significant
windows) echoes previous work linking these complementary
measures of evidence gathering processes (Ratcliff et al., 2009;
Sajda et al., 2009). But our point of departure from these earlier
studies is the self-reported high level of small arms expertise
amongst our subjects. Nevertheless, despite some subjects’ claims
of expertise in small arms fire, we find that neural discrimination
predicts the poor performance found in time-pressured response

accuracy for these subjects (e.g., S1, S3, and S6). Furthermore,
we found that self-reports of small arms experience are not a
predictor of either neural or behavioral metrics of performance
on this task.

SPATIAL LOCALIZATION vs. ODDBALL RESPONSE
The use of the oddball paradigm both helps and hinders the
formation of conclusions as to what extent the neural signal
we have found is indicative of either arms fire localization or a
purely oddball response. For instance, location is communicated
via the stimuli’s spectral characteristics, especially if a subject’s
auditory expertise in small arms fire draws on this association.
Conversely, the oddball paradigm provides an orienting response
in the subject when the infrequent stimulus (one of the four 0◦
shots) occurs, providing a clear neural response characterized
by the P300. But we do not find a canonical P300 amongst our
stimulus-locked discriminating subjects (Figure 4) in terms of
timing. In particular, while the scalp topology is consistent with
a P300 (Linden, 2005), the timing is delayed from that shown
in other auditory oddball paradigms in which simpler stimuli
were used (see earlier reference to Goldman et al.). Although
beyond the scope of this current study, we hypothesize that this
deviation from a classic oddball response is due to the implicit
meaning carried by our stimuli to the expert subjects within our
population. Specifically, for those experienced in small arms fire,
not only do these stimuli carry implicit spatial information (as
demonstrated in Figure 1), but also the simulated scenario in
which they were presented lays a cost on misidentification. Even
though feedback was not given after each trial to provoke a poten-
tial reward-punishment response, there is an implicit cost/benefit
relationship in returning fire to friendly fire (90◦ stimuli) or not
returning it to hostile fire (0◦). Therefore, both the spatial infor-
mation and the implicit valence of the stimuli could be more
apparent to an expert population than to a novice one.

While a subsequent study would benefit from a correspond-
ing novice population to settle this hypothesis’ veracity, we can
find insight into the extent to which our response is oddball,
localization, or both from additional literature on spatial local-
ization. For instance, Alain et al. (2001) show distinct “what” and
“where” neural pathways from both EEG and fMRI studies on
object recognition and spatial localization, respectively. We find
similar activity from source localization (Figure 7) to the blood-
oxygen-level-dependent (BOLD) signal they find (see Figure 2
of Alain et al.) in the visual areas for auditory spatial localiza-
tion. But a primary difference in their paradigm from ours is
important: they simulate spatial location of an auditory source
via a head-related transfer function (HRTF) (Wenzel et al., 1993),
whereas we communicate spatial location via the spectral nuance
of the four 0◦ and four 90◦ stimuli. While the difference is sub-
tle, it cannot be underestimated for its potential impact on neural
circuitry involved in task performance.

The primary distinction between our study and traditional
localization results lies in the type of evidence presented to
the auditory system. In spatial localizations studies, the HRTF
simulates the inter-aural delay caused by a sound source in three-
dimensional space. This delay provides the bulk of the infor-
mation by which localization occurs, regardless of the source’s
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spectral features. But in our study, the stimuli from both 0◦ and
90◦ were always presented from stereo speakers in front of the
subject, thereby removing the possibility of discrimination from
inter-aural delay. Rather, the differences in timbre (illustrated in
Figure 1) communicate localization to the trained ear.

In contrast to our paradigm, earlier studies on auditory local-
ization have separated object recognition and spatial localization
via stimuli and/or task. For instance, Alain et al. utilize differ-
ent stimuli for object recognition (“what”) and spatial localiza-
tion (“where”), thereby easily bifurcating the two neural circuits
responsible for each in an fMRI analysis. Others who have inves-
tigated sound localization, such as Zatorre et al. (1999), have
used the same stimuli but have alternated the task between object
recognition and spatial localization to do similar bifurcation.
However, in the terminology of Alain et al., we use auditory object
recognition (the “what” pathway) to inform spatial localization
(the “where” pathway). Of course, the connection between object
recognition and spatial localization is only guaranteed if the sub-
jects’ experience provides the context to make it. As we used a
small arms expert population (at least by self-report), it is possible
that the source activations we find in visual cortices in response to
correct identification of 0◦ stimuli are due, to some extent, to the
“where” pathway, although the oddball response seems to have a
dominating role. Once again, a definitive answer on this hypoth-
esis would result from an expert vs. novice comparison, which is
beyond the scope of this current study.

AURAL EVENT DISCRIMINATION IN VISUAL CORTICES
The other major finding of this paper is that on correctly iden-
tified firing events there is a common neuronal current source
active across our population. The timing for this activity is
determined from the peak discrimination within each subject;
therefore it is controlled for the variability between subjects. The
common neuronal activity is found both from the stimulus- and
response-locked discrimination between TC and SC. But we have
only shown the response-locked results due to there not being
enough FDR corrected discriminating subjects in stimulus-locked
epoching to provide a statistically rigorous hypothesis test. Even
though the timings of the response-locked discrimination peaks
are close to the response, we see no evidence in the common
neural generator that the discriminating source is motor-related.
Rather, the common neuronal current source, which is peaked at
MNI (−35, 80, 25) in Brodmann Area 19 (BA 19), is unequiv-
ocally visual-spatial in its location (Jonides et al., 1993), and
corroborates the forward model (Figure 6B).

There are two equally plausible, yet still unsubstantiated,
explanations for this result. Goldman et al. propose that lateral
occipital cortex (LOC) activation in an auditory task could occur
due to modulations of attention across the brain when the subject
orients to the target stimulus. An alternative explanation would
be that there is implicit spatial information in the audio stim-
uli used in our experiment, causing the subjects to have common
visual-spatial cortical activation in response to the aural cues used
in our experiment. The earlier contextualization of our results in
auditory spatial localization literature (Zatorre et al., 1999; Alain
et al., 2001) adds support to this interpretation. Nevertheless,
none of these explanations suffices without a precisely designed

experiment that can remove the overt or even implicit mappings
of auditory stimuli to spatial domains (e.g., mapping tones to a
number line in Hz). This might be accomplished with a corre-
sponding novice population for whom the stimuli are not likely
to evoke implicit spatial cues.

THE POTENTIAL ROLE OF SMALL ARMS EXPERTISE
Our selection of a population with substantial self-reported small
arms experience raises the question as to what extent this choice
has driven our findings. In no way do we claim that these find-
ings are exclusive to a population of subjects with such experience.
Rather, in this initial study of the neural correlates of small arms
localization, we have started with an expert population because
of the potential difficulty in learning to distinguish the 0◦ from
the 90◦ stimuli (see “Supplementary Material” for examples). For
instance, although not formally reported here, pilot testing of the
paradigm on non-experts revealed the potential need for exten-
sive pre-experiment training to distinguish the stimuli categories.
Therefore, to more expediently study our hypothesis—i.e., that
neural response could predict behavioral response and provide a
quantitative check on self-reported expertise—we sought an ini-
tial population for whom the learning curve would be minimal
due to their prior experience with small arms sounds.

While we do find potential markers for expertise in the tempo-
ral delay of the P300 (see earlier in “Discussion”), and a gradation
of performance at the task among our expert population, we can-
not rule out the possibility that this task may be done with a
high level of accuracy by a novice population. In fact, within our
current study, we investigated the possible relationship between
experience and performance by using the self-ratings on weapon
expertise provided by the subjects and found no relationship
(p > 0.05 for all Pearson correlation tests).

To address a possible concern that age effects could have
steered behavioral and neural performance trends, we did a sim-
ilar test against self-reported age, rather than either metric of
expertise. We found no correlation (p > 0.05, Pearson correlation
test) between age and either neural or behavioral performance.

Finally, while it is possible that members of our subject popu-
lation have hearing damage built over years of exposure to arms
fire, we do not suspect that this is the driving factor behind
performance on a population level. 8 of 11 subjects exhibit
stimulus-locked neural discrimination and all subjects do so on
a group-level for response-locked analysis. This population-level
and within-subject performance result indicates other factors
than hearing ability (e.g., loss of attention) degrade performance
in under-performing subjects.

CONCLUSIONS
In summary we have identified neural markers that can be used
to determine when (and if) subjects highly trained in the use
of small arms fire classify the relative angle of audible shots
with variable event frequency. We have identified the timing of
this decision with respect to the stimulus onset (i.e., the first
audition of the firing event) and to the motor response. We
found that all subjects utilized an evidence-gathering process
whose discriminating activity peaked when leading up to the
decision. We also found that behaviorally fast performing subjects
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exhibited common windows of discrimination with respect to the
stimulus, whereas slow performing subjects did not, implying that
such neural discrimination can be a measure of expertise at the
task. We further find that neural discrimination in these subjects
predicts reduced behavioral performance and that self-reports of
expertise are not a predictor of good performance.

We also identified BA19 as an activated region during accu-
rate target trials, i.e., when incoming firing events were dis-
criminated. Comparison to previous auditory oddball research
shows that activation in this area is not unique to localizing
small arms fire. Rather, it is a feature of the neural response
to the oddball event. Still, the utility of detecting this response
cannot be underestimated for combat situations, in which infre-
quent yet important orienting events (such as incoming fire)
require accurate and rapid decision execution. Neverthless, future
work will attempt to separate the extent to which the neu-
ral response found in this study is more due to the oddball
or the implicit spatial information carried by the stimuli. We
hypothesize without demonstrating here that an expert vs. novice
study using the same paradigm and similar analytic techniques
can provide an answer to this question, as the novice popula-
tion will have had no prior experience linking the stimuli to
spatial cues.

An embedded future research question generated by this work
is how do experts compare to novices on a neural level? If they
do differ, can we track the development of expertise? Even within
our population of experts, we find a gradation of expertise for
the task of arms fire localization from auditory cues and a set of
both neural and behavioral metrics to check self-reported exper-
tise. Additionally, an expert vs. novice study may even reveal a
neural advantage among some novices for doing the task when

such expertise had not otherwise been noticed. This knowledge
can greatly facilitate soldier training for combat.

Finally, other future work will focus on the application of
this technique to weapon identification and integrating other
cues, such as visual. With this methodology, we will be able to
show what role additional cues play in both localization and
enemy/friendly identification. For instance, in our study, the
valence and direction of the stimuli are conflated, as all 0◦ stimuli
are labeled “enemy” and 90◦ stimuli are labeled “friendly,” both
from the same weapon. Future work could place both enemy and
friendly weapons (e.g., an AK and an M4) at 90◦ and 0◦, thereby
making the discrimination task more difficult, more informative
for bifurcating “what” and “where” neural circuitry, and more
useful for real-world combat application. This initial study has
laid the groundwork for such a study, having introduced a host of
signal detection and statistical hypothesis testing techniques that
can be therein employed. Executing these future studies may give
us insight into better performance monitoring and more efficient
strategies in recognizing friend and foe on the battlefield.
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APPENDIX

Table A1 | Event key for example audio scene.

Event number 1 2 3 4 5 6

Angle (◦)/Take number 90/3 0/1 90/4 90/1 90/1 0/3

Time (ms) 1749 4705 6546 9795 13,211 16,829

Event number 7 8 9 10 11 12

Angle (◦)/Take number 0/3 90/2 90/2 90/2 90/2 0/3

Time (ms) 20,139 23,665 27,104 30,237 33,364 36,495

Event number 13 14 15 16 17 18

Angle (◦)/Take number 90/2 0/2 90/2 90/2 90/3 0/3

Time (ms) 40,732 44,462 47,512 50,638 53,668 56,657

Event number 19 20 21 22 23 24

Angle (◦)/Take number 90/4 90/4 0/1 90/2 90/2 90/4

Time (ms) 60,105 63,522 67,000 70,420 73,754 77,573

Event numbers and angles of small arms firing event are listed with one of four unique recording numbers. Time from the beginning of the recording is shown with

each event.
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