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Independent component analysis (ICA) is increasingly used to analyze patterns of sponta-
neous activity in brain imaging. However, there are hardly any methods for answering the
fundamental question: are the obtained components statistically significant? Most meth-
ods considering the significance of components either consider group-differences or use
arbitrary thresholds with weak statistical justification. In previous work, we proposed a sta-
tistically principled method for testing if the coefficients in the mixing matrix are similar in
different subjects or sessions. In many applications of ICA, however, we would like to test
the reliability of the independent components themselves and not the mixing coefficients.
Here, we develop a test for such an inter-subject consistency by extending our previous
theory. The test is applicable, for example, to the spatial activity patterns obtained by spa-
tial ICA in resting-state fMRI. We further improve both this and the previously proposed
testing method by introducing a new way of correcting for multiple testing, new variants
of the clustering method, and a computational approximation which greatly reduces the
memory and computation required.

Keywords: independent component analysis, inter-subject consistency, resting-state fMRI, significance testing,
group analysis

1. INTRODUCTION
After estimating the parameters of any statistical model, it would
be reasonable to test them in some way for statistical significance,
also called reliability in some contexts. In the case of indepen-
dent component analysis (ICA), methods for such testing have
not been widely used, nor do many exist in the first place. Meth-
ods for group-difference testing (Calhoun et al., 2009) are widely
used, but the fundamental question of which components are reli-
able in a single group or even a single subject is rarely considered
using principled statistical testing methods.

In previous work, we proposed a framework which develops
such testing methods based on the concept of inter-subject consis-
tency. The basic idea is to perform ICA separately for each subject,
and define that an estimated component can be considered sig-
nificant if it appears in sufficiently similar form in more than one
subject (Hyvärinen, 2011). A rigorous formula for what is “suf-
ficiently” similar was derived based on the definition of a null
hypothesis and application of statistical testing theory. This pro-
vided a quantitative theoretical basis for the self-organizing group
ICA method originally proposed by Esposito et al. (2005). Thus,
the testing method provided, at the same time, a solution to the
problem of how to do ICA simultaneously on data from many
subjects, or in general, many data matrices (Calhoun et al., 2001,
2009). In fact, data from a single subject can also be tested by
doing ICA separately for data from several sessions recorded from
the same subject, and considering similarities between the sessions
in the same way.

However, the theory by Hyvärinen (2011) was only developed
for the case where the inter-subject consistency was seen in the
columns of the mixing matrices. This is relevant in particular to
the case of temporal ICA, typically applied on EEG and MEG,
where the mixing matrix gives the spatial patterns of activity. Yet,
the most common application of ICA in brain imaging is the spa-
tial ICA of fMRI data, often measured at rest (Kiviniemi et al.,
2003; van de Ven et al., 2004; Beckmann et al., 2005). A related
spatial ICA method was recently proposed on MEG as well by
Ramkumar et al. (2012). For such spatial ICA, inter-subject con-
sistency is usually measured between the spatial patterns which are
the independent components themselves, and not the columns of
the mixing matrix.

Here, we adapt the theory by Hyvärinen (2011) for the case
where the inter-subject consistency is sought among the inde-
pendent components, as in spatial ICA of resting-state fMRI.
We propose a generalization of the null hypothesis by Hyväri-
nen (2011) to accommodate the case of testing the indepen-
dent components. We take an empirical approach to model-
ing the null distributions since a purely analytical approach
like in Hyvärinen (2011) does not seem feasible. We also pro-
pose a number of improvements and generalizations to the
general framework, which can be used in the case of test-
ing the mixing matrix as well. Like the method in Hyväri-
nen (2011), the current method can be directly applied on
data from different recording sessions of the same subject
as well.
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Hyvärinen and Ramkumar Testing independent component patterns

2. MATHEMATICAL THEORY
2.1. CLUSTERING OF COMPONENTS BY INTER-SUBJECT

CONSISTENCY
Assume we have measurements of r subjects or sessions. Denote
by Xk, k = 1, . . ., r the data matrix for the k-th subject or ses-
sion. For simplicity of terminology, we assume in the following
that the data comes from different subjects and not sessions. If the
data matrix comes from fMRI recordings, and we are to perform
spatial ICA, each row is one time point (one volume) and each
column a voxel. Assume we have performed ICA separately for all
the subjects, obtaining the estimated decompositions.

Ŝk = Ŵk Xk , or Xk = Âk Ŝk , (1)

where Âk is the pseudoinverse of Ŵk . In the following we only
analyze Ŝk , so it is immaterial whether any dimension reduction
is done by PCA, and whether the Ŵk and Âk are in the whitened
space or in the original.

Now, following Esposito et al. (2005), we want to combine the
ICA results for the different subjects by clustering. That is, we try
to find components which are similar enough in different subjects,
so that we can consider them to correspond to the same underlying
component. Each such cluster of sufficiently similar components
(i.e., components with sufficient inter-subject consistency) is then
considered a single group-level component in subsequent analy-
sis. The key challenges in such a method are to find principled
and practical definitions for similarity, and to define the thresh-
olds regarding when the components are similar enough to be
considered the same.

Our goal here is to devise a statistical test to determine if some
of the rows of Ŝk are sufficiently similar for different k in the sense
that the similarity cannot be due to chance. We assume here that
the rows of Ŝk model the phenomena of interest (e.g., spatial pat-
terns of brain activity in fMRI) whose inter-subject consistency
we want to test. In contrast, we do not assume that the Ak have
any inter-subject consistency. For example, in spatial ICA of fMRI,
the Ak give the time courses which hardly have any inter-subject
consistency in the case of resting-state activity.

The key to a principled statistical test is the definition of a null
hypothesis, H0. The null hypothesis should model the case where
the ICA results for different subjects are completely independent
of each other in the sense that the components in different sub-
jects have no similarity at all, other than what would be expected
by chance. As argued by Hyvärinen (2011), the randomness can in
fact come from two different sources:

1. It could be that the ICA algorithm fails completely, or
2. It could be that the underlying data are completely different for

each subject in the sense that the brain networks are completely
different from each other.

We will begin by introducing a null distribution which embodies
these two sources of randomness.

2.2. DEFINITION OF NULL DISTRIBUTION
In order to model the randomness in the ICA estimation proce-
dure, we define a null hypothesis as follows. We assume, following

Hyvärinen (2011), that the estimated Âk are random orthogo-
nal transformations of the actual mixing matrices. Denote by
Uk random orthogonal matrices (more precisely, matrices uni-
formly distributed in the set of orthogonal matrices). Under the
null hypothesis we have, for the estimated decompositions:

Âk = Ak Uk or Ŵk = UT
k Wk (2)

where Ak and Sk below denote the actual underlying values of those

parameters or random variables, as opposed to the estimates Âk

and Ŝk . This randomness due to the Uk models errors in the ICA
estimation procedure. The idea is to assume that the prewhitening
step in ICA was successfully performed, but the ICA algorithm
returned a random result, i.e., a random orthogonal transforma-
tion in the whitened space. This is equivalent to assuming that
the estimates of the Sk are random orthogonal rotations of the
actual Sk:

Ŝk = UT
k Sk (3)

since Xk = Âk Ŝk = Ak Sk .
We have to further model randomness in the actual indepen-

dent components, due to individual differences in brain anatomy
and physiology. In our previous model (Hyvärinen, 2011), the
randomness relating to the actual individual differences of the
brains was assumed to be reflected in this same orthogonal rota-
tion, since the spatial patterns corresponded to the columns of
Ak. This assumption was justified in the case of testing the mixing
matrix, e.g., in the case of temporal ICA of EEG or MEG. How-
ever, when testing for similarities of the independent components,
that assumption does not seem to be adequate. This is because if
the individual differences of the brains were modeled by a ran-
dom rotation of the spatial patterns as in equation (3), we would
be violating the ICA model, since such a random rotation would
make the components dependent. Therefore, we need to model the
individual variability of the brains by a separate random model.
The random model should give random spatial patterns which still
follow the ICA model, i.e., are independent for each subject.

The approach we take here is to assume that under the null
hypothesis H0, the rows of the Sk, denoted by Ski, follow the same
multivariate distribution ps(Ski). In general, this is a stochastic
(spatial) process which models the hypothetical generation of spa-
tial patterns given by the independent components. Drawing each
Ski randomly and independently of each other from ps does give us
a number of components which are, by construction, independent,
and thus respect the assumptions of the ICA model.

In the case of spatial ICA, the distribution ps essentially models
the spatial regularities of the patterns, including patterns of brain
activity or artifacts on the one hand, and measurement noise on
the other. We cannot assume, for example, that the voxels are all
independent of each other, since this would grossly overestimate
the degree of randomness, and thus underestimate the similarities
obtained by chance.

Here, we do not attempt to construct an explicit model of ps.
Instead, we construct an empirical model of the null distribution
of the similarities between the components, which is the relevant
quantity for the construction of tests, as will be discussed next.
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Hyvärinen and Ramkumar Testing independent component patterns

2.3. EMPIRICAL MODEL OF NULL DISTRIBUTION OF SIMILARITIES
We define the similarities of the components of two subjects k 6= 1
as the entries of the following matrix:

Γkl = Ŝk Ŝ
T
l (4)

This simple definition assumes that the estimated rows Ŝk are zero
mean, and constrained to unit norm. The Ŝki are further assumed
orthogonal for each subject, i.e., for i 6= j for fixed k. For example,
components estimated by FastICA always fulfill the orthogonality
and norm constraint after the means have been subtracted from
the estimated components.

The central problem is how to model the distribution of the
matrix Γ under the null hypothesis. For simplicity, we only attempt
to model the marginal distributions of the entries in this matrix
and approximate the joint distribution by assuming independence
of the entries. Denote this marginal distribution by pγ. We take
here an empirical approach and fit a parametric model to the
statistics of the measured similarities to model pγ.

Under H0, we have

Γkl = UT
k Sk ST

l UT
l (5)

where Uk and Ul are random orthogonal matrices independent of
each other, and the rows of Sk and Sl are obtained from the prior
distribution ps. It is, in fact, possible to obtain an empirical sample
of pγ by the following procedure: take the matrices of the esti-

mated independent components Ŝk , make a number of random
rotations as Vk Ŝk , and compute the similarities

Γ̃kl = Vk Ŝk ŜT
l VT

l . (6)

This has the distribution of Uk Sk Sl Ul where Uk = Vk UT
k is

again a random orthogonal matrix (and likewise for the index
l). Thus, the constructed matrix follows the same distribution
as the similarity matrix Γ̃kl under H0. In principle, we could
obtain a Monte Carlo sample of this distribution by generating
random orthogonal matrices, but we will show next that this is
not necessary.

It was pointed out by Hyvärinen (2011) that the distribution
of the square of each entry of UT

k Ul follows a beta distribution
Beta(α, β) with parameters α= 1/2 and β= (n− 1)/2 where n is
the dimension of the data Xk (after a possible dimension reduc-
tion by PCA). So, we decide to fit a Beta(1/2, β) distribution to the
entries of the random matrix Γ̃kl , with β being the free parameter.
This should provide a reasonable approximation, and as we will
see next, this approximation leads to a particularly simple method.

A basic way of estimating the parameters in a beta distribution
is given by the moment method. A well-known formula gives the
expectation of a beta-distributed random variable u2 as

E
{

u2}
=

α

α+ β
(7)

from which we can derive, using the method of moments, the
estimator of β with known α= 1/2 as

β̂ = α
([

E
{

u2}]−1
− 1

)
=

1

2

([
E
{

u2}]−1
− 1

)
(8)

Thus, we see that parameter β can be estimated based on the expec-
tation of the squares of the matrix of similarities after random
rotations.

Using the expectation of squares leads to a dramatic simplifi-
cation of the method. Since the expectation of squares is taken
over all the elements of the matrix, we can think of it being first
taken over all the elements of the similarity matrix for each sub-
ject pair Γkl , and then over different subject pairs k, l, k 6= l. Now,
the orthogonal transformations in equation (6) do not change
the sum of the squares of the elements of the matrix, so they can
be omitted. Thus, we do not need to take the random rotations
into account in the estimation of β, and no Monte Carlo sim-
ulation of the distribution is necessary. We can simply estimate
β using the sum of squares of the computed similarity matrices
Γkl as

β̂ =
1

2
(ñ − 1) (9)

with

ñ =
[
E
{
γ2}]−1

=
n2r (r − 1)∑
ij ,k 6=l

γ2
kl ,ij

(10)

where γ2
kl ,ij is the i, j-th entry in the matrix Γkl . Here, the quan-

tity ñ can be considered as measure of the “randomness,” i.e., lack
of structure, of the independent components. If the independent
components are very random in the sense of having no spatial
structure (e.g., white noise), the similarities in the denominator
will be small and this quantity will be large; however, ñ depends
on the data dimension as well. In fact, ñ coincides with a para-
meter which gives the “effective” data dimension in the original
framework by Hyvärinen (2011).

Thus, to test the hypothesis, we only need to estimate β as β̂

in equation (9) and then compute the p-values based on the beta
distribution.

2.4. NEW CORRECTIONS FOR MULTIPLE TESTING
The p-values for the connections (similarities) computed above
can be used in a hierarchical clustering procedure to create clusters
which contain one component from as many subjects as possible
using only significant connections. Since we will be testing many
possible candidates to be included in the clusters, we need some
corrections for multiple testing.

As proposed by Hyvärinen (2011), we control here the false
positive rate (FPR) for the formation of clusters, and the false dis-
covery rate (FDR) for adding new elements to clusters. This is
because claiming the existence of a cluster which does not actu-
ally exist can be considered a more serious error than adding an
extra component to the cluster, and thus we want to be more
conservative in forming new clusters.

For controlling the number of falsely formed clusters, we thus
use Bonferroni correction like in Hyvärinen (2011). Denoting by
αFP the uncorrected false positive level, we obtain the corrected
level as

αcorr
FP =

αFP

m
(11)
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Hyvärinen and Ramkumar Testing independent component patterns

where the number of tests is

m =
nr (r − 1)

2
(12)

with r, the number of subjects, and n, the dimension of the data.
The goal here is to make the probability of inferring even one
wrong cluster smaller than αFP. This is essentially the same as the
family wise error rate.

Regarding the process of adding further components to the
cluster after it has been formed, we develop here a method related
to FDR. The problem with using ordinary FDR as in Hyvärinen
(2011) is that in computing the true and false positives, it uses the
number of connections which are considered true, while we are
interested in the number of components which are added to the
clusters. To see why these may not be closely related, consider a
true cluster of 10 components. It contains 45 connections within
itself, and thus the number of true connections within the cluster
should be taken as 45. Now, if we falsely infer one of the out-
going connections to be true, we would calculate the FDR to be
1/46. However, since this means that we will have 11 components,
one of which is falsely added to the cluster, it would make more
sense to say we have an FDR of 1/11. The relationship between
the FDR of connections and the FDR of components is thus quite
complicated.

Since it is not straightforward to define the number of false dis-
coveries in this problem, it is not clear how generic FDR methods,
such as Simes’ procedure (Simes, 1986; Benjamini and Hochberg,
1995) should be applied, as already pointed out by Hyvärinen
(2011). Next, we provide one possible definition of false dis-
coveries (and their rate) which attempts to optimally adapt the
concept to the problem at hand. The number of false discoveries
is basically the number of components falsely added to any of the
clusters.

Consider a cluster which actually has c components, all of them
true ones. There are c(r − c) connections which go out of that
cluster (we are considering maximal connections only as explained
below in Section 2.5), each of which can give rise to a false positive.
Given a corrected αcorr

FD level used in the test, and considering the
tests independent, we would have an FDR which is smaller than

αcorr
FD c (r − c)

c
= (r − c) αcorr

FD (13)

where we omit the false positives in the denominator to obtain a
simple upper bound. To guarantee that this is smaller than a given
FDR rate αFD, we can simply choose

αcorr
FD =

αFD

r − 2
(14)

which makes (13) less than or equal to αFD for any c > 2 (in the
case r = 2, i.e., only two subjects, the FDR is not used anyway).
Thus, we propose to use the correction in equation (14) in the
testing. It controls the FDR in the sense of the number of falsely
added components.

2.5. COMPUTATIONAL SIMPLIFICATION
Next, we propose to reduce the computational resources (both
memory and CPU time) by a simple approximation. After com-
puting the similarities of the components of two subjects in matrix
Γkl , we only store the maximum similarities of each component
with the components of the other subject. In other words, we only
store the maxima of the rows and columns of Γkl , as well as the
indices obtaining those maxima. This is justified because a com-
ponent can belong to only one cluster anyway, and it is most likely
to be the one with the most significant similarity.

This reduces the amount of memory needed by a factor of n/ 2,
and the computation time is reduced by a similar amount although
its exact computation is not straightforward. Hyvärinen (2011)
found that the computational bottleneck of the method is in the
memory needed for storing all the similarities, so this reduction
in memory storage is what perhaps most matters in practice.

We need to find the distribution for these maxima. We propose
a simple approximation assuming the elements of the similarity
matrix are independent, and by applying basic probability calculus,
which gives

P

(
max

i
si ≤ α

)
=

n∏
i=1

P (si ≤ α) (15)

for independent variables si.

2.6. DIFFERENT CLUSTERING STRATEGIES
We further propose that the clustering can use different strate-
gies. The method proposed by Hyvärinen (2011) is related to the
single-linkage strategy in hierarchical clustering, and adds a new
component to a cluster by finding the largest similarity (which
here means minimum p-value) among the similarities from the
cluster to components not yet clustered (belonging to subjects not
yet in the cluster). The classical alternatives to such a single-linkage
are average-linkage and complete-linkage.

We propose to use complete-linkage as an alternative strategy
in our testing method. Adapted to our specific clustering scheme,
the idea is that we add a component to a cluster by considering the
maximum of the p-values of the similarities from within the cluster
to components in the remaining subjects (who do not have compo-
nents in that cluster). The component with the smallest maximum
of p-values will be added to the cluster. In particular, this means
that a candidate component can be added to the cluster only if the
connections from all the components inside the cluster are sig-
nificant, because otherwise the maximum p-value would not be
significant. (Since we store only the strongest connections between
subjects, we have to also check that all the maximizing links stored
point to the same component. If they don’t, the component will
not be considered for inclusion.)

Using complete-linkage alleviates the well-known drawback of
the single-linkage strategy, which is that when components are
added one-by-one to the cluster, they can be more and more dif-
ferent from the two components which started the cluster. The
last component to be added can be so different that the cluster
cannot be considered very meaningful anymore. On the other
hand, complete-linkage has the drawback of sometimes leading to
conservative cluster formation.
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Hyvärinen and Ramkumar Testing independent component patterns

The average-linkage strategy is often considered a useful com-
promise between the single-linkage and complete-linkage strate-
gies. As an implementation of the principle of average-linkage,
we further propose here a method called median-linkage. The
idea is that the median of the p-values of the connections to the
new component has to be significant, which means half of the
connection from the cluster have to be significant1. This should
provide an interesting compromise between single-linkage and
complete-linkage.

3. EXPERIMENTAL METHODS
Next, we validated the testing method proposed above by simula-
tions and experiments on real data.

3.1. SIMULATION 1: DATA RESEMBLING fMRI
As a basic test for the validity of our method, we created indepen-
dent components which resemble those obtained in a (resting-
state) fMRI experiment. The number of subjects was fixed to 12,
and the number of independent components (or PCA dimension)
was fixed to 40.

The consistent spatial patterns were small blobs in a grid. The
size of the grid was 25× 25 because this seems to be statistically
the closest to real fMRI data in terms of giving a similar effective
dimension ñ. FMRI data of course has more voxels, but the cor-
relations between the voxels are strong, and thus the statistics of
similarities are more similar to our simulations on such a small
grid2.

Various amounts of Gaussian white noise were added to the
blob-like patterns to simulate measurement noise. The signal-to-
noise ratio was quantified as the z-score of the activity blobs: the
noise always had standard deviation equal to one, whereas the

1In our implementation, we handle ties inherent in median calculation by requiring
that more than one half of the connections must be significant.
2For a grid of this size, the effective dimension is at most 625, and typically of the
order of hundreds. In the fMRI experiments reported below, the ñ was in the range
of 100 . . . 500, depending mainly on the PCA dimension.

maxima of the blobs were varied in the range of 1–5, and this
we called the z-level of the pattern. Some examples are shown in
Figure 1.

In the basic setting, half of the subjects (the “consistent sub-
jects”) had 20 consistent components (half of the components).
In the consistent components, the underlying spatial patterns
were equal for all subjects, but the measurement noises were
independent for different subjects. The rest of the subjects (the
“non-consistent subjects”) had patterns consisting of Laplacian
white noise, generated independently of each other. Laplacian
white noise is a simple model for components which are sparse and
reasonably independent, thus having properties similar to blobs in
fMRI data3. The measurement noise added to the non-consistent
subjects had the same variance as the spatial patterns. After adding
the noise, all the patterns were normalized to unit variance.

We created data from four different scenarios. In Scenario 1,
the measurement noise was Gaussian, the single-linkage strategy
was used for clustering, and as already mentioned, the proportion
of consistent subjects and components was one half. We varied
these basic settings one at a time to produce the other scenar-
ios. In Scenario 2, we investigated the effect of more consistency
in the data, and thus set the number of consistent subjects and
consistent components to be 3/4 instead of 1/2 as in Scenario
1. In Scenario 3, we applied the complete-linkage strategy for
clustering, while the data was like in Scenario 1. In Scenario 4,
we investigated the effect of non-Gaussian noise: the noise was
Laplacian, while other parameters were like in Scenario 1. The
Laplacian distribution is not meant as a physically realistic noise
model (Wink and Roerdink, 2004); its purpose is to model heavy-
tailed noise possibly consisting of outliers and other deviations
from the model.

3While we could have created the inconsistent patterns to contain activity blobs as
well, this would have created the problem that some of the supposedly inconsistent
patterns would have been strongly correlated by chance. Then, the validation of the
method would have failed since the distinction between consistent and inconsistent
patterns would not have been well-defined.

FIGURE 1 |Two patterns of activity used in Simulation 1. Left: z-level 1.5; Right, z-level 4. Z-level means the ratio of maximum of activity blob to noise
standard deviation, i.e., maximum z-score of the signal.
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Hyvärinen and Ramkumar Testing independent component patterns

For comparison, we applied the method by Hyvärinen (2011)
on the same spatial patterns. While the method by Hyvärinen
(2011) was not really conceived for this purpose, it is possible to
input the obtained spatial patterns to that algorithm to obtain a
useful baseline.

We ran 250 trials with αFP= αFD= 10% and computed a
number of quantities to characterize the clustering results:

• the false positive rate for clusters. A cluster was considered false
positive if it didn’t include the same consistent component from
at least two different consistent subjects. We ignored the actual
number of false positive clusters and simply computed if there
was at least one such cluster for each trial. Averaging this over
trials, we computed the probability of having at least one false
positive cluster, which is then compared to the FPR defined
above.

• the false discovery rate of further connections. First we deter-
mined for each cluster the component which was most often
present among the consistent subjects. False discoveries were
then defined as components which either came from the non-
consistent subjects, or came from consistent subjects but were
not the same component as the one most often present (if the
cluster was false positive, all the components were considered
false discoveries). Their number was divided by the total number
of components clustered to give the FDR. We took the median
of FDR over the trials since taking a mean of rates is not very
meaningful.

• The number of “perfect” clusters found. As in Hyvärinen (2011),
we defined a perfect cluster as one which contains the same com-
ponent from all consistent subjects, and no components from
the non-consistent subjects. This is basically a rather stringent
measure of true positives found by the methods. The number
was averaged over trials.

• Finally, we computed the total number of clusters found (includ-
ing false positives), and averaged it over trials.

3.2. SIMULATION 2: NEW VARIANT FOR TESTING THE MIXING MATRIX
While the theory presented in this paper is primarily intended to
extend our earlier theory to testing the independent components,
we have also proposed two ideas which can be used to improve the
testing of the mixing matrix. In particular, our explicit FDR con-
trol formula in Section 2.4 and the computational simplification
in Section 2.5 should improve the method in Hyvärinen (2011).
Also, the new linkage strategy in Section 2.6 could be used as an
option. To investigate this possibility, we provide here a simula-
tion in which we use the present theory for testing the mixing
matrix.

Here, we replicate Simulation 1 in Hyvärinen (2011) with the
new FDR formula and the computational simplification. (We do
not consider the alternative linkage strategies here.) The simula-
tion consists of artificial data of five different scenarios in which
FPR and FDR are explicitly defined, see Hyvärinen (2011) for
details.

The goal of the simulation is to see if both αFP and αFD are
still well controlled if use the introduced modification to test the
mixing matrix. We set both to error rates to 0.05 in the testing
method.

3.3. SIMULATION 3: COMPUTATIONAL COMPLEXITY
Next, we investigated the computational complexity of the
method, using the same framework as in our earlier work
(Hyvärinen, 2011).

First, to allow straightforward comparison with Hyvärinen
(2011), we took the procedure of Simulation 4 from that paper
without any changes, except for trying out larger dimensions. In
particular, we applied the testing on the columns of the mixing
matrix (which is possible as pointed out above).

Here, no ICA was done, instead we randomly generated data
which models the mixing matrices obtained by ICA. We took the
number of subjects to be equal to the number of independent com-
ponents, using the values 8, 16, 32, 64, 128, 256, and 512 for those
parameters. We generated the data so that for half of the subjects,
half of the components were consistent (in fact, equal). For half
of the subjects, the mixing coefficients were pure noise, and for
those subjects with half consistent components, the other half of
the mixing matrix was noise. The actual data generation procedure
does not have a lot of influence on the computational complexity,
but what is important here is that the data contains significant
clusters whose number is proportional to the data dimension, and
their size is proportional to the number of subjects.

We set αFP= αFD= 0.05. The computations were done using
Matlab on a rather ordinary Linux desktop computer system with
two cores of 2.66 GHz each, and 2.4 GB of memory available.

To assess the complexity, we computed the CPU time needed
as well as the memory needed. The memory usage considered
only the memory needed for storing the explicit variables, i.e., the
final values of any Matlab operations neglecting any intermediate
results, and thus clearly provides a lower bound only.

Second, we did the same simulations for testing the indepen-
dent components in a more fMRI-like setting. We generated the
independent component matrices Sk randomly with the same idea
of half the components being consistent for half the subjects. The
number of voxels (data points) was taken to be 10,000. The same
settings for the number of subjects and independent components
were used.

3.4. EXPERIMENTS ON REAL fMRI DATA
Finally, we applied the method on real fMRI data from Mali-
nen et al. (2010). The data consisted of 10-min resting-state 3 T
fMRI data obtained from 10 healthy subjects (37–64 years; mean
50 years; 8 males, 2 females). The statistical parametric mapping
software SPM24 was used to preprocess the fMRI data, includ-
ing realignment, skull-stripping, normalization into the Montreal
Neurological Institute (MNI) standard space, and smoothing with
a 6-mm (full-width at half-maximum) Gaussian filter. For fur-
ther details about fMRI data acquisition and preprocessing, see
Malinen et al. (2010).

From each individual subject’s data, we reduced the dimen-
sionality to 48 using principal component analysis (PCA) and
subsequently extracted 48 spatial independent components (ICs)
using FastICA (Hyvärinen, 1999). While methods have been pro-
posed for automatically estimating the PCA dimension (Beck-
mann and Smith, 2004), their application is not without problems

4http://www.fil.ion.ucl.ac.uk/spm/
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Hyvärinen and Ramkumar Testing independent component patterns

(Abou-Elseoud et al., 2010), which is why we simply fix the PCA
dimension here. Our testing framework further assumes that the
PCA dimension is the same for different subjects, while it would, in
principle, be possible to estimate it separately for different subjects
(Beckmann and Smith, 2004).

We applied the method using two different false positive
rates and false discovery rates, set to either αFP= αFD= 0.05 or
αFP= αFD= 0.01. In addition, we also investigated the effect of
the two different linkage strategies during hierarchical cluster-
ing: single and complete-linkage. Finally, we applied the method
for two further PCA dimensions, 25 and 75, where we fixed
αFP= αFD= 0.05, and adopted the complete-linkage strategy.

4. RESULTS
4.1. SIMULATION 1: DATA RESEMBLING fMRI
The results are shown in Figure 2. Basically, our new
method has quite well controlled error rates (less than the set
αFP= αFD= 10%) in most cases (green curves on the left).

The FPR rates reach 10% in many cases, and go to 15% in
the case of non-Gaussian noise (scenario 4). The case of non-
Gaussian noise makes the distributions have heavier tails and
therefore our method seems to slightly underestimate the proba-
bility of false positives. On the other hand, Laplacian noise is quite
non-Gaussian and presumably more non-Gaussian than typical
fMRI measurement noise.

The FDR are always clearly lower than the desired 10%. This
may not be surprising since our corrected FDR threshold was
constructed to be conservative.

On the other hand, for our previous test proposed in Hyvärinen
(2011), the FPR rates are not properly controlled, and sometimes
exceed 10%, while the FDR are extremely small (so close to zero
that they are not clearly visible). The fact that the error rates are
not controlled is not very surprising considering that the test in
Hyvärinen (2011) was designed for a different kind of test. Thus,
this result merely confirms that we cannot directly use our earlier
theory for testing independent components themselves, and the
present developments are necessary.

Furthermore, the proposed test has clearly more power than
the one in Hyvärinen (2011), which is seen in that fact that it finds
more perfect clusters, as well as clusters in general (right-hand side
panels in Figure 2).

Overall, there is surprisingly little variation between the four
different scenarios.

4.2. SIMULATION 2: NEW VARIANT FOR TESTING THE MIXING MATRIX
The false positive rates and false discovery rates, as defined in
Hyvärinen (2011) are shown in Figure 3 for the different data-
generating scenarios of Hyvärinen (2011). We can see that they
are all less than the required 5%, and thus well controlled in spite
of the further approximations done in developing our method in
addition to the ones in Hyvärinen (2011). In fact, the approxi-
mation made in the computation of the p-values seem to lead to
conservative testing, so the FPR and FDR do not need to be chosen
particularly small.

4.3. SIMULATION 3: COMPUTATIONAL COMPLEXITY
The results are shown in Figure 4. Regarding the testing of the mix-
ing matrix, we see a clear improvement with respect to Hyvärinen

(2011). Both the memory and the CPU time needed are decreased
approximately by a factor of 20 for the largest data set5. Thus, the
optimized method greatly expands the applicability of the method,
for example to the case of databases with hundreds of subjects.

In the case of testing the independent components, both the
memory and the CPU time requirements are larger than in the
case of testing the mixing matrix, approximately by a factor of
five in the case of the largest data set. This is understandable since
the independent components have much larger dimensions than
the columns of the mixing matrix. In fact, we ran into a prob-
lem unrelated to our testing method, which is that just storing
the independent components in memory takes a lot of space and
ultimately seems to limit the dimensions we can use6. Thus, the
poorer performance is rather related to the size of the data being
analyzed and not the testing method itself.

Based on the computed graphs of memory and CPU time
consumption, it is possible to extrapolate and approximate what
amount of computational resources are sufficient for a given n= r,
knowing that our computer was sufficient for the cases mentioned
above. The results are of course a very rough approximation since
they depend on implementation details, and because the num-
ber of values of n= r we used was limited. We set the target at
n= r = 512 which would correspond to rather long recordings of
hundreds of subjects collected in a database. Simple linear extrapo-
lations indicate 7 GB of memory is sufficient for testing the mixing
matrix, and 150 GB for testing the components. Thus, while test-
ing the mixing matrix is not a problem even for many computer
systems at the time of this writing, the testing of components is
more challenging. The number of voxels might also be larger than
the 10,000 we used above, which would further increase the mem-
ory requirements. Likewise, we can extrapolate the computation
times needed in the case n= r = 512: whether testing the mixing
matrix or components, the computations would take some 30 h
on our modest computer system, so the computation time is really
not the bottleneck here.

4.4. EXPERIMENTS ON REAL fMRI DATA
Table 1 shows the number of clusters found, the average number
of components per cluster, and the total number of components
clustered for the 5 different parameter settings.

Typically, the method assigned a bit more than 30% of the
independent components to one of the clusters. Interestingly, the
percentage of components clustered was much higher, almost 50%,
when the PCA dimension was increased, which indicates that 48
principal components may not be enough. A larger PCA dimen-
sion may be necessary to be able to find more corresponding
components in different subjects.

5To characterize the significance of the improvement on a more anecdotal basis, let
us point out that in Hyvärinen (2011) we could do n= r = 64 on an ordinary com-
puter (the very same computer as in the current experiments), while n= r = 128
was impossible because we ran out of memory. With the new optimized method
which stores maximal connections only, we were able to compute n= r = 128 as
well as n= r = 256. The case n= r = 512 was not feasible because the system ran
out of memory.
6Again, considering the performance of our particular computer system: We were
able to do only n= r = 64 since simply storing the independent components in
memory took 37% of it.
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 2 | Simulation 1: data resembling fMRI. Each row is one
scenario, briefly: scenario 1 is basic setting, scenario 2 has more
inter-subject consistency, scenario 3 uses complete-linkage, scenario 4
has non-Gaussian noise. In all plots, green curves are obtained by the
method proposed here, and blue curves by the method proposed by

Hyvärinen (2011), given for comparison. In error rates (left), solid line is
FPR and dashed line FDR. In number of clusters (right), dashed line gives
the number of perfect clusters, solid line gives the total number of clusters
(including false ones). The desired rates αFD = αFP =0.10 are shown by the
dotted red line.

We also see the well-known phenomenon where complete-
linkage clustering leads to smaller clusters, but produces more
of them. We found that single-linkage in fact produced clusters

which were sometimes quite heterogeneous (results not shown),
so complete-linkage may be preferred on this data. On the other
hand, the total number of component clustered is smaller for
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 3 | Simulation 2: testing the mixing matrix. False positive rates
and false discovery rates are shown for simulated data. Different settings of
data dimension n and number of subjects r are given in different colors. The
data scenarios are explained in detail in Hyvärinen (2011), briefly: 1: no
consistent components, 2: half of components consistent for all subjects, 3:
all components consistent for half of the subjects, 4: for half the subjects,
all components consistent and half of the components consistent for the
rest of the subjects, 5: for half of the subjects, half of the components were
consistent. The desired false positive and discovery rates αFP = αFD =0.05
are shown by the dotted red line. For scenario 1, FDR cannot be
meaningfully computed since the number of true positives is zero.

complete-linkage, because it requires all the connections from the
cluster to be significant, which is a more conservative criterion.

Obviously, a smaller α leads to fewer clusters and fewer com-
ponents in the clusters, but the difference between 0.01 and 0.05
is rather small.

Some examples of the clusters are shown in Figures 5–7. These
were obtained in the basic setting where PCA dimension was 48,
complete-linkage was used, and the α levels were 0.05. The first
cluster in Figure 5 seems to consist of a part of the default-mode
network, the second in Figure 6 seems to be a motor network, and
the third in Figure 7 is an auditory area. The clusters contain

components from 5 to 6 subjects. The clusters were manually
selected to reflect some well-known resting-state networks.

5. DISCUSSION
In this paper, we extended our previous work (Hyvärinen, 2011)
on testing the ICA mixing matrix to testing the values of the inde-
pendent component patterns. An important application for the
present method is spatial ICA of fMRI, especially in resting-state.
We proposed an empirical model of the null distribution, whose
parameters can be directly estimated from the observed data. We
further proposed improvements to the general framework, applic-
able to both our present and earlier testing methods; they sim-
plify the theory of FDR computation, reduce the computational
requirements, and provide alternative clustering strategies.

While the idea of doing a separate ICA on each subject, fol-
lowed by clustering, is not new (Esposito et al., 2005), the method
proposed here is, to the best of our knowledge, the first one which
associates statistically principled p-values to each cluster. Thus,
the method indicates which clusters should be included in any
further analysis and which should be discarded, with a principled
computation of the similarity thresholds.

Matlab code for computing the tests proposed in this paper is
freely available at www.cs.helsinki.fi/u/ahyvarin/code/isctest/.

5.1. UTILITY IN fMRI ANALYSIS
Results on real fMRI group data showed reasonable clustering of
components to clusters similar to well-known resting-state ICA
networks.

Some well-known networks may also be split into more than
one cluster. The splitting may be due to individual variability of
the spatial patterns. The probability of such splitting depends on
the α value as well as the clustering strategy. It is well-known in
the theory of hierarchical clustering that complete-linkage tends
to create clusters which are smaller, but at the same gives more
clusters than single-linkage.

Another factor which has a strong effect on the splitting of clus-
ters, independently of individual variability or our testing method,
is the PCA dimension. Its effect was systematically investigated by
Abou-Elseoud et al. (2010), who found that with a PCA dimen-
sion of 10, a single default-mode network is found. For larger
dimensions, it is often split into at least two components, and at
a PCA dimension of 50 (very close to 48 used above), even four
components.

These factors should largely explain why, for example, the clus-
ter related to the default-mode network in Figure 5 contained
only the precuneus and only from six subjects. In fact, other clus-
ters containing parts of the default-mode network were found as
well (but not shown). Increasing the false positive and false discov-
ery rates and using single-linkage would prevent such splitting of
clusters to some degree but at the risk of too permissive clustering
of components which may not be related enough. Even so, simply
due to the effect of our relatively large PCA dimension, it seems
unlikely that we could capture the whole default-mode network
in a single cluster. This problem might possibly be alleviated by
estimating the number of independent components separately for
each subject (Beckmann and Smith, 2004), but determining the
dimension automatically is not easy as discussed by Abou-Elseoud
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 4 | Simulation 3: computational complexity. The results are
shown in each case as far as our computer was able to perform the
computations, i.e., in the case of the mixing matrix, n= r =512 was

infeasible because it would have required more memory than was
available, and likewise for n= r =128 in the case of testing independent
components.

Table 1 | Results on real resting-state fMRI data.

PCA dim α Linkage strategy Clusters found Avg. comps per cluster # Comps clustered % Comps clustered

48 0.05 Single 25 6.92 173 36.1

48 0.05 Complete 36 4.14 149 31.0

48 0.01 Complete 34 3.88 132 27.5

75 0.05 Complete 93 3.92 365 48.7

25 0.05 Complete 18 4.22 76 30.4

The testing and clustering method was applied by varying the PCA dimension, the false positive rate α= αFP = αFD, and the linkage strategy during hierarchical clustering.

et al. (2010). Another factor that might be relevant is the large
age range of the subjects; age was shown to change resting-state
networks by Dosenbach et al. (2010), so our group might have
particularly small inter-subject consistency.

Our method does not by any means discard artifacts, which
sometimes form consistent clusters as well, although we only
showed resting-state networks above. In fact, the testing method
does not seem to contain anything which would prefer compo-
nents of real brain activity over any kind of artifacts (whether phys-
iological or technical). ICA is well-known to find many artifacts,

and the present method just considers all components on an equal
footing. Of course, it might be possible that some artifacts are
either more or less consistent than brain activity, but we are not
aware of results showing any such systematic differences. An auto-
matic method for detecting which components are artifacts was
proposed by Tohka et al. (2008).

5.2. RELATIONSHIP TO OTHER METHODS
Related testing methods were proposed by Perlbarg et al. (2008);
Varoquaux et al. (2010); Schöpf et al. (2010). Schöpf et al. (2010)
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FIGURE 5 | One cluster found in real resting-state fMRI data. The component was found in sufficiently similar form in six subjects (out of 10). The cluster
seems to correspond to a part of the default-mode network, centered in the precuneus.

FIGURE 6 | A second cluster found in real resting-state fMRI data. This cluster also has components from six subjects, and seems to correspond to bilateral
motor areas.

used principled statistical methods based on GLM to quantify the
similarities between the components, and to rank them in order of
consistency. Perlbarg et al. (2008) applied bootstrapping to test the
consistency of inter-subject consistency grouping, but the group-
ing itself used similarity thresholds which were not statistically
principled. Varoquaux et al. (2010) applied the idea of random
orthogonal rotations like Hyvärinen (2011), but not over different
subjects. While all the work cited above used statistical methods to
quantify the similarity and/or significance of components, none
of them directly addressed the problem we are concerned with:
obtaining principled p-values for each component.

An alternative utility of single subject ICA was proposed byYang
et al. (2012), who did ICA on individual subjects and then clus-
tered the subjects instead of components based on the inter-subject
consistencies of the components.

5.3. RELATIONSHIP TO OUR PREVIOUS TESTING METHOD
Our empirical approach introduced above is closely related to the
original testing method by Hyvärinen (2011). Thus, we need to
understand the differences between the two methods.

5.3.1. Which testing method should be applied?
First we would like to clarify when the different testing methods
should be applied. While both methods are applicable in the myr-
iad of application fields where ICA can be applied, we consider
only brain imaging data in the following discussion.

The choice of testing method really depends on the combina-
tion of two factors: whether we do temporal or spatial ICA, and
what the experimental paradigm is. (The imaging modality per se
plays a smaller role here, but it affects the choice of temporal vs.
spatial ICA.) The discussion of whether temporal or spatial ICA is
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FIGURE 7 | A third cluster found in real resting-state fMRI data. The cluster has components from five subjects and seems to correspond to auditory areas.

to be performed for a given data set is a completely separate one
(see, e.g., Calhoun et al., 2009). First one should decide which type
of ICA is the right one, and only then choose the testing method.

ICA is typically applied on data on which we can only perform
one of the tests. This is the case when the data come from a resting-
state study, from a study where the responses are induced but not
time-locked to stimuli and hence not correlated (e.g., event-related
suppression in EEG/MEG), or any non-resting study with no sys-
tematically evoked responses. For such data, we can assume the
spatial patterns to be similar, but not the time courses.

Basically, in the case of temporal ICA for such data, we would
typically assume that the mixing matrix is approximately the same
over subjects, since the mixing matrix gives the spatial patterns of
activity. This is the case whether we analyze EEG, MEG, or fMRI.
(Temporal ICA on fMRI is very rare, however.) So, we should test
the mixing matrix using the method by Hyvärinen (2011). Testing
the independent component patterns would not be meaningful
since they correspond to the activity time courses which cannot
be assumed to be correlated here.

Next we consider the cases where the data comes from spa-
tial ICA, and from the experimental paradigms mentioned above
(resting-state or similar). Then, it is typically the independent
components (Sk) which are approximately the same over sub-
jects, since they correspond to the spatial patterns. So, we should
test the independent components themselves, using the method
in this paper. Testing the mixing matrix would not meaningful
here, since again, the time courses cannot be assumed to be cor-
related over subjects in the above-mentioned cases. In particular,
the popular spatial ICA of resting-state fMRI needs our new test-
ing method proposed in this paper, and cannot be done with our
previous method.

However, in some cases it may be possible to apply either of the
two tests. This is the case when the data comes from an evoked
response study in which the responses for different subjects are
similar enough in the sense of being strongly correlated. This

is because then both the spatial patterns and the time courses
can be tested for inter-subject consistency. The choice of testing
method then depends on which of the inter-subject consistencies is
stronger, or more interesting from the viewpoint of the study. For
example, in an evoked response study with fMRI, after applying
spatial ICA, it may be particularly interesting to apply the testing
on the mixing matrix to see if the responses themselves (and not
just the spatial patterns) have inter-subject consistency.

5.3.2. Similarity measures and effective dimensions
Next, we consider the connections between our two testing
methods from the viewpoint of the theory.

In both testing methods, we compute similarities between the
components. One important difference is that Hyvärinen (2011)
used a weighted Mahalanobis similarity, whereas here we use sim-
ple correlations. Related to this, it was assumed by Hyvärinen
(2011) that the covariances of the subjects are equal. These two
assumptions made it possible to analytically derive the null dis-
tribution in Hyvärinen (2011), while here we used an empirical
model of the null distribution.

However, these two differences may not be as large as they seem.
In fact, let us first consider what happens if we use our empirical
model of the similarities when testing the mixing matrix. Sup-
pose that we are testing the similarities of mixing matrices like
Hyvärinen (2011), and the covariances of the subjects are equal.
Theorem 1 by Hyvärinen (2011) shows that the Mahalanobis
similarity matrix is a random orthogonal matrix under the null
hypothesis. Thus, its sum of squares equals the data dimension,
and the estimate ñ of the effective dimension we would get from
equation (10) is equal to the data dimension. This means that the
empirical model of the null distribution would be equal to the one
used by Hyvärinen (2011). Thus, if we use our empirical approach
to modeling the similarity matrix in testing the mixing matrix,
we recover exactly the same null distribution which was analyti-
cally derived by Hyvärinen (2011), provided that the assumption
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of equal covariances holds. In this sense, the present empirical
method is a generalization of our earlier method.

On the other hand, one may ask if we could or should we use
the Mahalanobis distance in testing independent components like
in this paper. This does not seem necessary because if we adapt the
assumptions in Hyvärinen (2011) to the present case, we in fact
obtain the simple similarity measure used here. Since the Sk have
orthogonal rows of unit variance, as assumed above, the weight-
ing matrix in the Mahalanobis similarity is equal to identity in
the subspace spanned by the rows of Sk. Thus, any weighting in
the distance measure would disappear. In this sense, our present
method is rather a special case of the framework by Hyvärinen
(2011).

The two points above show that the apparent differences in the
definition of the similarities and effective dimensions are much
smaller than it seems. Rather, one might see our earlier method and
the method proposed here as two instances of the same method,
adapted to the parameters inherent to the testing of the mixing
matrix or the independent components, respectively.

There is one practical difference, however. In the empiri-
cal method proposed here, we do not re-estimate the effective
dimension after deflating away components, as was done by
Hyvärinen (2011). This makes the present test less conservative.
The effect of such re-estimation of the dimension would prob-
ably be much smaller here because the effective dimension ñ is
higher (typically of the order of hundreds), so reducing it by the
number which is of the same order as the number of compo-
nents (typically not more than one hundred) as in our earlier
method would not change much. Moreover, it may not be nec-
essary even on theoretical grounds because it is closely related to
the assumption of equal covariances. If the covariances are not
equal over subjects, the vectors are much less constrained and
such reduction of degrees of freedom does not happen. There
is some the risk that this makes the test too permissive and
creates false positives. However, according to the simulations pre-
sented, this does not seem to be the case in reasonably realistic
scenarios.

5.3.3. Modeling of the independent components
Any modeling of the independent components using a distribution
ps was not necessary in our earlier method (Hyvärinen,2011), since
the analysis was exclusively concentrated on the estimated mixing
matrices. Introduction of ps in this paper basically means that we
admit that there is some additional source of uncertainty. Taking
the empirical approach means that we further admit we cannot
explicitly model the independent components, i.e., ps, because of
their complexity. This uncertainty is then implicitly modeled by
fitting the parameter ñ (or β) to the data. Thus, the present method
is a generalization of our earlier method in this sense as well: we
allow for more uncertainty under H0, and adapt to it empirically.

In addition to modeling individual differences, another practi-
cal meaning of ps is modeling measurement noise. Any measure-
ment noise is still present in the independent components, and
its effect on the similarities has to be modeled. This is in contrast
to similarities of columns of the mixing matrix: since measure-
ment noise is basically averaged out in the estimates of the mixing
matrix, it can largely be ignored.

5.4. APPLICABILITY TO DIFFERENT ICA ALGORITHMS
In the simulations above, we used FastICA. However, no part of
the derivation of the testing method assumed that we would use
FastICA instead of other ICA algorithms. The only assumption
related to ICA estimation was that the estimation is divided into
two parts: whitening and finding an orthogonal mixing matrix.
Most ICA and blind source separation algorithms, including SOBI
(Belouchrani et al., 1997), AMUSE (Tong et al., 1991), and JADE
(Cardoso and Souloumiac, 1993), use the same division of estima-
tion into two stages, so our method is just as applicable to them as
it is for FastICA.

The notable exception among the ICA algorithms is the info-
max algorithm (Bell and Sejnowski, 1995; Amari et al., 1996),
which does not require such a division into two stages. How-
ever, most implementations of the infomax algorithm do use a
preliminary whitening to speed up the algorithm, effectively using
two estimation stages as above. Yet, there is usually no constraint
of orthogonality of the mixing matrix in the infomax algorithm.
This means that our method may not be fully justified for the info-
max algorithm. On the other hand, by the definition of the ICA
model, even the infomax algorithm should asymptotically give an
orthogonal mixing matrix for whitened data, under the theoretical
assumption that the ICA model holds. Thus, the assumptions of
our method are approximately correct even for the infomax algo-
rithm. Whether this approximation is good enough in practice is
an empirical question that we leave for future research.

5.5. COMPUTATIONAL IMPLEMENTATION DETAILS
We proposed a simple way of speeding up computation by stor-
ing only the maximal similarities in memory. This is not exactly
equivalent to using all of them as in our earlier method (Hyvärinen,
2011) but the difference is likely to be very small. This improve-
ment can be used with the testing method in Hyvärinen (2011)
as well, and, indeed, with many related methods (Himberg et al.,
2004; Esposito et al., 2005).

In Simulation 3, the bottleneck of the computations was seen
to be in the large size of the spatial patterns themselves, which
we stored in the memory. Thus, the bottleneck is essentially in
the database implementation, and not in our testing method per
se. A further computational improvement would presumably be
obtained if we didn’t try to hold all the independent components
in the memory at the same time. This would require some rela-
tively simple programing solutions in which only part of the ICA
outputs are loaded into memory at the same time for computation
of the similarities. Such methods might be quite slow because of
the disk access needed but they would expand the possibilities of
the testing method. However, we leave such database technicalities
for future research.

5.6. GROUP ICA AND TESTING
The method developed here can also be viewed as a method for
group ICA, if the datasets come from different subjects, as orig-
inally proposed by Esposito et al. (2005) and further developed,
among others, by Wang and Peterson (2008) and Schöpf et al.
(2010). The approach is quite different from conventional group
ICA methods (Calhoun et al., 2009) in which the primary goal is
to obtain a set of group-average components which characterize
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the whole group. Such a set of average components can then be
used to compute the corresponding components in each subject.
Malinen et al. (2010) originally applied such a method (GIFT) on
the data we re-analyze here, so comparing the present results to
theirs will give a general idea on the differences and commonalities
of the two analyses.

Estimating group-level component has been further advanced
by Beckmann and Smith (2005), whose tensorial ICA method
allows some inter-subject variability in both the independent com-
ponents and the mixing matrix; however, tensorial ICA assumes
the component time courses to be similar for all the subjects
in whom the component is present, so it is hardly applicable to
spatial ICA of resting-state fMRI. Guo and Pagnoni (2008) fur-
ther proposed a principled expectation-maximization approach
for estimating group components.

A possible problem with estimating group-level components
is that there is no guarantee that the component “exists” in each
subject, since the subject-wise components are computed by sim-
ple formulas without any checking that the obtained component
matches the data of the subject in question. The question of
whether the components obtained by group-level ICA are present
in single subjects was considered by Erhardt et al. (2011) and Allen
et al. (2012). The main advantage of computing a separate ICA for
each subject is that there is more certainty that the subject-wise
components really correspond to the statistical properties of the
subject (Esposito et al., 2005).

On the other hand, computing a separate ICA for each subject
may have the disadvantage that the estimation of the compo-
nents does not use all the information available, in particular the
information that the components are likely to be similar in the dif-
ferent subjects. In fact, in the fMRI results above, the components
were hardly ever found in more than half of the subjects. While
this may be an accurate description of the underlying individual

differences in neurophysiology and anatomy, it is also possible that
this is a conservative estimate. For example, due to the algorithmic
randomness of ICA algorithms (Himberg et al., 2004), the compo-
nents obtained are just a subset of the larger set of all the possible
components. In ICA estimation, there is thus an aspect of random
sampling from this pool of components, which reduces the num-
ber of matches that can be found by a clustering algorithm like the
one proposed here.

A possible compromise would be to use a framework similar to
Varoquaux et al. (2011), which develops an explicit model of the
components, and in particular their individual differences. This is
an interesting direction for future research. However, such models
cannot be straightforwardly used for the testing of the components
because the components are not estimated independently in dif-
ferent subjects. Another important question for future research is
how comparison between groups can be done in the present testing
framework. Any methods applicable for the original framework by
Esposito et al. (2005) are likely to be applicable for our method
as well.
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