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The aim of this study was to investigate age-related changes in the topological organization
of structural brain networks by applying a longitudinal design over 6 years. Structural
brain networks were derived from measurements of regional gray matter volume and
were constructed in age-specific groups from baseline and follow-up scans. The structural
brain networks showed economical small-world properties, providing high global and local
efficiency for parallel information processing at low connection costs. In the analysis of
the global network properties, the local and global efficiency of the baseline scan were
significantly lower compared to the follow-up scan. Moreover, the annual rate of change
in local and global efficiency showed a positive and negative quadratic correlation with
the baseline age, respectively; both curvilinear correlations peaked at approximately the
age of 50. In the analysis of the regional nodal properties, significant negative correlations
between the annual rate of change in nodal strength and the baseline age were found
in the brain regions primarily involved in the visual and motor/control systems, whereas
significant positive quadratic correlations were found in the brain regions predominately
associated with the default-mode, attention, and memory systems. The results of the
longitudinal study are consistent with the findings of our previous cross-sectional study:
the structural brain networks develop into a fast distribution from young to middle age
(approximately 50 years old) and eventually became a fast localization in the old age. Our
findings elucidate the network topology of structural brain networks and its longitudinal
changes, thus enhancing the understanding of the underlying physiology of normal aging
in the human brain.
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INTRODUCTION
Recent advances in generating a network map of the human
brain, known as the human connectome, provided new insights
into structural and functional connectivity patterns of the human
brain (Sporns et al., 2005; Bullmore and Bassett, 2011; Sporns,
2011a,b). The quantitative analysis of the structural and func-
tional systems of the human brain, based largely on graph theory,
reveal the topological properties of complex networks, such as
economical small-world properties, highly connected hubs, and
modularity (Bullmore and Sporns, 2009; He and Evans, 2010; Wig
et al., 2011). Prodigious efforts in the study of the human con-
nectome have greatly expanded our knowledge of the topological
principles of brain network organization in the healthy, devel-
oping, aging, and diseased brains (Bassett and Bullmore, 2009;
Uddin et al., 2010; Lo et al., 2011; Xia and He, 2011; Xie and He,
2011; Greicius and Kimmel, 2012; Sun et al., 2012).

It has been well-established that advanced aging is accom-
panied by cognitive decline, even in the absence of disease.
Cognitive deficits in normal aging might arise from anatomical

changes in specific brain regions or alterations of the struc-
tural and functional associations between distinct brain regions
(Andrews-Hanna et al., 2007). Normal aging has been proven
to be associated with changes in both functional (Achard and
Bullmore, 2007; Meunier et al., 2009; Wang et al., 2010, 2012;
Meier et al., 2012; Spreng and Schacter, 2012) and structural
(Gong et al., 2009; Montembeault et al., 2012; Wu et al.,
2012; Zhu et al., 2012) brain networks. However, these findings
were revealed by cross-sectional studies, and few studies using
a longitudinal design have been applied to investigate human
brain networks with normal aging. Several Alzheimer’s disease
Neuroimaging Initiative (ADNI) studies have shown longitudi-
nal changes in default mode network (DMN) regions, including
the medial temporal lobe and posterior cingulate cortex (PCC),
as patients progress into Alzheimer’s disease (AD) and through its
later stages (Risacher et al., 2010; Li et al., 2012). Thus, we hypoth-
esized that significant longitudinal changes might occur in the
topological properties of structural brain networks with normal
aging.
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By applying a longitudinal design over 6 years in a large num-
ber of healthy subjects aged 21–80, our previous studies have indi-
cated the following: significant correlations between the annual
percentage change in the ratio of gray matter and the age at base-
line (Taki et al., 2011a), as well as significant correlations between
the annual rate of regional gray matter volume change in many
brain regions and the age at baseline (Taki et al., 2012a). In the
present study, we aimed to investigate structural brain networks
with normal aging by applying the above-mentioned longitudi-
nal design. Structural brain networks have been constructed from
inter-regional correlation of morphological measurements [e.g.,
cortical thickness (He et al., 2007), regional gray matter volume
(RGMV) (Bassett et al., 2008), and surface area (Sanabria-Diaz
et al., 2010)] in structural magnetic resonance imaging (sMRI)
data. Recently, many studies have investigated the topological
organization of structural brain networks in health [e.g., healthy
subjects with normal aging (Montembeault et al., 2012; Wu et al.,
2012; Zhu et al., 2012)] and disease [e.g., AD (He et al., 2008),
multiple sclerosis (He et al., 2009), schizophrenia (Bassett et al.,
2008), and breast cancer (Hosseini et al., 2012)]. In this study,
we divided 380 healthy subjects into 29 age-specific groups using
a sliding boxcar grouping ordered by baseline age. A structural
brain network consisting of 90 regions was constructed by com-
puting the correlation matrix of the RGMV across subjects within
each age group in both the baseline and follow-up scans. We
then computed both global and regional network properties in
the structural brain networks and compared their differences
between baseline and follow-up. Finally, to characterize the longi-
tudinal changes of structural brain networks with normal aging,
the correlations between the baseline age and the annual rate
of change in both global and regional network properties were
analyzed.

MATERIALS AND METHODS
SUBJECTS
The subjects were normal, community-dwelling Japanese sub-
jects recruited by the Aoba Brain Imaging Project (Sato et al.,
2003). Subject recruitment was described previously (Taki et al.,
2011a,b,c, 2012a,b). Briefly, we performed longitudinal follow-
up (Aoba2) scans of 442 subjects who were selected from 1604
participants in the baseline (Aoba1) scan. In both the baseline
and follow-up scans, we excluded those subjects who had a past
or present history of malignant tumors, head traumas, cere-
brovascular diseases, epilepsy, or psychiatric diseases. After the
interview, brain MR images were obtained from each subject.
The MR images were inspected by 2–3 well-trained radiologists.
Images with any of the following findings were excluded from
this study: head injuries, brain tumors, hemorrhage, major and
lacunar infarctions, or moderate to severe white matter hyper-
intensities. Thus, the final sample consisted of 380 participants
(157 men/223 women). The mean ± standard deviation (SD)
interval between baseline and follow-up was 7.41 ± 0.54 years
(range, 6.1–9.0). The mean ± SD age of the participants at
baseline was 51.1 ± 11.7 years old (range, 21–80).

A total of 11 subjects (mean age = 65.3 years; range, 57.7–73.4
years at follow-up; 3 men/8 women) were scanned twice on the
same day to obtain an estimation of the measurement reliability.

We observed no significant differences in the gray matter volume
or intracranial volume between the baseline and follow-up scans.
The details of the measurement reliability are reported elsewhere
(Taki et al., 2011a).

After a full explanation of the purpose and procedures of the
study, written informed consent according to the Declaration of
Helsinki (1991) was obtained from each subject prior to MRI
scanning. Approval for these experiments was obtained from the
institutional review board of Tohoku University.

IMAGE ACQUISITION
All images were collected using the same 0.5-T MR scanner (Signa
contour; GE-Yokogawa Medical Systems, Tokyo, Japan) for both
the baseline and follow-up studies. The scanner was routinely
calibrated using the same standard GE phantom between base-
line and follow-up. During the course of this study, no major
hardware upgrade occurred. At baseline and follow-up, all sub-
jects were scanned with identical pulse sequences: 124 contigu-
ous, 1.5-mm-thick axial planes of three-dimensional T1-weighted
images (spoiled gradient recalled acquisition in steady state: rep-
etition time, 40 ms; echo time, 7 ms; flip angle, 30; voxel size,
1.02 mm × 1.02 mm × 1.5 mm).

MEASUREMENTS OF REGIONAL GRAY MATTER VOLUME
After the image acquisition, the RGMV for each subject was mea-
sured using statistical parametric mapping 2 (SPM2) (Wellcome
Department of Cognitive Neurology, London, UK) (Friston
et al., 1995) in Matlab (MathWorks, Natick, MA). First, the
T1-weighted MR images were transformed to the same stereo-
tactic space by registering each of the images to the ICBM 152
template (Montreal Neurological Institute, Montreal, Canada),
which approximates the Talairach space (Jean Talairach, 1988).
Then, tissue segmentation from the raw images to the gray mat-
ter, white matter, cerebrospinal fluid space, and non-brain tissue
was performed using the SPM2 default segmentation proce-
dure. We applied these processes using the “cg_vbm_optimized”
MATLAB function (http://dbm.neuro.uni-jena.de/vbm.html).
WFU_PickAtlas software was employed to label the regions in the
gray matter images, providing a method for generating ROI masks
based on the Talairach Daemon database (Lancaster et al., 2000;
Maldjian et al., 2003, 2004). To calculate the regional gray matter
volume (RGMV) for each subject, we parcellated the entire gray
matter into 45 separate regions for each hemisphere (90 regions in
total, see Table 1) defined by the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002).

CONSTRUCTION OF STRUCTURAL BRAIN NETWORKS
We applied the methodology described in our previous studies
(Wu et al., 2011, 2012) to construct structural brain networks.
Briefly, we computed a correlation matrix using the measure-
ment of RGMV across a group of subjects. In this study, we
created 29 age groups using a sliding boxcar grouping (Fair et al.,
2009) in the order of baseline age (i.e., Group1: subjects 1–100,
Group2: subjects 11–110, Group3: subjects 21–120, . . . Group
29: subjects 281–380). Similarly, 29 age groups in the follow-up
scan were also created, which corresponded to the age groups
in the baseline scan. For each age group, a linear regression
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Table 1 | Regions of interest included in AAL-atlas.

Lobes Regions Abbreviations Lobes Regions Abbreviations

Frontal Precentral gyrus PreCG Temporal Hippocampus HIP

Superior frontal gyrus (dorsal) SFGdor Parahippocampal gyrus PHG

Orbitofrontal cortex (superior) ORBsup Amygdala AMYG

Middle frontal gyrus MFG Fusiform gyrus FFG

Orbitofrontal cortex (middle) ORBmid Heschl gyrus HES

Inferior frontal gyrus (opercular) IFGoperc Superior temporal gyrus STG

Inferior frontal gyrus (triangular) IFGtriang Temporal pole (superior) TPOsup

Orbitofrontal cortex (inferior) ORBinf Middle temporal gyrus MTG

Rolandic operculum ROL Temporal pole (middle) TPOmid

Supplementary motor area SMA Inferior temporal gyrus ITG

Olfactory OLF Occipital Calcarine cortex CAL

Superior frontal gyrus (medial) SFGmed Cuneus CUN

Orbitofrontal cortex (medial) ORBmed Lingual gyrus LING

Rectus gyrus REC Superior occipital gyrus SOG

Anterior cingulate gyrus ACG Middle occipital gyrus MOG

Middle cingulate gyrus MCG Inferior occipital gyrus IOG

Parietal Posterior cingulate gyrus PCG Subcortical Caudate CAU

Postcentral gyrus PoCG Putamen PUT

Superior parietal gyrus SPG Pallidum PAL

Inferior parietal lobule IPL Insula INS

Supramarginal gyrus SMG Thalamus THA

Angular gyrus ANG

Precuneus PCUN

Paracentral lobule PCL

analysis was performed on the RGMV to remove the effects of
the total gray matter volume, age, sex, and age-by-sex interac-
tion. Thus, the residuals of this regression were employed as
the substitute for the raw RGMV and denoted as the corrected
RGMV (cRGMV). We then computed the Pearson correlation
coefficient between cRGMV across 100 subjects included in one
group to construct an interregional correlation matrix (N × N,
where N is the number of gray matter regions; here, N = 90).
Each element of the correlation matrix represents the structural
connectivity between two regions. For example, the bilateral pre-
central gyrus (PreCG) showed strong correlations in Group 1
in both the baseline and follow-up scans (Figure 1A), indicat-
ing high connectivity between the same region in the bilateral
hemispheres; however, the correlation between the left PreCG and
the left opercular part of the inferior frontal gyrus (IFGoperc) in
Group 1 was stronger in the follow-up scan compared to the base-
line scan (Figure 1B). A correlation matrix (rij, N × N) can be
converted to a weighted and undirected network G using a cost
threshold approach (t, 0 < t < 1), which can normalize all net-
works to have the same number of edges or wiring cost and, thus,
provide an avenue to detect changes in topological organization
with aging (Achard and Bullmore, 2007).

G(i, j) =
{

1,
∣∣rij

∣∣ ≥ rt

0,
∣∣rij

∣∣ < rt

Finally, we constructed a structural brain network for each of the
29 age groups in both the baseline and follow-up scans.

GRAPH THEORETICAL ANALYSIS
To ensure that the resulting brain networks are sparse, fully con-
nected, and distinguishable from degree-matched random and
regular networks, we adopted a range of cost thresholds (0.11 ≤
t ≤ 0.25, step = 0.01) to calculate the topological properties of
structural brain networks (Bassett et al., 2008; Liu et al., 2008;
Wang et al., 2009b; Wu et al., 2012). Small-world efficiency met-
rics (local efficiency, LE, and global efficiency, GE) were computed
to characterize the global network properties of the structural
brain networks. The node strength (NS) was used to examine
regional nodal properties because of its high test-retest reliabil-
ity (Wang et al., 2011). Here, both global and regional network
metrics are briefly described as follows (Rubinov and Sporns,
2010) and were calculated using the Brain Connectivity Toolbox
(www.brain-connectivity-toolbox.net).

The global efficiency of the graph G can be computed as
(Latora and Marchiori, 2001):

GE(G) = 1

N(N − 1)

∑
i �= j ∈ G

1

dij
,

where dij is the shortest path length between nodes i and j.
The path length between nodes i and j is defined as the sum
of the edge lengths along this path, where each edge’s length
was obtained by computing the reciprocal of the edge weight,
1/wij. Thus, the shortest path length dij is the length of the path
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FIGURE 1 | Structural connectivity derived from the measurement of

regional gray matter volume. (A) The structural connectivity between the
bilateral precentral gyrus (PreCG). (B) The structural connectivity between left
PreCG and the left opercular part of the inferior frontal gyrus (IFGoperc). The
plots indicate Pearson’s correlation coefficients [wN (i, j)] between two brain

regions (i and j ) using the measurement of regional gray matter volume,
which was corrected by a linear regression analysis to remove the effects of
total gray matter volume, age, sex, and age-by-sex interaction. The data from
both the baseline (Aoba1, N = 1) and follow-up (Aoba2, N = 2) scans are
shown.

with the shortest length between nodes i and j. The local effi-
ciency of the graph G is defined as (Latora and Marchiori, 2001):

LE(G) = 1

N

∑
i ∈ G

GE(Gi),

where GE(Gi) is the global efficiency of Gi, the subgraph of
the neighbors of node i. The small-world efficiency metrics
(GE and LE) of real brain networks were compared with 1000
random networks (Grand) that preserved the degree and weight
distributions of real networks (Maslov and Sneppen, 2002). A
real brain network is considered to be a small-world network if
it shows similar global efficiency but much higher local efficiency
than its matched random networks (Latora and Marchiori, 2001).

The node strength (NSi) for a given node i is defined as the
sum of all of the edge weights between this node and all of the
other nodes in the network. Regions with a high nodal strength
indicate high interconnectivity with other regions.

Regarding the structural brain network for each age group, we
averaged the global and regional network metrics (LE, GE, and
NS) over the range of cost thresholds (0.11 ≤ t ≤ 0.25) to obtain
the summary network metrics (Bassett et al., 2008). To investigate
the longitudinal changes of network properties, the annual rate of
change in the summary network metrics (ARC_X) was defined as:

ARC_X = X2 − X1

Age2 − Age1
,

where X1 and X2 are the summary network metrics at baseline
and follow-up, respectively; and Age1 and Age2 are the mean age
of 100 subjects included in the age group at baseline and follow-
up, respectively. The ARC_X value indicates the differences in

summary network metrics between the baseline and follow-up
scans, normalized by the interval of age.

STATISTICAL ANALYSIS
To analyze the differences in the summary global network prop-
erties (e.g., LE and GE) of the same age group between two
scans (e.g., Group 1 at baseline vs. Group 1 at follow-up), a
non-parametric permutation test method was applied (Bullmore
et al., 1999; He et al., 2008; Wu et al., 2012). Moreover, a paired
t-test was performed to determine whether there were significant
longitudinal changes in each summary network metric (LE, GE,
and NS) between all age groups at baseline and those at follow-
up. To evaluate correlations between the longitudinal changes in
network properties and the baseline age, we performed multi-
ple linear regression analyses with the annual rate of change in
the summary network metrics as the dependent variables and
the baseline age as the independent variable. Here, three multi-
ple linear regressions (Model I, II, and III) modeling mean value,
age, age2, and age3 as predictors were applied to detect the linear,
quadratic, and cubic changes with the baseline age. We then deter-
mined the best model among the three regressions using Akaike’s
information criterion (AIC) (Akaike, 1974).

ARC_X = mean + a × Age1 + e (I)

ARC_X = mean + a1 × Age1 + a2 × Age2
1 + e (II)

ARC_X = mean + a1 × Age1 + a2 × Age2
1

+ a3 × Age3
1 + e (III)

For the regression analysis of regional nodal property, we only
included regions with significant differences in the summary
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regional network metric (e.g., NS) between the baseline and
follow-up scans by the paired t-test (p < 0.05, FDR-corrected).

RESULTS
ECONOMICAL SMALL-WORLD PROPERTIES AND LONGITUDINAL
CHANGES
The structural brain networks of the age-specific groups exhib-
ited economical small-world properties, showing higher local
efficiency but similar global efficiency compared to the matched
random networks (Latora and Marchiori, 2001). This finding is
illustrated in Figure 2, where we plot the local and global effi-
ciency of the structural brain networks of the age-specific groups
from both the baseline and follow-up scans against those of
the matched random networks. Moreover, significant differences
(a non-parametric permutation test; p < 0.05) in the summary
local efficiency were found in several age groups across the base-
line age but those in the summary global efficiency were found in
the middle age groups (Figure 3). For all age groups, the struc-
tural brain networks from the baseline scan showed significantly
lower local efficiency (a paired t-test; t-value = 8.446; p < 10−4)
and global efficiency (a paired t-test; t-value = 10.478; p < 10−4)
compared to those from the follow-up scan. The annual rate
of change in local efficiency (ARC_LE) and global efficiency
(ARC_GE) showed a positive quadratic (F-value = 3.622, p =
0.041) and a negative quadratic (F-value = 3.506, p = 0.045) cor-
relation with the baseline age, respectively (Figures 3A,B). The
curvilinear correlations peaked at the baseline ages of 45.49 years
and 50.95 years, respectively.

REGIONAL NODAL PROPERTIES AND LONGITUDINAL CHANGES
We found significant correlations between the annual rate of
change in node strength (ARC_NS) and the baseline age in many

brain regions, which showed significant differences in the node
strength (a paired t-test; p < 0.05, FDR-corrected) between the
baseline and follow-up scans. Specifically, significant negative cor-
relations (p < 0.05) between the ARC_NS and the baseline age
were found in several brain regions that were primarily related to
the visual system [e.g., the bilateral middle occipital gyrus (MOG)
and right inferior temporal gyrus (ITG)] and the motor/control
system [e.g., the left postcentral gyrus (PoCG), left superior pari-
etal gyrus (SPG), right medial part of superior frontal gyrus
(SFGmed), and right middle cingulate gyrus (MCG)] (Table 2,
Figure 4). Significant positive quadratic correlations (p < 0.05)
between the ARC_NS and the baseline age were found in several
brain regions that were mainly associated with the default-mode
system [e.g., the left anterior cingulate gyrus (ACG) and right
medial part of the orbitofrontal cortex (ORBmed)], the atten-
tion system [e.g., the right middle frontal gyrus (MFG), right
IFGoperc, and bilateral inferior parietal lobule (IPL)], and the
memory system [e.g., the right parahippocampal gyrus (PHG),
left amygdala (AMYG), and bilateral putamen (PUT)] (Table 3,
Figure 4); the significant positive quadratic correlations peaked
at a baseline age of 51.17–54.87 years (Table 3). The regional
nodal properties of these brain regions were visualized in anatom-
ical space (Figure 4A) and mapped onto the cortical surface
(Figure 4B) using the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/).

DISCUSSION
To our knowledge, this is the first study to investigate longitu-
dinal changes in the topological organization of structural brain
networks in a large number of healthy individuals. We found that
the structural brain networks of age-specific groups exhibit eco-
nomical small-world properties. ARC_LE and ARC_GE showed

FIGURE 2 | Small-world efficiency properties in structural brain

networks. (A) Local efficiency calculated under the cost threshold range of
0.11–0.25. (B) Global efficiency calculated under the cost threshold range of

0.11–0.25. Aoba1-Random and Aoba2-Random correspond to the matched
random networks for the structural brain network in Aoba1 and Aoba2,
respectively.
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FIGURE 3 | Significant correlations between the annual rate of change

in small-world efficiency and the baseline age. (A) Significant positive
quadratic correlations between the annual rate of change in local efficiency
(ARC_LE) and the baseline age (Age1 ), peaked at the baseline age of
45.49 years. (B) Significant negative quadratic correlations between the

annual rate of change in global efficiency (ARC_GE) and the baseline age,
peaked at the baseline age of 50.95 years. Note that significant differences
(p < 0.05) in the summary global network properties of the same age
group between two scans by the nonparametric permutation test are
indicated by violet stars.

Table 2 | Significant negative linear correlation between the annual

rate of change in node strength and the baseline age.

System Lobe Class Abbreviation F value

Visual Occipital Association MOG.L 10.416

Occipital Association MOG.R 11.194

Temporal Association ITG.R 21.121

Motor/control Parietal Primary PoCG.L 13.561

Parietal Association SPG.L 14.523

Frontal Association SFGmed.R 17.964

Frontal Paralimbic MCG.R 18.481

The level of significance was set at p < 0.05.

significant curvilinear correlations with the baseline age, with a
peak at the baseline age of approximately 50. Our results also
revealed significant correlations between the ARC_NS and the
baseline age in many brain regions. Structural brain networks
develop into a more distributed organization from young to
middle age (approximately 50 years old) and then achieve a local-
ized organization with substantial alterations in old age. Thus,
revealing longitudinal changes in the topological properties of
structural brain networks may enhance our understanding of the
physiology underlying normal aging in the human brain.

ECONOMICAL SMALL-WORLD PROPERTIES AND LONGITUDINAL
CHANGES
In this study, the structural brain networks derived from mea-
surements of RGMV in all age-specific groups exhibited the key

properties of economical small-world organization. An econom-
ical small-world network can provide a topological substrate for
both locally specialized processing in the neighborhoods of highly
clustered nodes and globally distributed processing on a highly
efficient network with short characteristic path lengths (Sporns
and Zwi, 2004; Stam, 2004; Achard et al., 2006; Achard and
Bullmore, 2007). Our finding of high global and local efficiency in
the structural brain networks is consistent with the results of pre-
vious functional and structural brain networks studies (He et al.,
2007, 2008, 2009; Bassett et al., 2008, 2009; Wang et al., 2009b;
Khundrakpam et al., 2012; Wu et al., 2012; Zhu et al., 2012).

We also noted longitudinal changes in small-world efficiency
metrics of the structural brain networks. Several age groups in the
follow-up scan showed significant higher values in local or global
efficiency compared to those in the baseline scan. Moreover, the
differences in both local and global efficiency between two scans
varied across the age groups and showed significant correlations
with the baseline age. ARC_LE and ARC_GE showed a U-curve
and an inverted-U curve trajectory with the baseline age, respec-
tively. In particular, the trajectories of ARC_LE and ARC_GE
peaked at a baseline age of 45.49 and 50.95 years, respectively.
These results are consistent with our previous cross-sectional
study findings, in which the local and global efficiency showed
U-curve and inverted-U curve tendencies, respectively, in young
(18–40 years), middle (41–60 years), and old age (61–80 years)
groups (the subjects used were from the same dataset of the
baseline scan in this study) (Wu et al., 2012).

The longitudinal changes in local and global efficiency could
be divided into two processes based on the peaks. First, the period
from young to middle age (approximately 50 years old) showed
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FIGURE 4 | Significant correlations between the annual rate of change in

node strength and the baseline age. Significant correlations (p < 0.05) are
visualized in anatomical space (A) and mapped onto the cortical surface (B).

Negative linear and positive quadratic correlations are indicated by blue and
red colors, respectively. ARC_NS: the annual rate of change in node strength;
Age1: the baseline age. Abbreviations are shown in Table 1.

decelerated increases in local efficiency and accelerated increases
in global efficiency, indicating a fast distribution in the mid-
dle age. This period might reflect a maturation process in the
structural brain network. A previous study demonstrated that the

organization of multiple functional networks shifts from a local
anatomical emphasis in children to a more distributed architec-
ture in young adults, indicating the maturation process of the
functional systems (Fair et al., 2009). A more recent study on
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Table 3 | Significant positive quadratic correlation between the annual rate of change in node strength and the baseline age.

System Lobe Class Abbreviation F value Peak at the baseline age

Default-mode Frontal Paralimbic ACG.L 8.859 51.17

Frontal Paralimbic ORBmed.R 25.981 53.40

Attention Frontal Association MFG.R 13.169 54.87

Frontal Association IFGoperc.R 18.572 54.15

Parietal Association IPL.L 12.596 51.93

Parietal Association IPL.R 12.521 54.23

Memory Temporal Paralimbic PHG.R 12.612 53.51

Temporal Paralimbic AMYG.L 33.272 52.03

Subcortical Subcortical PUT.L 14.899 52.59

Subcortical Subcortical PUT.R 16.783 53.62

The level of significance was set at p < 0.05.

structural brain networks constructed from the measurement of
cortical thickness also indicated a more distributed configura-
tion in late childhood, accompanied by significant increases in
global efficiency but decreases in local efficiency (Khundrakpam
et al., 2012). In addition, white matter plays a vital role in the
efficient transfer of information between gray matter regions.
Our previous longitudinal study of a large number of healthy
subjects (the same datasets of both the baseline and follow-up
scans in this study) demonstrated that the white matter ratio
increased until approximately age 50 and then decreased in both
men and women (Taki et al., 2011a). Several previous studies
also indicated that white matter volume seems to increase until
the middle age of approximately 45 years and decrease there-
after (Bartzokis et al., 2001; Sowell et al., 2003). Increases in
the white matter represent maturational changes, such as myeli-
nation that continue until middle adulthood and may, there-
fore, provide evidence of the maturation of structural brain
networks.

Second, the period from middle (approximately 50 years old)
to old age showed an accelerated increase in local efficiency
and a decelerated increase in global efficiency, leading to a fast
localization in the old age. The changes over this period might
reflect a degenerative process in the structural brain network
with advanced aging. A recent study demonstrated that the struc-
tural brain networks in an older cohort (mean age = 66.6 years,
range 64–68) had lower global efficiency but higher local effi-
ciency, revealing a more localized configuration compared to
the younger cohort (mean age = 46.7 years, range 44–48) (Zhu
et al., 2012). Using a sample of 342 healthy individuals aged
72–92 years, a previous DTI tract-derived connectivity study
indicated that the global efficiency of the structural brain net-
works decreased significantly with older age (Wen et al., 2011).
It is important to note that a regular configuration with less
global integration upsets the optimal balance of a small-world
network and is related to many neurological and psychiatric
disorders described as dysconnectivity syndromes (Catani and
ffytche, 2005). Several previous studies have reported a regu-
lar configuration or a reduction in the global efficiency of brain
networks in patients with diseases such as AD and amnestic
mild cognitive impairment (aMCI, the prodromal stage of AD),

providing further support for the characterization of AD and
aMCI as dysconnectivity syndromes and indicating the functional
basis of cognitive deficits (Stam et al., 2007; He et al., 2008; Bai
et al., 2012; Zhao et al., 2012; Wang et al., 2013). Therefore, we
speculate that advanced aging is associated with a high risk for
dysconnectivity syndromes.

REGIONAL NODAL PROPERTIES AND LONGITUDINAL CHANGES
Node strength measures the interconnectivity of a node with
other regions and can be used to determine the relative impor-
tance of a node within a network. We identified significant
correlations between the ARC_NS and the baseline age in
many brain regions, mainly consisting of recently evolved asso-
ciation (9/17) and primitive limbic/paralimbic (5/17) regions.
Association regions contribute to the integrity of multiple func-
tional systems such as the attention and memory systems, while
limbic/paralimbic regions are highly interconnected with the pre-
frontal regions and subcortical regions and are mainly involved
in emotional processing and the maintenance of a conscious state
of mind (Mesulam, 1998). Thus, our results support the view
that age-related changes are mainly a characteristic of the associ-
ation cortex rather than the primary cortex (Albert and Knoefel,
1994).

The brain regions showing significant negative correlations
with the baseline are primarily involved in the visual and
motor/control systems. A previous study of the structural brain
networks in elderly subjects using DTI data demonstrated
significant positive correlations between the regional nodal effi-
ciency and visuospatial, processing speed, and executive func-
tions in many cortical regions (Wen et al., 2011). Therefore,
we speculate that our findings of the decreases of ARC_NS
with the baseline age in the visual and motor/control systems
might be related to the decline of these functions with nor-
mal aging. It is well-known that visual abilities decline during
normal (non-pathological) aging, and older individuals tend
to have reduced visual acuity and contrast sensitivity (Spear,
1993; Owsley, 2011). A recent study using event-related poten-
tials (ERPs) also found that visual acuity declined as a func-
tion of age when young adults (18–32 years), young–old adults
(65–79 years), and old–old adults (80+ years) performed a visual
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processing task involving selective attention to color (Daffner
et al., 2012). Moreover, normal aging-related degeneration in
the brain is accompanied by reduced force control, progres-
sive slowness, and impaired motor ability (Roos et al., 1997;
Smith et al., 1999; Krampe, 2002). Worsened task performance
(e.g., slower speed with increasing memory load) in old adults
(mean age = 71.27) is associated with decreases in the func-
tional network connectivity between components comprising the
supplementary motor area and the middle cingulate gyrus and
between the precuneus and the middle/superior frontal cortex
(Steffener et al., 2012). A previous resting-state fMRI study indi-
cated a significant decrease in the functional connectivity of the
motor network in aged subjects (mean age = 61.8) compared
to young subjects (mean age = 26.5 years) (Wu et al., 2007).
A more recent fMRI study using a visual oddball task also indi-
cated that elderly subjects (mean age = 63.9 years) showed a
decrease in connectivity within the somatomotor network com-
pared to younger subjects (mean age = 24.1 years) (Geerligs et al.,
2012).

We also found significant quadratic correlations between the
ARC_NS and the baseline age in many brain regions, predom-
inately from frontal (4/10), temporal (2/10), parietal (2/10), and
subcortical (2/10) areas. It is notable that the significant quadratic
correlations peaked at a baseline age from 51.17 to 54.87 years.
Thus, in these brain regions, the ARC_NS increased with the
baseline age in the period from middle (approximately 50 years
old) to old age. More importantly, the identified brain regions are
mainly associated with the default-mode, attention, and memory
systems. The scaffolding theory of aging and cognition (STAC)
suggests that scaffolding is a normal process present across the
lifespan that involves use and development of complementary,
alternative neural circuits to achieve a particular cognitive goal
and is protective of cognitive function in the aging brain (Park
and Reuter-Lorenz, 2009). Thus, our results are in line with the
STAC and suggest a compensation mechanism of structural brain
network reorganization with advanced aging. It has been indi-
cated that cognitive decline is associated with differences in the
structure and function of the aging brain, and it has been sug-
gested that increased activation is either caused by disruption,
whether structural or functional, or is a compensatory response to
such disruption (Hedden and Gabrieli, 2004; Persson et al., 2006;
Grady, 2012). Previous findings from several studies on struc-
tural and functional brain networks also support this view. Many
brain regions, primarily from the frontal and temporal lobes,
show increases in regional nodal efficiency in structural brain net-
works (Gong et al., 2009). Several regions, mostly in the lateral
occipital-parietal junction and the paralimbic/subcortical area,
reveal increased node betweenness in old age (Wu et al., 2012).
The decrease in visual memory and visuoconstructive functions is
strongly associated with the age-dependent enhancement of func-
tional connectivity in both temporal lobes (Schlee et al., 2012).
However, a recent study showed reduced structural association
in the high-order cognitive networks of older adults compared
to young adults, while no differences were observed in the sen-
sorimotor networks (Montembeault et al., 2012). The following
possible reasons are given for the discrepancies between this find-
ing and our results: only eight brain regions were included in the

previous study, whereas the present study was a whole-brain anal-
ysis; furthermore, only a comparison between young (mean age =
23.5 ± 3.1 years) and old (mean age = 67.3 ± 5.9 years) age was
analyzed in the previous study, neglecting the other comparisons
(young vs. middle; middle vs. old). Moreover, most of the iden-
tified brain regions showing positive quadratic correlations with
the baseline age are found to be altered in AD patients (Bai et al.,
2012; Zhao et al., 2012; Wang et al., 2013). For example, sev-
eral brain regions (e.g., ACG.L, ORBmed.R, IFGoperc.R, IPL.L,
IPL.R, and PUT.R) in AD patients show significant increases in
regional nodal properties (e.g., the regional local and global effi-
ciency) (Zhao et al., 2012). Thus, these findings provide further
evidence supporting the view that advanced aging confers a high
risk for neurodegenerative diseases, such as AD.

METHODOLOGY
Several methodological issues need to be addressed. First,
structural brain networks can be constructed in two ways:
(1) indirectly from inter-regional correlation of morphologi-
cal measurements (e.g., cortical thickness, RGMV, and surface
area) in sMRI data; (2) directly from characteristics of white
matter fibers (e.g., fiber number, fractional anisotropy, appar-
ent diffusion coefficient, or distance) in diffusion tensor imaging
(DTI) data (Bassett and Bullmore, 2009; He and Evans, 2010; Lo
et al., 2011; Xia and He, 2011). Although there is still no direct
proof that correlations of morphological measurements across
subjects are indicative of axonal connectivity via white matter
tracts, strong correlations between brain regions known to be
anatomically connected have been observed in previous opti-
mized voxel-based morphometry studies (Mechelli et al., 2005;
Pezawas et al., 2005). Moreover, a recent study indicated that
approximately 35–40% of cortical thickness correlations showed
convergent diffusion connections across the cerebral cortex and
most of them were the positive thickness correlations (Gong et al.,
2012). However, the authors also found that almost all of the
negative correlations (>90%) did not have a matched diffusion
connection, suggesting different mechanisms behind the positive
and negative thickness correlations. Since we defined structural
connectivity as the absolute value of correlation of RGMV in
this study, the association between correlation of RGMV and
diffusion connections should be investigated further in future
studies. Second, previous studies indicate that different parcel-
lation strategies affect the topological properties (e.g., the local
efficiency, global efficiency, small-worldness, and modularity)
of structural or functional brain networks (Wang et al., 2009a;
Fornito et al., 2010; Zalesky et al., 2010). A previous study also
indicates that regional volumes are positively correlated with
their mutual information, which measures the functional con-
nectivity between each region and the remaining brain regions
(Salvador et al., 2008). Thus, variations in parcellation templates
(e.g., AAL used in this study) may affect the network structure
of the human brain; future studies should include comparisons
of network topology with different parcellation templates. Third,
because all of the subjects in this study were over 20 years
old, young and adolescent subjects should be included in future
studies of brain network development. Finally, further investiga-
tions will also examine longitudinal changes in the topological
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properties of the human brain network using different neu-
roimaging modalities, such as diffusion tensor imaging, func-
tional MRI, and electroencephalography.

CONCLUSION
In this study, we quantitatively analyzed the topological organi-
zation of structural brain networks using a longitudinal design
over 6 years. Our results reveal economical small-world proper-
ties of structural brain networks and longitudinal changes in both
global and regional network properties. The structural brain net-
works develop into a fast distribution at approximately the age
of 50 and then transform into a fast localization with substantial
alterations in old age. Our findings may contribute to under-
standing the mechanism of normal aging in the human brain
and help to distinguish neurodegenerative diseases from normal
aging.
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