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Although significant advances have been made in our understanding of the neural basis
of action observation and intention understanding in the last few decades by studies
demonstrating the involvement of a specific brain network (action observation network;
AON), these have been largely based on experimental studies in which people have been
considered as strictly isolated entities. However, we, as social species, spend much more
of our time performing actions interacting with others. Research shows that a person’s
position along the continuum of perceived social isolation/bonding to others is associated
with a variety of physical and mental health effects. Thus, there is a crucial need to
better understand the neural basis of intention understanding performed in interpersonal
and emotional contexts. To address this issue, we performed a meta-analysis using of
functional magnetic resonance imaging (fMRI) studies over the past decade that examined
brain and cortical network processing associated with understanding the intention of
others actions vs. those associated with passionate love for others. Both overlapping and
distinct cortical and subcortical regions were identified for intention and love, respectively.
These findings provide scientists and clinicians with a set of brain regions that can be
targeted for future neuroscientific studies on intention understanding, and help develop
neurocognitive models of pair-bonding.
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INTRODUCTION
Throughout the past three decades, a growing number of stud-
ies have shown that one understands actions and intentions
of other people by shaping one’s understanding and anticipa-
tion of the environment based on one’s own motor system
(Jeannerod, 2001; Van Overwalle and Baetens, 2009; Becchio
et al., 2012). Theories on embodied cognition and simulation
extend these findings by suggesting that reading the intention
of others occurs through a direct and automatic matching pro-
cess between observed and performed actions, and via the re-
activation of the bodily states that were originally active during
past self-related sensori-motor experiences—as if the observers
were “reliving” the observed motor experiences (Rizzolatti et al.,
2001; Rizzolatti and Craighero, 2004; Niedenthal et al., 2005;
Lewis et al., 2006; Niedenthal, 2007; Rizzolatti and Sinigaglia,
2008; Grafton, 2009). The recent development in neuroimaging
sheds lights on the neural activations mediating this mechanism
(Grafton, 2009; Becchio et al., 2012). For instance, neuroimag-
ing studies show that reading intentions of others recruit brain
areas that are also activated when someone performs the same
action (Grafton, 2009, for review; Ortigue et al., 2009; Rizzolatti
and Sinigaglia, 2010). Interestingly, these brain areas can be
divided into two functionally separable brain networks (Grafton,

2009; Ortigue et al., 2009). The first, referred to as the “action
observation network” (AON), involves an inferior fronto-parietal
network (FPN) and includes a subset of areas that are associ-
ated within the putative human Mirror Neuron System (hMNS;
Grafton et al., 1996; Rizzolatti and Craighero, 2004; Desmurget
et al., 2009; Grafton, 2009). This AON system is thought to
be particularly important for integrating sensori-motor infor-
mation during perceptual judgments about actions (Rizzolatti
and Craighero, 2004), and also for understanding hand-object
interactions and intentions on the basis of embodied cogni-
tive mechanisms (Iacoboni et al., 2005; Rizzolatti and Sinigaglia,
2007; Grafton, 2009). The second brain network, referred to as
the “social-network” (SN), recruits brain areas involved in social
interaction (Grafton, 2009; Sugiura et al., 2009; Wakusawa et al.,
2009; Canessa et al., 2012). This SN includes the medial prefrontal
cortex, precuneate cortex, insula, and amygdala (Wheatley et al.,
2007; Grafton, 2009). Both networks include the posterior part
of the superior temporal sulcus (pSTS); the superior temporal
gyrus (STG), the middle temporal gyrus (MTG), and the part of
the angular gyrus that is near the ascending limb of STS (Allison
et al., 2000; Pelphrey et al., 2004; Thompson et al., 2005, 2007;
Pelphrey and Morris, 2006; Materna et al., 2008). Interestingly,
the STS region, notably its posterior part (pSTS), is also recruited
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by relatively low level processes such as observation of visual bio-
logical motion (Jellema et al., 2000), auditory biological actions
(Bidet-Caulet et al., 2005; Gazzola et al., 2006; Lewis et al., 2011),
and other operations such as social inferential processing in tasks
requiring mentalizing, and theory of mind (Grezes et al., 2004;
Saxe et al., 2004; Schultz et al., 2004; Grossman et al., 2005; Frith
and Frith, 2006; Brass et al., 2007; Van Overwalle and Baetens,
2009).

Although these findings provide valuable information about
the brain mechanisms involved in the understanding of actions
performed by strangers, they do not tell much about the brain
mechanisms involved in the understanding of a significant other
[a person with whom the participant intends to be with (i.e., a
participant’s partner in an intimate relationship or a best friend
in an companionate relationship)]. To date, studies on intention
understanding have been largely based on functional magnetic
resonance imaging (fMRI) studies in which participants have
been considered as strictly isolated entities i.e., focusing mostly
on the action type rather than on the relationship with the agent
and the observer. However, people typically spend most of their
time in social settings interacting with significant others. Research
shows that a person’s position along the continuum of perceived
social isolation/bonding to others is associated with a variety
of physical and mental health effects (Cacioppo and Cacioppo,
2012). For instance, people who subjectively feel isolated live
shorter lives than those who feel they have strong, dependable,
meaningful social bonds (Cacioppo and Patrick, 2008; Cacioppo
and Cacioppo, 2012 for review).

As a consequence, there is a health-related need to better
understand the functional dynamic of our brain during actions
performed in an interpersonal context. This is critical as we
spend much of our lifetime interacting with significant others,
acquaintances, as well as strangers.

A growing body of research in psychology highlights the
importance of studying the processing of significant others by
demonstrating the influence of implicit processing of significant
others (compared to strangers) on the individual’s perception
and cognitive processes. For instance, evidence suggests that the
emotional bond between an actor and a perceiver may facili-
tate mutual intention perception, with a stronger bond associ-
ated with faster intention understanding (Cutting and Kozlowski,
1977; Ortigue and Bianchi-Demicheli, 2008; Ortigue et al.,
2010a).

Inspired by the theories on embodied cognition and simula-
tion theories, one explanation for this facilitation effect is that
intention understanding may be based, in part, upon mech-
anisms of self-expansion among significant others. Through
self-expansion mechanisms, a collective unconscious mental rep-
resentation may be formed among individuals who share self-
characteristics, values, and actions in a common environment
(Agnew and Etcheverry, 2006). In line with evolutionary the-
ory’s claim that intense emotional experiences during a lifetime
(e.g., passionate love) may be a central human motivation to
expand one’s self (Aron and Aron, 1996; Barkow et al., 1992),
the self-expansion theory of pair-bonding is a hallmark in dyadic
relationships (Aron and Aron, 1996). As an illustration, couples
in love often refer to one another as the “better half” or the

“completion of oneself,” and they refer to “We” rather than “I”
(Hatfield and Sprecher, 1986; Hatfield and Rapson, 1993; Aron
and Aron, 1996), therefore suggesting that there is a cognitive
expansion of their self in a beloved, and vice versa an inte-
gration of the beloved’s values and characteristics in their self
(Hatfield and Walster, 1978; Aron and Aron, 1996; Ortigue and
Bianchi-Demicheli, 2008). From a cognitive and social viewpoint,
self-expansion means that each partner makes a decision (con-
scious or not) to include the significant other in their own mental
self-representation (Aron and Aron, 1996), allowing the forma-
tion of a shared mental representation of the self and partner.
Recent neuroimaging studies of love (Cacioppo et al., 2012, for
review) provide further support in favor of this self-expansion
model of love by demonstrating a recruitment of self-related brain
network in people who are in love (see Cacioppo et al., 2012, for
review). Based on these recent findings in social neuroscience and
relationship science (Ortigue et al., 2009, 2010a,b; Cacioppo et al.,
2012; Canessa et al., 2012) and based on the self-expansion the-
ory of pair-bonding (Aron and Aron, 1996; Bianchi-Demicheli
et al., 2006; Ortigue and Bianchi-Demicheli, 2008; Ortigue et al.,
2010a,b), we hypothesized a common pattern (notably within
SN) of activation between love and intention tasks (Ortigue and
Bianchi-Demicheli, 2008). The rationale for identifying areas of
overlap between tasks that involve love and intention is that love
varies as a function of the extent to which an individual prefers or
desires interaction with another person. This preference or desire,
in turn, may activate networks associated more with behavioral
intentions in everyday life.

To test this hypothesis, we statistically explored the neural sim-
ilarities and differences of the neural bases between intention
and passionate love for a partner by performing a meta-analysis
of fMRI studies involving intention understanding and love,
respectively.

MATERIALS AND METHODS
LITERATURE SEARCH
We performed a systematic review of functional neuroimaging
studies of intention understanding and passionate love, respec-
tively. All papers and books in the literature published up to
May 2011 (inclusive) were considered for this review, subject to
two general limitations: the publication had to be a manuscript,
chapter or book, and the title and abstract had to be available
in English. Materials were identified through computer-based
search, as described below.

SELECTION CRITERIA FOR INTENTION UNDERSTANDING LITERATURE
Our systematic computer-based search was based on the pub-
lished literature of functional neuroimaging studies on inten-
tion understanding using MEDLINE library through PubMed
database. Key words used for this search were “intention under-
standing,” “action understanding,” “fMRI,” and “neuroimaging.”
Publications were selected on the basis of the following criteria:
(1) fMRI neuroimaging studies; (2) with healthy adult partici-
pants, and (3) paradigms included stories (text or cartoons) or
video-clips on intention understanding only. In all selected stud-
ies, participants’ instruction was either to observe intentions, to
infer the intentions of the actions performed by others, or to
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answer questions about the intention of the actions (i.e., “why”).
In all the studies we classified as “intention understanding” agents
were strangers (unfamiliar people) only. A list of the studies and
contrast conditions for intention understanding are shown in
Table A1.

SELECTION CRITERIA FOR PASSIONATE LOVE LITERATURE
We similarly performed a computer-based search of functional
neuroimaging studies on passionate love using MEDLINE library
through PubMed database. Expanding on our earlier study
(Ortigue et al., 2010b), we used the key words “love,” “couple,”
“fMRI,” and “neuroimaging.” Publications were selected on the
basis of the following criteria: (1) fMRI neuroimaging studies;

(2) with healthy adult participants in love with a partner, (3)
paradigms included viewing partner’s face or partner’s name, i.e.,
tasks related to their beloved partner. A list of the studies and
contrast conditions for passionate love are shown in Table A2.

META-ANALYSIS METHODS
To provide readers with a synthesized and statistical view of
the common and different brain networks mediating intention
understanding and passionate love, we analyzed the distribution
of peak coordinates related to intention understanding (Figure 1,
blue), passionate love (red), and regions common to both (pur-
ple). Using techniques reported previously by our group (Lewis,
2006; Ortigue et al., 2010b; Cacioppo et al., 2012), we adopted

FIGURE 1 | Meta-analysis results revealing brain regions and

networks unique to either Intention Understanding (blue) and

Passionate Love (red) and statistically significant overlap between

the two (purple). Upper panel illustrates a typical brain surface model.
Lower panel illustrate a slightly inflated rendering of the PALS atlas
cortical surface to facilitate visualization of the resulting activation foci.

Brain activations significant at p < 0.001, FWER corrected. Variations
from transparent to solid colors indicate the following terminology:
Transparent red, all passionate love study only foci; Transparent blue,
all intention study only foci; Purple, overlap of above conditions; Solid
red, unique to passionate love only studies; Solid blue, unique to
intention only studies.
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a Multi-level Kernel Density Analysis (MKDA) approach (Wager
et al., 2009). This approach quantitatively tested for consistency
and specificity of regional activation across the two sets of stud-
ies: it minimizes biases such as having one study that reports
many activation foci from dominating the meta-analysis, and
it accounts for the smoothness of reported data, false-positive
rates, and statistical power. Thus, the reported peak coordinates
within a study’s contrast maps are weighted in the meta-analysis
by study quality and sample size. We calculated the number of
statistical contrast maps that activated each voxel in the brain
using 10 mm kernel (roughly matching the three dimensional
spatial resolution of the reported data). Monte Carlo simula-
tions (10,000 iterations) were used to obtain a threshold and
establish statistical significance against a null hypothesis that
activated regions in the resulting pair-wise contrast maps are
not spatially consistent (i.e., that they are randomly distributed
throughout the brain). The use of the distribution of maxi-
mum values provides a strong control of family wise error rate
and is an established method for multiple comparisons correc-
tion (Nichols and Holmes, 2002). All voxels (which constitute
the various brain region volumes) whose density exceeded the
99.9th percentile value under the null hypothesis were con-
sidered significant (i.e., Family Wise Error Rate corrected for
spatial extent at p < 0.001). Brain coordinates obtained using
the MKDA method above were entered into the SPM8 software
program (Wellcome Trust Centre for Neuroimaging, London;
http://www.fil.ion.ucl.ac.uk/spm/) using Anatomy Toolbox ver-
sion 18 (Eickhoff et al., 2005) in order to facilitate identifica-
tion and labeling of each activation peak. The MNI coordinates
and volumes of significantly overlapping clusters (brain foci)
were extracted using the AFNI software plug-in 3dcluster (Cox,
1996). Displayed localizations were further validated by visual
inspection relative to the Duvernoy and Bourgoin brain atlas
(Duvernoy and Bourgoin, 1999). To visualize the meta-analysis
results (Figure 1), the significantly overlapping contrast indica-
tor maps for the intention studies and the love studies, and
the intention-overlap-love studies were projected (using MNI-
Talairach coordinate space) onto the left and right hemisphere
Population-Average, Landmark- and Surface-based atlas (PALS
atlas), which is an atlas of cortical surfaces that represent the aver-
aged cortical surfaces of 12 individuals (http://brainmap.wustl.
edu; Van Essen, 2005). The left and right cortical surfaces were
inflated to reveal major sulci of the brain to facilitate viewing of
the data.

RESULTS
Based on our search criteria, we found a total of 25 fMRI studies.
This included 17 studies (21 experimental paradigms) for inten-
tion understanding (Table A1; Pelphrey et al., 2004; Walter et al.,
2004; den Ouden et al., 2005; Iacoboni et al., 2005; Hamilton and
Grafton, 2006, 2008; Wang et al., 2006; Brass et al., 2007; Buccino
et al., 2007; Ciaramidaro et al., 2007; de Lange et al., 2008;
Ortigue et al., 2009; Liew et al., 2010; Newman-Norlund et al.,
2010; Ramsey and Hamilton, 2010; Carter et al., 2011; Jastorff
et al., 2011) and eight studies (10 experimental paradigms) for
passionate love (Table A2; Bartels and Zeki, 2000; Aron et al.,
2005; Ortigue et al., 2007; Kim et al., 2009; Zeki and Romaya,
2010; Stoessel et al., 2011; Xu et al., 2011; Acevedo et al., 2012),

involving a total of 457 participants. The number of participants
included in each study ranged from 10 to 36 (for further details
see Tables A1, A2).

Results confirm previous studies by demonstrating that under-
standing intentions of strangers involved the brain areas involved
in both SN and AON, including areas sustaining embodied cog-
nition, simulation, and self-other perception (such as vMPFC,
BA6, MTG/STG, Angular gyrus, see Table A3; Figure 1, blue) as
well as in the precuneus and the left anterior cingulate cortex,
and the right middle and posterior cingulate cortex. In addi-
tion, activations in subcortical areas, such as putamen activity
were also observed (see Table A3 for further details). Similarly,
results on passionate love activations reinforced previous studies
(e.g., Acevedo et al., 2012 and Cacioppo et al., 2012) by demon-
strating a distributed cortical and subcortical network of SN as
well as brain areas known to be involved in partner preference,
rewarding experiences, goal-directed actions, habit formation,
and decision-making (for further details see Table A4).

COMMON BRAIN NETWORK BETWEEN INTENTION UNDERSTANDING
AND PASSIONATE LOVE
Our fMRI meta-analysis revealed a shared brain network between
intention understanding and passionate love (Figure 1; purple;
Table A5) that includes brain regions sustaining social cogni-
tion, embodied cognition, mentalizing about self-other, such as
bilateral pSTS/IPL, bilateral inferior frontal cortex (IFC), ventro-
medial prefrontal cortex (vMPFC), anterior insula as well as brain
regions involved in the mesolimbic and nigrostriatal dopaminer-
gic pathways (caudate nucleus, thalamus, putamen, and parahip-
pocampal area; Table A5).

DISCUSSION
The present research highlights a shared network between love
and intention, which includes (1) areas that overlap with areas
related to dopamine circuits; and (2) several regions implicated
in social cognition, embodied cognition, attachment, mental
state representation, and self-representation. These results are
consistent with previous studies indicating that both love and
intention involve goal-directed and rewarding behaviors towards
a specific partner. The recruitment of dorsal parts of the stria-
tum, such as the caudate and putamen, which are innervated
by dopamine coming from both the VTA and substantia nigra,
is in line with recent work in animals showing that these brain
areas are critical in the development of a pair bond and con-
ditioned partner preference (Pfaus, 1999, 2009; Young et al.,
2005, for review), as well as in the activation of stereotyped
motor patterns (habits) related to conditioned incentive cues
(Everitt and Robbins, 2005). Although dopamine transmission
in the ventral striatum has been shown to be stimulated in
the presence of both unconditioned and conditioned reward-
ing incentive cues stimuli (Pfaus et al., 2001; Aragona et al.,
2003; Postuma and Dagher, 2006; Pfaus, 2009, for review),
responses made to conditioned rewards appear to involve more
dorsal striatal networks, among which are outputs of the dor-
sal striatum to cortical regions such as the insula (Postuma and
Dagher, 2006)—a brain region which binds integrated visceral
feedback with emotional and cognitive responses (Craig, 2002;
Ibanez et al., 2010; Berntson et al., 2011; Cacioppo et al., 2012).
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The overlap between passionate love and intention under-
standing in brain areas, such as the vMPFC, is consistent with a
growing body of studies unraveling the recruitment of this brain
area during tasks that require introspections about self and by
tasks that require inferences about the minds of others perceived
to be similar to self (Jenkins et al., 2008). The activation of the
anterior insula is also consistent with earlier studies from our lab-
oratory and others implicating a role in meta-representations of
self (for further details see, Cacioppo et al., 2012). Other over-
lapping areas were also activated, such as left and right IFC and
MTG/pSTS with a slight left hemisphere lateralization. These
areas are in close proximity to classical Broca’s and Wernicke’s lan-
guage regions, which entail frontal and temporo-parietal regions
that are more highly interconnected via the arcuate fasciculus
white matter fiber tracts in humans relative to chimpanzees and
to monkeys (Rilling, 2008). One intriguing prospect is that the
evolution of these interconnected inferior fronto-parietal regions
may relate to pair-bonding and degree of social attachments, as
well as other more uniquely human qualities such as language
(Kim et al., 2010).

By identifying specific functional brain regions and networks
in a large sample of healthy subjects, the present analysis rein-
forces the consistency and specificity of the brain regions that are
being reported in the burgeoning body of studies on love and
intention understanding. Interestingly, by revealing an additive
brain network for both intention understanding and passionate
love, the present findings offer a new way to look at the neuro-
biology of the loving mind during embodied cognition through
the lens of a specific subset of AON and SN regions of inter-
est. This provides scientists and clinicians with a unique and
strong rationale to further investigate neurocognitive models that
may explain the modulations of these common regions and brain
networks in future studies on intention understanding in dyads.

One limitation of the present meta-analysis study was some of
the fMRI studies of intention contrasted the condition of interest

either to resting state(s) (e.g., Iacoboni et al., 2005; Wang et al.,
2006; Newman-Norlund et al., 2010), while others used a variety
of different control conditions. Consequently, the resulting acti-
vation patterns (Figure 1) must be interpreted with this caveat in
mind. However, the goal of the present study was to provide a first
pass glimpse at determining (and identifying) candidate brain
regions or networks that may show preferential or selective acti-
vation to scenarios related to embodied cognition, pair-bonding,
and self-expansion mechanisms. The present results do provide
novel support for an overlapping brain network between these
mechanisms. Future fMRI studies investigating the processing
of significant others (compared to strangers) during intention
understanding in the same paradigm is thus warranted/needed.
The systematic neuroscientific study of the modulations of the
neural network for understanding the intentions of significant
others in healthy subjects, neurological patients after brain dam-
age, and patients suffering from chronic social and affective
disorders (such as autism), will provide critical insights on the
spatio-temporal dynamics of self-expansion and embodied mech-
anisms that may mediate dyadic interactions, notably among
couples.
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APPENDIX

Table A1 | List of fMRI studies on intention understanding.

Study (first author listed) Year No of No of No of Stimuli Experimental comparisons

subjects women right-handed

Brass 2007 15 7 15 Video-clips Implausible > ordinary motion

Buccino 2007 20 10 20 Video-clips Attend to intention > viewing

Video-clips Incorrect unintended motion > ordinary motion

Carter 2011 17 8 15 Video-clips Human reaching movements: goal shift > goal miss

Ciaramidaro 2007 12 6 12 Comic strips Intentional (communicative) > physical event

Comic strips Intentional (social) > physical event

Comic strips Intentional (private) > physical event

de Lange 2008 19 10 19 Pictures Ordinary > extraordinary intentions

den Ouden 2005 11 11 Not specified Scenarios Intentional action > physical event

Hamilton 2006 20 11 19 Video-clips Repetition suppression for action goal

Hamilton 2008 20 13 20 Video-clips Repetition suppression for action outcome

Iacoboni 2005 23 15 23 Video-clips Hand grasping > rest

Jastorff 2011 15 9 15 Video-clips Non-rational > rational movements

Liew 2010 18 8 18 Video-clips Hand gestures > still control

Newman-Norlund 2010 18 10 18 Video-clips Object-directed actions > rest

Ortigue 2009 24 0 24 Video-clips Repetition suppression for intention

Pelphrey 2004 12 7 12 Video-clips Incorrect > correct motion

Ramsey 2010 25 17 24 Video-clips Repetition suppression for object-goal

Walter (1) 2004 13 7 13 Comic strips Intentional action > physical event

Walter (2) 2004 12 6 12 Comic strips Intentional action > physical event

Wang 2006 12 6 12 Scenarios Attend to face > rest

Total 306 161 291

Table A2 | List of fMRI studies on passionate love.

Study (first author listed) Year No of No of No of Stimuli Experimental comparisons

subjects women right-handed

Acevedo 2012 17 10 17 Faces Partner > high familiar acquaintance

Faces Partner > close friend

Aron 2005 17 10 17 Faces Beloved > familiar neutral acquaintance

Bartels 2000 17 11 16 Faces Beloved > friend

Kim 2009 10 5 10 Faces Beloved > friend (early)

Faces Beloved > friend (late)

Ortigue 2007 36 36 36 Names Beloved > friend or stranger

Stoessel 2011 12 6 12 Pictures Beloved > erotic (happy condition)

Xu 2011 18 10 18 Faces Beloved > familiar neutral acquaintance

Zeki 2010 24 Not specified Not specified Faces Beloved > neutral

Total 151 88 126
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Table A3 | Intention understanding activation peaks.

Label Left hemisphere Right hemisphere

MNI coordinates Number of MNI coordinates Number of

voxels voxels
x y z x y z

vmPFC 6 52 −12 4000

Inferior frontal gyrus (p. Opercularis) (BA 44: 20%) 46 10 27 17904

Superior frontal gyrus (BA 6: 50%) −18 2 67 7048

SMA (BA 6: 20%) −6 20 51 6648

BA 6 (20%) 20 −5 48 40

Precentral gyrus (BA 6: 60%) 36 −12 58 4120

Precentral gyrus (BA 44: 30%) −46 7 33 29,424

BA 45 (10%) 37 33 0 3184

Middle temporal gyrus/STG −47 −50 18 73,992

Heschls gyrus (Insula/Ig1: 60%; TE1.1: 50%; OP2: 30%) −33 −28 13 464

Gyrus ambiens 46 −6 −23 7688

Angular gyrus (IPC/PFm: 20%; PGa: 20%; hIP1: 10%) 47 −46 24 73,608

Precuneus (SPL/7P: 20%; SPL/7A: 20%) −2 −55 47 17,744

Anterior cingulate cortex −3 49 11 10,424

7 41 29 7928

Middle cingulate cortex (BA 6: 10%) 10 −6 44 2864

Posterior cingulate cortex 12 −41 10 7736

Putamen −26 10 −6 4120

Fornix −4 −2 10 4120

Calcarine gyrus (BA 17: 50%; BA 18: 10%) 16 −82 14 4088

Calcarine gyrus (BA 17: 70%; BA 18: 20%) 23 −99 −2 3424

Middle occipital gyrus (IPC/PGp: 30%) −35 −84 29 3024

Optic radiations −26 −34 10 2336
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Table A4 | Passionate love activations peaks.

Label Left hemisphere Right hemisphere

MNI coordinates Number of MNI coordinates Number of

voxels voxels
x y z x y z

vmPFC 10 39 −11 2744

−5 49 −8 9384

dlPFC −7 51 22 5056

SMA (BA 6: 60%; BA 4: 10%) 10 −18 61 24,760

Postcentral gyrus (BA 3b: 60%; BA 1: 10%; BA 6: 10%) 61 −3 24 6784

Superior temporal gyrus (TE3: 10%) 63 −14 −6 3656

Superior temporal gyrus (IPC/PFcm: 10%; OP1: 10%; TE1.1: 10%) −56 −28 8 4120

Posterior middle temporal gyrus (V5: 10%) −55 −67 2 3312

Inferior temporal gyrus −40 −8 −28 4120

Middle cingulate cortex 10 5 32 16

Supramarginal gyrus (IPC/PFm: 70%; IPC/PF: 30%; IPC/PGa: 20%) 62 −45 25 7040

Supramarginal gyrus (IPC/PF: 60%; IPC/PFm: 40%; IPC/PFcm: 10%) −63 −46 25 4096

Superior parietal lobule (SPL/7A: 40%; BA2: 30%; SPL/5L: 30%) −23 −50 53 3128

PGa (10%) 40 −48 15 16

Calcarine gyrus (BA 17: 100%; BA 18: 30%) 9 −90 1 22,440

Cuneus 18 −70 24 6192

Thalamus −3 −12 1 284,552

Cerebellum 42 −57 −28 7512

34 −45 −48 6656

−36 −78 −40 3896

PASSIONATE LOVE ACTIVATIONS (USING SPHERICAL KERNEL OF 3 mm)

Superior frontal gyrus −24 12 66 648

Posterior superior temporal gyrus (IPC: 50%) −50 −38 18 600

Superior medial frontal gyrus −9 27 59 1288

−10 52 16 632

Middle orbital gyrus/orbitofrontal 2 62 −8 648

Gyrus rectus (orbitofrontal) −4 60 −24 648

Middle frontal gyrus −30 54 2 648

Superior anterior medial frontal gyrus 8 54 22 1272

11 65 5 1264

(Continued)
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Table A4 | Continued

Label Left hemisphere Right hemisphere

MNI coordinates Number of MNI coordinates Number of

voxels voxels
x y z x y z

Inferior frontal gyrus (p. orbitalis) 35 33 −8 1200

Inferior frontal gyrus (p. triangularis) −37 28 0 16

−37 26 −2 16

−33 35 −2 824

56 28 8 648

Middle frontal gyrus 30 47 4 1200

−30 44 11 344

Anterior cingulate cortex 8 40 9 1152

8 28 16 648

−6 42 −6 600

Middle cingulate cortex 4 −22 42 648

12 −22 34 616

14 −20 43 40

Posterior cingulate cortex −1 −32 26 2440

Inferior temporal gyrus/fusiform area 42 −52 −12 648

Superior temporal gyrus −50 −28 2 648

Temporal pole 40 8 −28 648

−34 18 −22 648

Caudate nucleus 54 −32 8 648

−8 20 0 648

17 1 23 1024

10 16 5 1136

Insula 39 −6 −7 2632

−42 −9 −6 2112

−36 18 −4 648

−34 −22 10 608

SMA −1 10 65 1296

4 4 52 648

Thalamus −8 −9 −2 1288

10 −24 10 648

Heschel gyrus 45 −17 8 1280

(Continued)

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 99 | 11

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Juan et al. Beyond human intentions and emotions

Table A4 | Continued

Label Left hemisphere Right hemisphere

MNI coordinates Number of MNI coordinates Number of

voxels voxels
x y z x y z

Cerebellum 10 −44 −7 1168

Cerebellar vermis −2 −58 −10 648

Putamen −22 7 −8 1024

−18 19 −9 896

Precuneus 8 −51 22 976

Parahippocampal region (Amygdala: 10%) 19 2 −13 896

Pallidum 22 −1 6 888

Rolandic operculum 60 −14 12 648

Postcentral gyrus −62 −4 22 600

Lingual gyrus (Hippocampus: 40%) −11 −38 −10 424
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Table A5 | Common activation peaks between intention understanding and passionate love studies.

Label Left hemisphere Right hemisphere

MNI coordinates Number of MNI coordinates Number of

voxels voxels

x y z x y z

dlPFC 2 41 36 32

−5 54 19 2000

vmPFC 9 45 −11 280

4 55 −11 1904

Superior frontal gyrus (BA 6: 40%) 30 −12 62 424

Inferior frontal gyrus (p. Orbitalis) 39 31 −4 824

Inferior frontal gyrus (p. Triangularis) (BA 45: 60%) 50 30 16 632

Inferior frontal gyrus (p. Triangularis) (BA 45: 60%; BA 44: 20%) −46 24 21 5232

Inferior frontal gyrus (p. Opercularis) 39 18 13 232

Inferior frontal gyrus (p. Opercularis) (BA 44: 40%) 56 9 21 272

Postcentral gyrus (IPC/PFop: 30%; OP4: 30%; OP3: 10%) 62 −16 23 1248

Postcentral gyrus (BA 2: 80%; SPL/7PC: 20%; BA 3b: 10%) 28 −42 57 1104

SMA (BA 6: 70%) 4 −5 48 48

SMA −6 21 47 2024

SMA (BA 6: 60%) −10 −5 69 80

Inferior temporal gyrus −49 −51 −20 3032

Middle temporal gyrus (V5: 10%) −53 −68 2 2312

Superior temporal gyrus (OP1: 10%) −56 −30 6 2424

Superior temporal gyrus (IPC/PF: 60%; IPC/PFm: 30%; PGa: 20%) −60 −46 23 1648

Supra marginal gyrus (IPC/PFm: 70%; IPC/PF: 30%; IPC/PGa: 30%) 61 −45 24 5800

Anterior cingulate cortex −7 40 −2 744

−7 30 6 224

6 34 22 3696

Posterior cingulate cortex 7 −40 14 3024

−2 −53 29 1088

Superior parietal lobule (SPL/7PC: 30%; SPL/7A: 20%; hIP3: 10%) −26 −53 53 1096

Lingual gyrus (BA 17: 50%; BA 18: 10%) 29 −59 3 904

Inferior temporal gyrus 46 −56 −23 776

Cuneus (BA 18: 10%; BA 17: 10%) 16 −77 18 672

(Continued)
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Table A5 | Continued

Label Left hemisphere Right hemisphere

MNI coordinates Number of MNI coordinates Number of

voxels voxels

x y z x y z

Precuneus 25 −45 8 568

Precuneus (SPL/5L: 40%; SPL/7a: 20%; SPL/5M: 10%) −14 −50 57 16

Anterior insula (Id1: 40%) 43 −4 −14 272

Anterior insula 35 28 5 256

Hippocampus 37 −14 −19 1224

Putamen −27 10 −6 3488

Fornix −3 −3 11 3368

Calcarine gyrus (BA 17: 50%; BA 18: 10%) 14 −87 14 1424

Calcarine gyrus (BA 17: 80%; BA 18: 10%) 21 −95 −2 896

Optic radiations −26 −36 11 1608

−33 −54 −2 56

Note: Activations of 10 voxels or above are reported here. All brain areas reported are significant at p < 0.001, corrected. Abbreviations: dlPFC, dorsolateral Prefrontal

Cortex; vmPFC, ventro-medial Prefrontal Cortex; SMA, Supplementary Motor Area; STG, Superior Temporal Gyrus; IPC/PF, part of Inferior Parietal Cortex; IPC/PFm,

part of Inferior Parietal Cortex; IPC/PGp, part of Inferior Parietal Cortex; PGa, part of Parietal area; hIP1, human Intraparietal area 1 (Choi et al., 2006); hIP3, human

Intraparietal area 1 (Choi et al., 2006); Insula/Ig1 (Insular Lobe granular area; Kurth et al., 2010), 60%; TE1.1, part of the Primary Auditory Cortex (Morosan et al.,

2001); OP1, part of Parietal Operculum (Eickhoff et al., 2006); OP2, part of Parietal Operculum (Eickhoff et al., 2006); SPL/7PC, part of Superior Parietal Lobule;

SPL/7A, part of Superior Parietal Lobule; SPL/5M, part of Superior Parietal Lobule (Duvernoy and Bourgoin, 1999).
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