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Recognizing objects in cluttered scenes is vital for successful interactions in our complex
environments. Learning is known to play a key role in facilitating performance in a
wide range of perceptual skills not only in young but also older adults. However, the
neural mechanisms that support our ability to improve visual form recognition with
training in older age remain largely unknown. Here, we combine behavioral and fMRI
measurements to identify the brain circuits involved in the learning of global visual forms
in the aging human brain. Our findings demonstrate the learning enhances perceptual
sensitivity in the discrimination of visual forms similarly in both young and older adults.
However, using fMRI we show that the neural circuits involved in visual form learning
differ with age. Our results show that in young adults visual shape learning engages a
network of occipitotemporal, parietal, and frontal regions that is known to be involved in
perceptual decisions. In contrast, in older adults visual shape learning engages primarily
parietal regions, suggesting a stronger role of attentionally-guided learning in older age.
Interestingly, learning-dependent changes are maintained in higher occipitotemporal and
posterior parietal regions, but not in frontal circuits, when observers perform a control task
rather than engaging in a visual form discrimination task. Thus, learning may modulate
read-out signals in posterior regions related to global form representations independent
of the task, whereas task-dependent frontal activations may reflect changes in sensitivity
with training in the context of perceptual decision making.
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INTRODUCTION
Recognizing objects in cluttered scenes relies on our ability to
extract features from noisy sensory inputs and integrate them
into global forms. Learning is known to play a key role in facil-
itating performance in a wide range of perceptual skills and
optimizing visual form recognition in young adults (for reviews:
Goldstone, 1998; Fine and Jacobs, 2002). In particular, previ-
ous work has shown that learning facilitates the detection and
recognition of targets in clutter (Dosher and Lu, 1998; Goldstone,
1998; Schyns et al., 1998; Gold et al., 1999; Kovacs et al., 1999;
Sigman and Gilbert, 2000; Gilbert et al., 2001; Brady and Kersten,
2003) by enhancing the integration of relevant features and their
segmentation from noisy backgrounds.

Recently, we have shown that learning enhances the ability not
only of young, but also older adults to discriminate global forms
embedded in clutter (Kuai and Kourtzi, 2013), despite age-related
decline of visual functions (Owsley, 2011). This is consistent with
previous work showing that training enhances performance in
older adults in a range of perceptual tasks; that is, brightness dis-
crimination (Ratcliff et al., 2006), acuity (Fahle, 1993), texture
discrimination (Andersen et al., 2010), and motion direction dis-
crimination (Ball and Sekuler, 1986; Bower and Andersen, 2011)
tasks. However, the neural mechanisms that support our ability to
improve visual form recognition with training in older age remain
largely unknown.

Here, we combine behavioral and fMRI measurements to iden-
tify the brain circuits involved in the learning of global visual
forms in young and older age. We used parametric manipula-
tions of Glass patterns (Glass, 1969) that comprise oriented dot
dipoles (Figure 1A). For these stimuli, small local changes to dot
patterns have a predictable influence on the perception of global
forms (Figure 1A: concentric vs. radial patterns). These stimuli
are ideally suited for our purpose, as previous studies have shown
that performance in discriminating global forms (before train-
ing) is similar in young and older adults (Habak et al., 2009).
Thus, we were able to compare learning between age groups
while avoiding potentially confounding performance differences.
In particular, we trained observers to discriminate global form
patterns (concentric vs. radial Glass patterns) that were embedded
in parametrically manipulated background noise (Figure 1A).
Our results showed similar behavioral learning effects for both
young and older observers, suggesting that the ability for visual
form learning is maintained in aging.

Using fMRI, we then asked which cortical regions mediate
these learning-dependent improvements in visual form discrim-
ination for young and older observers. Following our previous
work (Li et al., 2009; Mayhew et al., 2012), we employed multi-
voxel pattern analysis (MVPA) of fMRI signals (for reviews:
Cox and Savoy, 2003; Haynes and Rees, 2006; Norman et al.,
2006) to identify fine learning-dependent changes in neural
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FIGURE 1 | Stimulus and behavioral data. (A) Stimuli: four example Glass
pattern stimuli at signal levels of 100, 70, 30, and 0% are shown for the radial
category (upper row) and concentric category (lower row), respectively.
(B) Behavioral data collected in the lab (circles) and the scanner (squares) are
shown for young and older adults for both pre-training (gray dotted line) and
post-training (black solid line) sessions. Only the cumulative Gaussian fits of

the group averaged behavioral data from the lab are shown. (C) Group
average slope index (difference between the slope of the psychometric
functions before and after training) is plotted for behavioral data collected in
the lab (gray) and during fMRI scanning (white) for both young and older
adults. Error bars indicate the 95% confidence interval calculated using a
bootstrap procedure.

preferences at the scale of large neuronal populations as revealed
by fMRI. Using this methodology, we tested for regions that show
learning-dependent changes in activation patterns corresponding
to improved perceptual sensitivity in discriminating visual forms
in cluttered backgrounds after training.

Previous brain imaging studies have shown that older adults
exhibit different regional brain activity or recruitment of differ-
ent brain regions compared to young adults (Grady et al., 1995;
Cabeza et al., 1997), even when task performance is matched

between age groups. Based on these findings and our previ-
ous work (Mayhew et al., 2010) we hypothesized that activation
patterns related to visual form learning would be preserved in
posterior areas but compromised in frontal brain circuits in older
adults. To anticipate, our results show that in young adults visual
shape learning engages a network of occipitotemporal, parietal,
and frontal regions that is known to be involved in perceptual
decisions (Newsome et al., 1989; Kim and Shadlen, 1999; Shadlen
and Newsome, 2001; Heekeren et al., 2004, 2006). In contrast, in
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older adults we show that visual shape learning engages primarily
parietal regions, suggesting a stronger role of attentionally-guided
learning that enhances the perceptual salience of targets in noise
(Gottlieb et al., 1998; Corbetta and Shulman, 2002; Roelfsema
and van Ooyen, 2005; Mevorach et al., 2010).

MATERIALS AND METHODS
PARTICIPANTS
Two groups of ten observers (young adults: 6 males, 4 females,
mean age: 21 ± 1.6 years; older adults: 3 males, 7 females, age
71 ± 2.6 years) participated in the main experiment. Two separate
groups of eight observers each (young adults: 4 males, 4 females,
age 22 ± 2.3; older adults: 4 males, 4 females, age 70 ± 3.1) par-
ticipated in the control experiments. All observers had normal or
corrected to normal vision and gave written informed consent. All
observers in the older adult group completed a mini-mental state
examination (MMSE) (Folstein et al., 1975) with scores within
the range of normal cognitive ability [mean 28.7 (max score 30) ±
1.1]. The study was approved by the local ethics committee. The
main experiment data recorded in the young adults was used
in a previously published study but treated with different anal-
ysis methods (i.e., EEG-informed fMRI analysis) (Mayhew et al.,
2012).

STIMULI
We used Glass pattern stimuli (Glass, 1969) defined by white dot
pairs (dipoles) displayed within a square aperture (7.7◦ × 7.7◦) on
a black background (100% contrast). The dot density was 3% and
the Glass shift (i.e., the distance between two dots in a dipole) was
16.2 arc min. The size of each dot was 2.3 × 2.3 arc min2. These
parameters were chosen based on pilot psychophysical studies and
in accordance with previous studies (e.g., Wilson and Wilkinson,
1998; Li et al., 2009; Mayhew et al., 2012) showing that coherent
form patterns are reliably perceived for these parameters. We gen-
erated radial (0◦ spiral angle) and concentric (90◦ spiral angle)
Glass patterns by placing dipoles tangentially (concentric stimuli)
or orthogonally (radial stimuli) to the circumference of a circle
centered on the fixation dot. For each dot dipole, the spiral angle
was defined as the angle between the dot dipole orientation and
the radius from the center of the dipole to the center of the stim-
ulus aperture. Each stimulus comprised signal dot dipoles that
were aligned according to the specified spiral angle for a given
stimulus, and noise dipoles for which the spiral angle was ran-
domly selected. Stimuli were embedded in varying levels of noise
by randomizing the orientation of a chosen percentage (0–100%)
of dot dipoles (Figure 1A). Half of the observers were presented
with clockwise spiral patterns (0◦ or 90◦ spiral angle), and half
with anticlockwise spiral patterns (0◦ or −90◦ spiral angle). A
new pattern was generated for each stimulus presented in a trial,
resulting in stimuli that were locally jittered in their position.

To control for stimulus-specific training effects, and ensure
generalization of learning, we used the following procedures. We
trained observers using stimuli with Glass shift of 25 arc min,
but tested (pre- and post-training test), and scanned, using stim-
uli with Glass shift of 30 arc min. Further, to control for local
adaptation due to stimulus repetition, we generated different
stimulus exemplars by randomly jittering (±5◦) the spiral angle

for each stimulus. These procedures ensured that learning could
not be due to similar local cues between the stimuli used for
training, tests, and scanning, but rather global features (i.e., spiral
angle) used by the observers for stimulus discrimination.

DESIGN
All observers participated in two fMRI sessions. The first imag-
ing session was preceded by a pre-training psychophysical test
session (480 trials). The second imaging session was preceded
by three sessions of psychophysical training outside the scanner
comprising between five and eight runs (256 trials per run). At
the end of this training, observers were tested on a post-training
psychophysical test session (480 trials). All three training sessions
were completed on consecutive days. The second scanning ses-
sion was conducted on the following day after the post-training
test session.

Psychophysical training
Psychophysical training was identical for both young and older
adult observers in both the main and the control experiments.

First, observers were familiarized with the task and stimuli
in a short practice session. Observers were shown 100% signal
Glass patterns and were instructed to discriminate radial from
concentric Glass patterns. Following this, two pre-training tests
were performed where observers were presented with Glass pat-
terns at 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 85, 100%
signal levels and were instructed to perform the same discrimina-
tion task. Sixteen stimuli were used for each signal level (8 radial,
8 concentric) totalling 240 stimuli per run. Stimuli were pre-
sented for 300 ms in a self-paced procedure without feedback.
This pre-training test allowed us to assess each observer’s initial
discrimination performance before the first imaging session and
training.

Following the first imaging session observers were presented
with stimuli at 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75% signal levels and were trained (self-paced procedure with
audio error feedback) to discriminate between radial and con-
centric patterns. Each training session comprised multiple runs
(ranging from 5 to 8 runs) with 256 trials per run. For each trial
during training, the stimulus was presented for 300 ms. A white
fixation square (7.7 × 7.7 arc min2) was presented at the cen-
ter of each stimulus. Observers were instructed to indicate which
category the stimulus belonged to by pressing one of two keys.
Observers were trained until their performance reached a stable
criterion level (80% correct twice on the training and 80% correct
on the post-training test).

After training, observers were tested on 0, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65, 70, 75% signal levels in a post-training
test (240 trials) during which stimuli were presented for 300 ms.
To assess the result of training, no feedback was given during this
post-training test.

fMRI measurements
For the main experiment, all observers participated in two scan-
ning sessions during which they performed the discrimination
task on the Glass pattern stimuli after training. For each observer,
we collected data from 7 to 8 event-related runs in each session.
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The order of trials was matched for history (1 trial back) such
that each trial was equally likely to be preceded by any of the con-
ditions. The order of the trials differed across runs and observers.
Both young and older adults were presented with 16 trials of each
stimulus condition in each run (including one fixation condition
during which only the fixation point was displayed at the center of
the screen). For the young adults, each run comprised 129 trials
(128 trials across all 8 conditions and one initial trial for balancing
the history of the second trial) and two 9 s fixation periods (one in
the beginning and one at the end of the run). For the older adults,
each run comprised 97 stimuli (96 trials across conditions and
one initial trial for balancing the history of the second trial). For
the young adults the stimulus conditions comprised Glass pat-
terns of 0◦ ± 1:5◦ or 90◦ ± 1:5◦ spiral angle at 0, 25, 35, 50, 70,
85, 100% signal level. For the older adults the stimulus conditions
comprised Glass patterns of 0◦ ± 1:5◦ or 90◦ ± 1:5◦ spiral angle
at 0, 30, 50, 70, 100% signal level. The difference in the num-
ber of conditions between young and older participants was due
to the fact that older adults can typically stay still in the scanner
for shorter time periods and may require more breaks than young
adults. When choosing these stimulus conditions we sampled rep-
resentative points on the psychometric functions for both young
and older adults, while selecting a limited but adequate number
of conditions to ensure that enough trials were recorded per con-
dition and high quality signals were measured within the time
constraints of fMRI scanning.

For both young and older adults, each trial lasted 3 s. For
fixation trials, the fixation square was displayed for 3 s. For exper-
imental trials (3 s long), each trial started with 200 ms stimulus
presentation followed by 1300 ms delay during which a white
fixation square was displayed at the center of the screen. The
response procedure aimed to dissociate the motor response (but-
ton press) from the learned stimulus categories. All observers were
familiarized with this procedure before scanning. The response
procedure differed slightly between young and older adults. For
the young adults, after this fixed delay, the fixation dot changed
color to either green or red. This change in fixation color served
as a cue for the motor response using one of two buttons. If
the color cue was green, observers indicated concentric vs. radial
by pressing the left vs. right finger/key, while if the color was
red, the opposite keys were used (e.g., concentric = right key).
The fixation color was changed back to white 300 ms before the
next trial onset. For older adults, this procedure was modified to
ensure that finger/key switching did not interfere with the abil-
ity of older adults to perform the task. After the 1300 ms fixed
delay the color of the fixation dot changed to green. Here, this
change in color provided a cue for the older adults to respond
by pressing the left button for radial and the right for concen-
tric. All older observers changed the hand that they used to
respond with half way through the scanning session; the order-
ing of response hand was randomized across participants. The
fixation color was changed back to white 300 ms before the next
trial onset.

fMRI control experiment
For the control experiment, both young and older adult
observers participated in two scanning sessions during which they

performed a letter detection task. Observers did not perform the
visual discrimination task during this experiment.

For each observer, we collected data from 7 to 8 event-related
runs in each session. Glass patterns were presented in an event-
related paradigm similar to that used in the main experiment. The
order of the patterns differed across runs and observers but was
matched for history (1 trial back) such that each trial was equally
likely to be preceded by any of the conditions. Eight conditions
(stimulus conditions of 0, 25, 35, 50, 70, 85, 100% signal level and
fixation) with 16 trials per condition were presented in each run.
Each run comprised 129 trials (128 trials across conditions and
one initial trial for balancing the history of the second trial) and
two 9 s fixation periods (one in the beginning and one at the end
of the run).

A gray fixation dot (9 × 9 arc min2) was continually displayed
at the center of the screen throughout each run. For fixation trials,
only the fixation dot was displayed for 3 s. For experimental tri-
als (3 s long), each trial started with 200 ms stimulus presentation
followed by 1300 ms delay. At 500 ms intervals during both stim-
ulus and fixation conditions, a capital black letter was displayed at
the fixation point for 80 ms. At the start of each run a target letter
was randomly selected from the Roman alphabet. Observers were
informed of the target identity via the visual display and asked to
respond with a button press at every presentation of the identi-
fied target letter. The target was presented with 15% probability,
the other letters displayed in the sequence were chosen pseudo-
randomly from the remaining Roman alphabet. A different target
letter was used in each run, and the hand that observers used to
respond to targets was balanced across subjects.

DATA ACQUISITION
fMRI scanning
The experiments were conducted at the Birmingham University
Imaging Center (3T Achieva scanner; Philips, Eindhoven, The
Netherlands). EPI and T1-weighted anatomical (1 × 1 × 1 mm)
data was collected with an eight channel SENSE head coil. EPI
data (Gradient echo-pulse sequences) were acquired from 24
slices (whole brain coverage, TR: 1500 ms, TE: 35 ms, flip-angle:
73◦, 2.5 × 2.5 × 4 mm resolution).

DATA ANALYSIS
Behavioral data analysis
Psychometric (proportion concentric) data were collected both in
the lab and the MRI scanner separately for pre- and post-training
sessions. The data were averaged across observers and fitted with a
cumulative Gaussian function (Figure 1). The goodness of fit was
assessed based on the significance of the correlation between the
data and the cumulative Gaussian function using a maximum-
likelihood method (Wichmann and Hill, 2001). Confidence inter-
vals were calculated on the fits from 2000 bootstrap iterations
of the data. Using this procedure for each individual observer’s
behavioral data, we identified the threshold (i.e., signal level at
78% correct) and slope of the psychometric function before and
after training for each observer. The slope index (expressed in %
signal level) was defined as the difference between the slope of the
psychometric functions before and after training. A positive slope
index indicates enhanced sensitivity after training.
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fMRI data processing
MRI data was processed using Brain Voyager QX (Brain
Innovations, Maastricht, The Netherlands). Anatomical data was
used for 3D cortex reconstruction, inflation, and flattening. Pre-
processing of functional data included slice-scan time correc-
tion, head movement correction, temporal high-pass filtering
(3 cycles), and removal of linear trends. Trials with head motion
larger than 1 mm of translation or 1◦ of rotation were excluded
from the analysis. Spatial smoothing (Gaussian filter; full-width
at half maximum, 6 mm) was performed only for group ran-
dom effect analysis but not for data used for the multi-voxel
pattern classification analysis. The functional images were aligned
to anatomical data and the complete data were transformed into
Talairach space. For each observer, the functional imaging data
between the two sessions were co-aligned registering all volumes
of each observer to the first functional volume of the first run
and session. This procedure ensured a cautious registration across
sessions. To avoid confounds from any remaining registration
errors we compared fMRI signals between stimulus conditions
within each session rather than across sessions. A gray-matter
mask was generated for each observer in Talairach space from the
anatomical data for selecting only gray-matter voxels for further
analyses.

Multivariate brain mapping based on stimulus category
To test which cortical areas contain information that allows us to
discriminate between stimulus categories (radial vs. concentric),
we performed a multi-voxel searchlight analysis (Kriegeskorte
et al., 2006). For each observer in the main experiment we pooled
the data across scanning sessions. We defined a spherical aper-
ture with radius of 9 mm and moved this aperture serially across
gray-matter voxels in the whole cortex. For voxels within the
aperture (98 voxels per aperture on average), we used a linear
Support Vector Machine (SVM) (Vapnik, 1995) pattern classi-
fier to classify fMRI signals based on stimulus category (radial
vs. concentric). That is, we trained the classifier to associate the
fMRI signal from each stimulus with a label (radial vs. con-
centric) that was determined by the category of the presented
condition and tested the classifier’s prediction on an independent
data set.

We averaged both volumes from each trial (each MRI vol-
ume was acquired in 1.5 s and each trial lasted 3 s) to generate
a single training pattern. To account for the hemodynamic delay,
we shifted the fMRI time series by 3 volumes (4.5 s). To ensure
generalization of the classification, we used a leave-one-run-out
cross-validation procedure. For each cross-validation, one run
was left out as an independent test dataset and the data from the
rest of the runs was used as the training set. The classification
accuracy for each aperture was obtained by averaging the pre-
diction accuracy across cross-validations. The accuracy value for
each voxel was obtained by averaging the accuracy values from
all apertures in which this voxel was included (i.e., similar to
smoothing the results using a sphere as a Kernel). To identify
voxels with significantly higher accuracy than chance (50% cor-
rect) across observers and sessions we conducted a second level
statistical analysis (t-test, p < 0.05, cluster threshold estimation
5 mm2).

fMR-metric functions based on multivoxel pattern analysis
We defined regions of interest (ROI) separately for young and
older adults based on the searchlight analysis (Table S1 for
Talairach co-ordinates for all second-level significant activation
clusters). Further, using standard retinotopic mapping proce-
dures we identified V1 in each individual observer as a control
visual area that is known to be engaged in the processing of
basic visual features (e.g., orientation). To facilitate comparison
between the main and control experiments, we identified ROIs for
the control experiment based on the areas (localized by Talairach
co-ordinates) from the main experiment, for both young and
older adults.

To test which brain regions showed learning-dependent
changes, we conducted MVPA on the activation patterns in these
ROIs. For each observer, we selected voxels in each ROI that were
significantly activated during all stimulus conditions compared
to fixation (p < 0.05, uncorrected). We ordered these voxels by
their t-value and selected up to 100 for each ROI and observer for
further analysis. Prediction accuracy was found to saturate at this
pattern-size across areas, resulting in a dimensionality compati-
ble with previous studies (Haynes and Rees, 2005; Kamitani and
Tong, 2005; Li et al., 2007). As the ROI were defined by pooling
data across both the pre- and post-training sessions, a common
set of voxels was selected for pattern classification of each session.
Cautious alignment of the functional data across sessions ensured
that the 100 voxels selected for MVPA were the same across ses-
sions. Each voxel time course was z-score normalized for each
experimental run separately. The data pattern for each trial was
generated by shifting the fMRI time series by 3 volumes (4.5 s) to
account for the hemodynamic delay.

Finally, we used a linear SVM and a leave-one-run-out cross-
validation procedure for the pattern classification. We trained the
classifier to associate fMRI signals across conditions (i.e., signal
levels) with a label (radial vs. concentric). We averaged the two
volumes from each trial (trial duration = 3 s, TR = 1.5 s) to gen-
erate one training pattern per trial. We then tested whether the
classifier predicted the stimulus condition (radial vs. concentric)
using an independent dataset. To ensure generalization of the
classification, we used a leave-one-run-out cross-validation pro-
cedure. That is, for each cross-validation we left one run out as an
independent test dataset. Data from the rest of the runs were used
as the training set. It is important to note that the classification
comparisons were independent from the voxel selection proce-
dure. The voxel selection was conducted using only the training
dataset (excluding the test dataset for each cross-validation).

For each observer, we calculated the mean performance of the
classifier (proportion of trials classified correctly for each stimulus
condition) in predicting whether each stimulus was radial or con-
centric across cross-validations. For each session, we averaged the
classifier performance across observers and fitted the data using
a cumulative Gaussian, similar to the behavioral data. We refer
to these functions as fMR-metric functions as their estimation
closely resembles that of the psychometric functions (Li et al.,
2009). We measured the slope of the fMR-metric function for
each session and observer. The slope index, the difference between
the slope between sessions, was calculated and averaged across
observers.
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Eye movement analysis
We recorded eye-movements during the main experiment in the
scanner from seven young and four older participants. Eye move-
ments were recorded using the ASL 6000 Eye-tracker (Applied
Science Laboratories, Bedford, MA) with 60 Hz temporal resolu-
tion. Eye-tracking data were pre-processed using the Eyenal soft-
ware (Applied Science Laboratories, Bedford, MA) and analyzed
using custom Matlab (Mathworks, MA) software. For each stim-
ulus condition we computed horizontal eye position, vertical eye
position, proportion of saccades at different saccade amplitude
ranges, and number of saccades per trial, per condition.

RESULTS
BEHAVIORAL PERFORMANCE: LEARNING-DEPENDENT CHANGES IN
PERCEPTUAL SENSITIVITY
We tested young and older observers’ ability to discrimi-
nate global form patterns (i.e., radial vs. concentric) in noise
(Figure 1A) and plotted their performance (proportion correct)
as a function of stimulus signal level (psychometric function).
Our results showed that behavioral sensitivity was enhanced after
compared to before training for both young and older adults
(Figure 1).

In particular, young adults reached the 78% performance
threshold at 71.2% (±12.3%) signal before training, while at
40.6% (±6.3%) signal after training (Figure 1B). Specifically,
the slope of the psychometric functions was steeper after (3.2
± 0.2) compared to before (2.1 ± 0.3) training. Similar effects
were observed in the older adults: perceptual sensitivity increased
from 81.1% signal (±16.5%) to 43.6% signal level (±8.2%)
at the 78% performance threshold (Figure 1B), resulting in a
steeper slope after (3.0 ± 0.3) than before (1.8 ± 0.3) train-
ing. Similar effects were observed in behavioral data recorded
during the scanning sessions (young adults: pre-training: 73.1
± 13.5% signal; post-training: 41.5 ± 7.2% signal; older adults:
pre-training: 79.8 ± 12.4% signal; post-training: 42.9 ± 7.7%
signal). It is important to note that we did not observe any
significant changes in the observer’s criterion after training. In
particular, for each observer we calculated percentage concentric
responses for the 0 and 100% signal level conditions and com-
puted the difference between each observer’s performance and
50% chance performance both before and after training. A Two-
Way ANOVA [factors: session (pre-, post-training) signal level
(0%, 100%)] conducted on the percentage concentric response of
the lab behavioral data found no significant effect of session for
either young [F(1, 18) = 0.25, p = 0.82] or older [F(1, 18) = 0.42,
p = 0.75] adults. These data suggest that the training procedure
had successfully modified the observers’ perceptual sensitivity
rather than criterion.

To quantify learning-dependent improvement in perceptual
sensitivity, we computed the difference in the slope of the psy-
chometric functions between the pre- and post-training ses-
sions for each participant (Figure 1C). A Three-Way ANOVA
[Greenhouse-Geisser corrected, factors: session (pre-training,
post-training), recording (lab, scanner), and age (young, old)]
on the slope measurements showed a significant main effect
of session [F(1, 18) = 45, p < 0.0001], supporting training-
dependent improvement in task performance (i.e., steeper slope

measurements) across age groups. No significant main effect
of either recording [F(1, 18) = 0.26, p = 0.69] or age [F(1, 18) =
2.7, p = 0.15] was found. The lack of significant interactions
between session and recording [F(1, 18) = 0.24, p = 0.88] sug-
gests that similar learning effects were measured in the laboratory
and fMRI scanner. The lack of a significant interaction between
age and session [F(1, 18) = 0.51, p = 0.49] and between age and
recording [F(1, 18) = 0.18, p = 0.67] suggests similar learning
effects between age groups. Interestingly, no significant differ-
ences in slope were observed between young and older adults
before [t(1, 9) = 0.3, p = 0.67] or after [t(1, 9) = 0.15, p = 0.89]
training, allowing us to compare learning improvement between
age groups while avoiding potentially confounding pre-training
differences in performance.

fMRI DATA: PATTERN CLASSIFICATION ACROSS THE WHOLE BRAIN
We identified activation patterns that discriminate between
concentric and radial patterns by performing a multi-voxel
searchlight analysis across the whole brain. Figure 2 shows group
activation patterns averaged across both sessions (p < 0.05, clus-
ter threshold estimation 5 mm2) for young (Figure 2A) and older
(Figure 2B) adults. For the young adults, classification accu-
racy was significantly higher than chance in kinetic occipital
(KO/LOS) and lateral occipital (LO) areas, cuneus and precuneus
regions of the occipital parietal sulcus (OPS), parietal regions
along the ventral, posterior and dorsal intraparietal sulcus (VIPs,
POIPs, DIPS), motor regions comprising the post-central sulcus
(PostCS), central sulcus (CS) and dorsal and ventral premotor
regions (PMd, PMv), and frontal regions including the poste-
rior cingulate cortex (PCC), insula, inferior frontal gyrus (IFG),
medial frontal gyrus (MFG), and supplementary eye-field (SEF).
For the older adults, classification accuracy was significantly
higher than chance in occipitotemporal areas (KO/LOS, LO),
cuneus and precuneus regions (OPS, PreCun), parietal regions
along the intraparietal sulcus (VIPs, POIPs, DIPs), motor regions
(PostCS, CS, PMd, PMv), and frontal regions including the left
anterior cingulate cortex (ACC), right insula, and left MFG.
These pattern classification analyses show that in both young
and older adults, occipitotemporal, and posterior parietal regions
contain information that allows us to discriminate between
stimulus categories. However, informative activation patterns in
frontal regions were predominantly evident in young rather than
older adults.

In contrast, a conventional univariate GLM analysis did not
reveal any significant difference in fMRI response between con-
centric vs. radial stimuli presented at 100% signal (data grouped
across sessions, random effects, p < 0.05; cluster threshold esti-
mation 5 mm2). Further, ROI-based analysis comparing the func-
tional signal change between radial and concentric stimuli for
each session showed no significant differences between the BOLD
response to radial or concentric stimuli for either the pre-training
or post-training session. In particular, a Three-Way repeated-
measures ANOVA (ROI × session × stimulus) showed no signif-
icant effect of session {young: [F(1, 19) = 0.25, p = 0.76]; older:
[F(1, 19) = 0.29, p = 0.73]} or stimulus {young: [F(1, 19) = 0.75,
p = 0.45]; older: [F(1, 19) = 0.18, p = 0.82]} and no significant
interaction between session and stimulus {young: [F(1, 9) = 0.15,
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FIGURE 2 | Searchlight classification based on stimulus category.

t-statistic searchlight maps showing brain areas where classification
of radial vs. concentric stimuli was significantly higher than chance
level for (A) young and (B) older observers (data grouped across

observers and sessions). Data are superimposed on flattened
cortical surfaces of both hemispheres. Sulci are shown in dark
gray, and gyri in light gray (Table S1 for ROI definition and
Talairach coordinates).

p = 0.95]; older: [F(1, 19) = 0.84, p = 0.37]}. These findings are
consistent with previous work showing that multivariate meth-
ods that pool weak activation biases across voxel patterns are more
sensitive than conventional methods in discerning signals related
to different stimulus categories and revealing learning-dependent
changes in the discrimination of visual forms (Li et al., 2009).

fMR-METRIC FUNCTIONS FOR YOUNG AND OLDER PARTICIPANTS
The searchlight multivariate analysis showed that occipitotem-
poral, parietal, and frontal brain regions contain information
that discriminates between visual categories (Figure 2). We sub-
sequently generated fMR-metric functions (Li et al., 2009) to
investigate which of these cortical regions show changes in fMRI
activation patterns that relate to behavioral improvement in
observers’ sensitivity after training.

For young adults (Figure 3), the slope of the fMR-metric func-
tions increased after training in occipitotemporal (LO), parietal
(VIPs, POIPs, DIPs, OPS), the PostCS, PMv, PMd, and frontal
(PCC, MFG, IFG) areas. For older adults (Figure 4), steeper
slopes after training were observed for the fMR-metric func-
tions in parietal areas (VIPs, POIPs, DIPs, OPS), PostCS, and the
anterior cingulate (ACC). These findings are consistent with the

behavioral results showing improvement in perceptual sensitiv-
ity (i.e., steeper slopes of the psychometric functions) following
training, and suggest training-induced brain changes for both
young and older adults.

To quantify learning-dependent changes in these regions, we
computed the difference in the slope of the fMR-metric functions
between the pre- and post-training sessions for each participant
(Figure 5). This slope index was calculated only for ROIs with
significantly fitted fMR-metric functions (non-significantly fitted
functions were observed in the insula for young and the insula
and precuneus for older adults; see also Table S2 for significance
of the fitting for each ROI). A bootstrap analysis (2000 itera-
tions) was used to calculate the 95% confidence intervals for the
slope index. This analysis showed learning-dependent changes in
young adults in an extended network of higher occiptotemporal,
parietal, and frontal regions. However, for older adults learning-
dependent changes were primarily observed in parietal regions. A
Three-Way ANOVA (Greenhouse-Geisser corrected) on the slope
of the fMR-metric functions before and after training showed
a significant main effect of session [F(1, 9) = 32, p < 0.0001],
age [F(1, 9) = 12, p < 0.01], and ROI [F(1, 9) = 8.5, p < 0.01]. In
addition we observed a significant three-way interaction between
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FIGURE 3 | fMR-metric functions for young adults. fMR-metric
functions are shown for each ROI, for both pre- (gray dotted lines) and
post-training (black solid lines) sessions. Plotted data points depict the

classifier predictions at each stimulus condition, averaged across
observers. Only ROIs with significant fits (Table S2) for both sessions
are shown.

session, age and ROI [F(1, 9) = 5.5, p < 0.05]. In particular, after
training the slopes of the fMR-metric functions were steeper
in young than older participants in occipitotemporal [F(1, 9) =
7.13, p < 0.05], and frontal [F(1, 9) = 7.59, p < 0.05] regions,
while in parietal regions no significant differences were observed
between age groups [F(1, 9) = 0.4, p = 0.52]. In contrast, for

V1 or CS no significant differences were observed between
sessions [V1: F(1, 9) = 0.51, p = 0.49; CS: F(1, 9) = 0.29, p =
0.59] or age groups [V1: F(1, 9) = 0.43, p = 0.52; CS: F(1, 9) =
0.19, p = 0.66].

Taken together these results suggest that for young adults
information about visual shape categories is shaped by learning
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FIGURE 4 | fMR-metric functions for older adults. fMR-metric
functions are shown for each ROI, for both pre- (gray dotted lines)
and post-training (black solid lines) sessions. Plotted data points

depict the classifier predictions at each condition, averaged across
observers. Only ROIs with significant fits (Table S2) for both
sessions are shown.

in a network of occipitotemporal, parietal regions, and frontal
regions that is known to be involved in perceptual decisions
(Newsome et al., 1989; Kim and Shadlen, 1999; Shadlen and
Newsome, 2001; Heekeren et al., 2004, 2006). In particular,
information in these regions allows us to reliably decode the
observer’s decision and reflects learning-dependent changes in

neural representations that relate to our ability to improve in
the discrimination of visual shapes in noise with training. In
contrast, learning-dependent changes in older adults are more
prominent in parietal regions than occipitotemporal or frontal
circuits. This finding is consistent with the role of the pari-
etal cortex in the detection of salient stimuli in clutter (Gottlieb
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FIGURE 5 | Slope index for fMR-metric functions: main experiment.

Slope index (difference in the slope of the fMR-metric functions between
pre- and post-training sessions) is plotted for young (white) and older adults
(gray) performing the visual discrimination task. ROIs are grouped together
by lobe, (A) occipital (B) parietal (C) frontal. Error bars indicate the 95%
confidence interval calculated using a bootstrap procedure.

et al., 1998; Corbetta and Shulman, 2002; Mevorach et al., 2010)
and may suggest that attentionally-guided learning—known to
engage parietal circuits—may play a stronger role in older age.
Finally, the lack of learning-dependent changes for both young
and older adults in V1 is consistent with the role of primary visual
cortex in representing the physical stimulus space rather than
global form patterns. Similarly, the lack of learning-dependent
changes for both young and older adults in CS is consistent with
the role of primary motor cortex in motor responses and suggests
that the learning-dependent changes in the fMR-metric functions
for prefrontal and higher occipitotemporal areas could not be
simply due to differences in motor responses between the two
sessions (before vs. after training).

CONTROL EXPERIMENT: TASK-RELATED LEARNING CHANGES
Next, we investigated whether learning-related changes in young
and older adult brains depend on the task performed by the

observers during scanning. In particular, we trained a separate
cohort of young and older adults following the same proce-
dure as in the main experiment. However, during scanning these
participants performed an orthogonal letter detection task (i.e.,
observers pressed a button when a target letter appeared) instead
of the visual form discrimination task. The young observers’ per-
formance in the letter detection task ranged from 62.4 to 87.8%
correct for response times (RT) between 872 ms (mean RT) and
1000 ms from stimulus onset. The older observers’ performance
in the letter detection task ranged from 65.9 to 84.2% correct
for RT between 904 ms (mean RT) and 1000 ms from stimulus
onset. These results ensure that the observers engaged fully with
the task. Training resulted in improved perceptual sensitivity in
both young and older adults similar to that observed in the main
experiment. Two-Way ANOVA (session × age) on the slope of the
psychometric functions showed a significant main effect of ses-
sion [F(1, 14) = 28, p = 0.007], supporting training-dependent
improvement in task performance. No significant main effect
of age [F(1, 14) = 1.006, p = 0.34], or an interaction [F(1, 14) =
0.14, p = 0.72] were observed. No significant differences in slope
were observed between young and older adults before [t(1, 7) =
0.2, p = 0.8] or after [t(1, 7) = 0.41, p = 0.6] training.

We then investigated learning-dependent changes when
observers performed this control task by comparing the slopes of
fMR-metric functions before and after training in the same ROIs
used in the analysis of the main experiment (Figure 6). For young
adults, fMR-metric functions showed significantly steeper slopes
after than before training in KO/LOS [F(1, 7) = 5.8, p = 0.033],
LO [F(1, 7) = 7, p = 0.025], VIPs [F(1, 7) = 6.2, p = 0.03], and
DIPs [F(1, 7) = 7.8, p = 0.02], consistent with improvement in
perceptual sensitivity after training. However, for older adults,
fMR-metric functions showed significantly steeper slopes after
than before training mainly in posterior parietal regions: OPS
[F(1, 7) = 9.3, p = 0.008], VIPs [F(1, 7) = 7.4, p = 0.022], and
POIPs [F(1, 7) = 6.3, p = 0.032]. However, no significant dif-
ferences were observed in the slopes of fMR-metric functions
before and after training for frontal regions {PMv [F(1, 7) =
0.145, p = 0.71], MFG [F(1, 7) = 1.6, p = 0.32]} in either young
or older adults (note that classification accuracies across signal
levels were not significantly fit in most of the frontal regions:
PMd, ACC/PCC, IFG, SEF). Finally, as in the main experiment,
the slopes of the fMR-metric functions were not significantly dif-
ferent before and after training in primary visual or motor regions
{V1 [F(1, 7) = 0.47, p = 0.51], CS [F(1, 7) = 0.09, p = 0.91]}. To
directly compare between the main and control experiment,
we conducted a Two-Way ANOVA [factors: session (pre-, post-
training) × experiment (main, control)] for each ROI and age
group. Significant differences in slope index were observed only
for frontal regions in young adults; that is, we observed a signifi-
cant effect of experiment [PMv: F(1, 14) = 5.53, p = 0.038; MFG:
F(1, 14) = 6.55, p = 0.02] and a significant interaction between
experiment and session [PMv: F(1, 14) = 7.18, p = 0.016; MFG:
F(1, 14) = 12.7, p = 0.003].

These results suggest that higher occipitotemporal regions in
young adults and posterior parietal regions in both young and
older adults contain information related to the learned discrimi-
nation of global visual forms from background noise even when
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FIGURE 6 | Slope index for fMR-metric functions: control experiment.

Slope index (difference in the slope of the fMR-metric functions between
pre- and post-training sessions) is plotted for young (white) and older adults
(gray) performing the control (target letter detection) task. ROIs are grouped
together by lobe, (A) occipital (B) parietal (C) frontal. Error bars indicate the
95% confidence interval calculated using a bootstrap procedure.

observers are not actively performing the discrimination task.
However, frontal circuits only show learning-dependent changes
that reflect the observers’ behavioral choice when observers are
engaged in visual form discrimination, consistent with the role
of these regions in perceptual decision making (Newsome et al.,
1989; Kim and Shadlen, 1999; Shadlen and Newsome, 2001;
Heekeren et al., 2004, 2006). Thus, learning in higher occipi-
totemporal and posterior parietal regions shapes the representa-
tion of perceived visual categories that are sustained independent
of the task, whereas task-related changes in frontal areas may
reflect changes in perceptual sensitivity in context of the visual
discrimination task.

CONTROL ANALYSES
Our results show that dissociable circuits in young and older
adults support learning-dependent improvement in perceptual
sensitivity for the discrimination of visual forms. Here, we sum-
marize the results of additional analyses that we conducted in
order to control for alternative explanations of our findings.

First, the fMR-metric functions for both young and older
adults were derived from training and testing the SVM across
stimulus conditions. In this control analysis (Figure S1), for
each ROI we trained the SVM on trials from the 100%
signal condition and tested the classifier’s accuracy in dis-
criminating concentric vs. radial stimuli from data across all
stimulus conditions using an independent dataset. For each
observer, we calculated the mean performance of the classi-
fier (proportion of trials correctly classified for each stimu-
lus condition) across cross-validations. For each session, clas-
sifier performance was averaged across observers and fit-
ted using a cumulative Gaussian. Qualitatively, the fMR-
metric curves (Figure S1) are very similar to those shown in
Figures 3, 4, demonstrating that the representation of learning
effects in these regions does not depend on the classification
method used.

Second, to control for the possibility that these results are
due to random correlations in the data, we computed the fMR-
metric functions from randomly permuted fMRI patterns (i.e.,
we randomized the correspondence between fMRI data and
stimulus labels and estimated the classifier prediction for each
stimulus condition). The lack of significant fits (Figure S2) sug-
gests that the MVPA predictions could not be simply accounted
for by random variations in the data but rather reflect a link
between task-relevant behavioral performance and activation
patterns.

Third, both young and older adults performed the same visual
discrimination task during scanning to ensure that fMRI anal-
yses were not confounded by differences in task performance.
Young adult performance ranged from 56.3 to 85.2% correct for
RT between 832 ms (mean RT) and 1500 ms from onset of the
response cue, while for older adults from 52.4 to 83.3% correct for
RT between 859 ms (mean RT) and 1500 ms. Task performance
was not significantly different between age groups [accuracy:
F(1, 18) = 1, p = 0.3; RT: F(1, 18) = 0.1, p = 0.8] suggesting that
both young and older adults engaged fully in the task. Thus,
the differences in MVPA activation patterns that we observed
between young and old adults cannot be explained by differences
in task difficulty between age groups or a general slowing of cog-
nitive processing in older adults (Kosnik et al., 1988; Porciatti
et al., 1999).

Fourth, the cued-delay paradigm we used controlled for differ-
ences in the observers’ RT. That is, observers made their decision
during the delay after stimulus offset and waited for the cue
before they could select the correct motor response, resulting in
similar RT across stimulus conditions. As the stimulus-response
association was randomized across trials, the motor response
could not be anticipated on a given trial. As an additional con-
trol, for both young and older adults we used the searchlight
approach to search for brain patterns that contained reliable
information with which to classify the finger (i.e., button press)
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used by the observers to indicate their behavioral choice. We
performed this analysis separately using the first and second
volume of each trial (Figure S3). No significant accuracies for
this classification were observed in occipitotemporal, intrapari-
etal, or frontal regions of either young or older adults, sug-
gesting that results in these areas cannot be simply explained
on the basis of motor responses. Although these analyses and
our experimental design (i.e., two separate fMRI volumes for
stimulus presentation vs. motor response in each trial) allow
us to rule out confounds related to motor responses, it is still
not possible to separate fMRI signals related to the stimulus
from signals related to the decision process due to the lim-
ited temporal resolution of fMRI. As shown in our previous
work, simultaneous EEG-fMRI recordings allow us to discrimi-
nate these processes and identify the spatio-temporal brain pat-
terns that may support visual form learning (Mayhew et al.,
2012).

Fifth, differences in activation patterns observed between
young and old adults need to be interpreted with caution due
to the possibility that they originate from age-related changes in
vascular reactivity rather than differences in underlying neuronal
activity (D’Esposito et al., 1999, 2003; Restom et al., 2007). To
control for this possibility, we acquired fMRI data in both young
and old adults during a 10-s breath-holding task (Handwerker
et al., 2007). The BOLD signal change induced by the hyper-
capnic challenge of this task was used as an estimate of the
vascular reactivity in every voxel. For each observer we used
a GLM analysis (p < 0.05 uncorrected) to identify the voxels
in each ROI that displayed a significant change in BOLD sig-
nal in response to the breath-holding task. On average across
all ROIs the proportion of voxels selected was 96% (±2%) in
young adults and 95% (±3%) in older adults. For every selected
voxel, we averaged the BOLD time course across breath-hold trials
and calculated the mean percentage BOLD signal change rela-
tive to the mean of the two pre-stimulus time points. We used
the BOLD response amplitude to the breath-holding task to nor-
malize the stimulus evoked BOLD signal for each observer, as
previously described (Handwerker et al., 2007). For each voxel,
we divided the percent BOLD signal evoked by the experimental
task by the percent BOLD evoked by the hypercapnic breath-
holding task. We then used the normalized signal time course
for the multi-voxel pattern classification and the fMR-metric
functions (Figures 3, 4; Figures S1, S2). Figure S4A demon-
strates that the amplitude of the BOLD response to breath-
holding was significantly [F(1, 24) = 12, p < 0.01] reduced in
older compared to young adults across ROIs, consistent with
previous studies (Handwerker et al., 2007). However, we found
no significant effect of ROI [F(1, 24) = 1, p = 0.4] or interaction
between ROI and age group [F(1, 24) = 0.23, p = 0.64] suggest-
ing that differences in vascular reactivity between age groups
cannot explain the differences in MVPA searchlight activation
patterns observed between young and older adults (i.e., the
lack of significant activation in the frontal brain areas of older
adults).

Sixth, previous neuroimaging studies have reported that
older adults show decreases in the spatial extent of activation
(D’Esposito et al., 1999; Buckner et al., 2000; Huettel et al.,

2001) and longer latencies of the peak BOLD hemodynamic
response (HR) compared to young adults (Taoka et al., 1998;
Huettel et al., 2001). To control for such differences, we mea-
sured the HR to an 8 Hz reversing checkerboard stimulus in
all ROIs, for each observer. The mean percent BOLD signal
change to the checkerboard stimulus is shown for each ROI in
Figure S4B. No significant difference in the peak HR latency
[F(1, 24) = 0.43, p = 0.52] or amplitude [F(1, 24) = 2.1, p = 0.15]
were observed between young and older adults. The lack of a sig-
nificant interaction between ROI and age group [F(1, 24) = 0.8,
p = 0.46] justified the use of the same hemodynamic lag (4 s)
for both young and older adults in the voxel time series used
in the MVPA. This result was corroborated by analysis of the
functional signal to noise ratio (fSNR, calculated as the mean
signal change in response to the main experiment task across
voxels), for each ROI used for the MVPA (Figure S4C). This
analysis showed no significant difference in fSNR across ROIs,
[F(1, 24) = 2.2, p = 0.12], age groups [F(1, 24) = 1.2, p = 0.36]
and no interaction between ROI and age group [F(1, 24) = 0.55,
p = 0.65]. Taken together, these analyses provide evidence that
the differences in MVPA searchlight activation patterns between
young and older adults could not simply be accounted for by
differences in the HR (peak latency or amplitude) between the
groups.

Further, null-results in fMRI studies need to be explained
with caution, as they could be due to methodological limita-
tions. Lack of differences in brain patterns between age groups
could be ascribed to either intrinsic insufficient sensitivity of
fMRI data in these regions, or a true underlying lack of differ-
ence between the neuronal information carried by these areas.
However, our analysis of functional SNR demonstrates that we
recorded with similar sensitivity in young and older adults across
areas, allowing us to compare between brain regions and age
groups.

Finally, eye movement recordings conducted during scanning
showed that it is unlikely that learning-dependent changes in
fMRI activations patterns were significantly confounded by eye
movements. That is, no significant differences in the eye position,
the number and amplitude of saccades across stimulus conditions
and recording sessions were observed in either young or older
adults (Figures S5A, S5B).

DISCUSSION
Our findings demonstrate the learning enhances perceptual sen-
sitivity in the discrimination of visual shapes in both young and
older adults, suggesting that the ability for visual form learning
is maintained in older age. However, we show that the neural
circuits that mediate this ability for visual form learning across
the lifespan differ with age despite similar learning-dependent
improvements across age groups.

Our work advances our understanding of the neural mech-
anisms that mediate visual learning in older age in two main
respects. First, previous studies have shown that the ability to inte-
grate contours in clutter (Del Viva and Agostini, 2007; Roudaia
et al., 2008) and suppress the background (Betts et al., 2005,
2009) deteriorates in older age. It is possible that this is due to
weakening of inhibitory processes (Leventhal et al., 2003; Hua
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et al., 2010) or attentional functions in aging (Ball et al., 1990;
Kane et al., 1994). However, our results provide evidence that
learning enhances visual form discrimination in clutter for both
young and older adults. This is consistent with previous stud-
ies showing that learning to discriminate visual features (i.e.,
texture, motion) in young and older adults (Andersen et al.,
2010; Bower and Andersen, 2011) may enhance performance effi-
ciency (Gold et al., 2004), improve exclusion of external noise
and reduce internal noise (Dosher and Lu, 1999). Although our
experimental paradigm does not allow us to discriminate the
effect of internal vs. external noise on learning performance
in ageing, our results provide evidence that learning alters not
only local feature processing but also global form perception in
aging.

Second, our fMRI results demonstrate that visual form learn-
ing in older age engages parietal regions, suggesting that learning
may relate to the enhancement of parietal attentional func-
tions that mediate our ability to suppress irrelevant informa-
tion and enhance the salience of behaviorally relevant targets in
cluttered scenes (Gottlieb et al., 1998; Corbetta and Shulman,
2002; Mevorach et al., 2010). In contrast, for young adults
visual shape learning engages an extended network of occipi-
totemporal, parietal, and frontal regions that is known to be
involved in perceptual decisions (Newsome et al., 1989; Kim
and Shadlen, 1999; Shadlen and Newsome, 2001; Heekeren
et al., 2004, 2006). This finding is consistent with our previ-
ous studies showing that this network of areas is also involved
in visual form categorization and mediates learning-dependent
changes in the observers’ choice (Li et al., 2009; Mayhew et al.,
2012).

Further, the reduced contribution of frontal circuits in visual
form learning in older adults is consistent with our previous stud-
ies on category learning (Mayhew et al., 2010) and could not
be simply attributed to differences in task difficulty between age
groups, as task performance was similar for young and older
observers. Is it possible that differences in the response procedure
for young and older participants may account for the differences
observed in frontal activation patterns between age groups? In
particular, the task design may have placed higher demands on the
memory of young adults that were required to switch stimulus-
response mapping based on a cue, compared to older adults that
simply had to delay their response. However, young participants
had thoroughly practiced switching responses prior to the scan-
ning sessions, ensuring high performance in this task. Further,
this memory load was consistent before and after training for
both young and older adults (i.e., the same task was used in both
sessions), therefore it cannot explain learning-dependent changes
in fMRI signals observed in frontal brain regions. Understanding
age-related changes in frontal cortex remains a challenge as some
studies show gray and white matter loss (Resnick et al., 2003;
Bartzokis et al., 2004; Head et al., 2004; Madden et al., 2004;
Salat et al., 2004) and functional underactivation (Grady et al.,
1995; Moscovitch and Winocur, 1995; West, 1996; Cabeza et al.,
1997; Rypma and D’Esposito, 2000; Rypma et al., 2001; Logan
et al., 2002), while others demonstrate hyperactivation poten-
tially related to compensatory mechanisms that may support

brain plasticity in older age (Heuninckx et al., 2008; Reuter-
Lorenz and Cappell, 2008; Berchicci et al., 2012; Fakhri et al.,
2012).

Third, our results show that testing observers in a con-
trol task rather than a visual from discrimination task results
in learning-dependent changes in fMRI activation patterns in
higher occipitotemporal and posterior parietal regions, but not
frontal circuits. Thus, learning may modulate read-out signals
in posterior regions related to global form representations inde-
pendent of the task, whereas task-dependent frontal activations
may reflect changes in sensitivity with training in the context
of perceptual decision making. This finding is consistent with
our previous work on category learning (Li et al., 2009) and
the proposed role of frontal areas in adaptive coding for com-
plex cognitive tasks (Miller, 2000; Duncan, 2001; Koechlin and
Summerfield, 2007). It is unlikely that the learning induced
changes we observed in occipitotemporal areas resulted from
learning specific stimulus exemplars, as the stimuli tested dur-
ing scanning differed in their visual properties (i.e., signal level)
from the stimuli presented during training. Further, we con-
trolled for the possibility that the results could be due to mem-
orized stimulus-response associations by randomizing the motor
responses based on the cue, and introducing a task requiring
a motor response orthogonal to the stimulus categories in the
control experiment.

Finally, our work introduces a new methodological approach
to the study of the aging brain by comparing the informa-
tion content rather than the overall signal amplitude of brain
regions in young and older adults. Comparing fMR-metric func-
tions that reflect the choices of an MVPA classifier to psycho-
metric functions that reflect the observers’ choices, we discern
cortical areas where visual form representations change with
learning according to the observers’ behavior. These learning-
dependent activity changes may reflect changes in the selectivity
of single neurons, correlations across local neural populations,
or input from local or distant neural circuits. Discerning these
mechanisms with fMRI alone is not possible due to the lim-
ited resolution of the technique and the complex nature of the
BOLD signal. Therefore, future work combining fMRI and elec-
trophysiology signals is necessary to shed more light into the
neural mechanisms that mediate visual form learning across the
lifespan.
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