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Analysis of resting-state networks using fMRI usually ignores high-frequency fluctuations
in the BOLD signal – be it because of low TR prohibiting the analysis of fluctuations with
frequencies higher than 0.25 Hz (for a typical TR of 2 s), or because of the application of a
bandpass filter (commonly restricting the signal to frequencies lower than 0.1 Hz). While
the standard model of convolving neuronal activity with a hemodynamic response func-
tion suggests that the signal of interest in fMRI is characterized by slow fluctuation, it
is in fact unclear whether the high-frequency dynamics of the signal consists of noise
only. In this study, 10 subjects were scanned at 3 T during 6 min of rest using a multi-
band EPI sequence with a TR of 354 ms to critically sample fluctuations of up to 1.4 Hz.
Preprocessed data were high-pass filtered to include only frequencies above 0.25 Hz, and
voxelwise whole-brain temporal ICA (tICA) was used to identify consistent high-frequency
signals. The resulting components include physiological background signal sources, most
notably pulsation and heart-beat components, that can be specifically identified and local-
ized with the method presented here. Perhaps more surprisingly, common resting-state
networks like the default-mode network also emerge as separate tICA components. This
means that high-frequency oscillations sampled with a ratherT1-weighted contrast still con-
tain specific information on these resting-state networks to consistently identify them, not
consistent with the commonly held view that these networks operate on low-frequency
fluctuations alone. Consequently, the use of bandpass filters in resting-state data analysis
should be reconsidered, since this step eliminates potentially relevant information. Instead,
more specific methods for the elimination of physiological background signals, for example
by regression of physiological noise components, might prove to be viable alternatives.
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1. INTRODUCTION
The investigation of BOLD fluctuations in the resting brain using
fMRI has been a rapidly expanding field of research since the
first identification of consistent patterns in these data (Biswal
et al., 1995), and ICA in particular has gained great popularity
in fMRI as a powerful tool for exploring these data (Biswal and
Ulmer, 1999; Calhoun et al., 2001). The appeal of Independent
Component Analysis (ICA) in the context of resting-state fMRI
(rs-fMRI) lies to a great extent in the fact that, in contrast to
task-fMRI, little a priori knowledge about the temporal dynamics
of the fluctuations is available and ICA can be used to identify
consistent patterns in an exploratory manner (Beckmann, 2012).
Thus, using ICA on rs-fMRI data, several consistent resting-state
networks have been identified in a multitude of different indi-
vidual studies (Damoiseaux et al., 2006; Robinson et al., 2009;
Allen et al., 2011; Yeo et al., 2011) as well as in collections of

data pooled from multiple sites (Biswal et al., 2010; Kalcher et al.,
2012).

A common feature to most rs-fMRI ICA studies thus far is
the use of relatively long TRs (usually 2–3 s) in order to increase
BOLD weighting (Kim and Ogawa, 2012), and scan durations of
mostly between 5 and 10 min (Biswal et al., 2010), limiting the
fluctuations that can be studied to those at frequencies between
0.001 and 0.25 Hz. Within this frequency range, the highest ampli-
tudes of oscillations in resting-state networks in these studies have
been observed in the lower part (<0.1 Hz), which lead to the gen-
eral characterization of resting-state brain networks as networks
of low-frequency fluctuations, typically between 0.01 and 0.1 Hz
(Margulies et al., 2010; Yeo et al., 2011; Kalcher et al., 2012).

In recent years, simultaneous image readout (SIR) and multi-
banded (MB) EPI pulse sequences allowing simultaneous acqui-
sition of multiple brain slices during a single EPI echo train have
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opened new opportunities for accelerating fMRI scans without
sacrificing spatial resolution (Feinberg et al., 2010; Feinberg and
Yacoub, 2012). The increased temporal resolution can be put to
use in different ways. First, the higher sampling rate allows to per-
form new kinds of analysis methods, leading to a new view on
low-frequency fluctuations, as exemplified by the identification of
temporal functional modes (TFM) by Smith et al. (2012). On the
other hand, the increase in temporal resolution without the need to
limit image acquisition to a few slices can be harnessed to investi-
gate higher-frequency fluctuations at whole-brain level. Of course,
this will change the specific contrast from mainly BOLD-based to
flow/perfusion-based (Kim and Ogawa, 2012).

It should be noted at this point that the focus on low-frequency
BOLD fluctuations is not only due to technical limitations, but
also motivated by the temporal delays involved in the hemo-
dynamic response to neuronal activity. Indeed, the peak of the
hemodynamic response to a particular stimulus – and thus of
the BOLD signal – occurs 3–10 s after the underlying neuronal
response (Aguirre et al., 1998; Cunnington et al., 2002). Thus, the
BOLD signal can be seen as temporally smoothed in comparison
with the neuronal activity, motivating the neglect of signal fluctu-
ations in higher frequencies. Nonetheless, the possibility to obtain
this high-frequency signals opens the question to investigate what
patterns can be found in these frequency domains.

Due to limited a priori knowledge on networks of high-
frequency rs-fMRI BOLD oscillations, an exploratory approach
seems most viable (Tukey, 1977) to get an unbiased estima-
tion of the global structure of these oscillations. While different
exploratory analysis techniques for fMRI data exist, e.g., principal
components analysis (Baumgartner et al., 2000), canonical corre-
lation analysis (Friman et al., 2001), fuzzy clustering (Baumgartner
et al., 1998; Moser et al., 1999), as well as spatial or temporal ICA
(Calhoun et al., 2001), our analysis specifically needs a method that
can deal with overlapping spatial distributions of different signal
sources. Temporal ICA (tICA) can achieve this in identifying tem-
porally independent signal sources with potentially overlapping
spatial distributions, and in this offers good interpretability, since
its result is a solution to the blind source separation problem. In
particular, the potential to better distinguish spatially overlapping
signal sources might prove useful for the identification of cardiac
and other physiological signal sources, a feature that spatial ICA
cannot accomplish as shown by Beall and Lowe (2010).

Temporal ICA has rarely been used thus far in fMRI analyses,
mostly due to two reasons. The first lies in originally unsurmount-
able computational difficulties in computing the necessary linear
algebra operations, in particular computing the covariance matrix
of dimension (number of voxels× number of voxels) (Calhoun
et al., 2001), but new algorithms as well as the increased com-
putational power available have greatly alleviated this limitation.
The second reason is the limited number of time points (the data
points for tICA) available in most fMRI scans, limited by common
TRs of 2–3 s and scan durations under 10 min to about 300 time
points. In contrast to spatial ICA, where the corresponding vari-
able is the number of voxels instead of the number of time points,
this limited amount of data points leads to computational issues
regarding the stability of the ICA algorithm when applying it as
temporal ICA. Multiplexed EPI sequences, with greatly reduced

TRs, lead to larger amounts of data points without increasing scan
duration, and thus allow for a reasonable application of tICA on
the resulting datasets.

Beyond the increase in stability of tICA estimation, the high
sampling rate also allows to see fluctuations of higher frequencies
than before in whole-brain fMRI datasets. It is however unclear
as of now what exactly is gained by critically sampling higher fre-
quencies (at low TR). In this study, we set out to investigate the
information gained in these high frequencies, and in particular the
frequency domain above the highest frequency usually inspected in
resting-state fMRI studies, about 0.25 Hz. A priori, two thoughts on
these high-frequency fluctuations come to mind: first, they could
be expected to contain pulsation-related artifacts, and second, due
to the slow hemodynamic response usually expected for neuronal
activity, one might be tempted not to expect to identify neuronal
signals among the high-frequency BOLD oscillations. Indeed,early
investigations by Cordes et al. (2001) on the relative contributions
of different frequency ranges – Cordes et al. acquired signal from
4 slices with a TR of 400 ms – found that functional connectivity
was almost exclusively dependent on the signal fluctuations below
0.1 Hz for neuronal signal sources, and only the correlation coef-
ficients from signal in major arteries or veins as well as in the CSF
were dependent upon higher frequencies.

However, there is some evidence in more recent studies that
this latter expectation might not hold true. For once, studies on
spectral characteristics of resting-state networks by Niazy et al.
(2011) and Van Oort et al. (2012) have revealed that the spec-
tral range of commonly identified resting-state networks is wider
than the hypothesized 0.01–0.1 Hz and extend to at least 0.17 and
0.25 Hz, respectively. Moreover, there are studies on specific high-
frequency behavior of BOLD oscillations, e.g., the co-occurrence
of spikes in different regions of a particular network (Tagliazucchi
et al., 2011, 2012) or variation in amplitude variance asymme-
try (Davis et al., 2013), that can also be attributed to resting-state
network activity, indicating consistent patterns of BOLD and/or
perfusion variability beyond low-frequency fluctuations.

In this study, we investigated high-frequency signal fluctua-
tions during rest by temporally filtering fMRI data with a low TR
to frequencies above 0.25 Hz and analyzing the resulting time-
courses using temporal ICA. In view of the hypotheses men-
tioned above, we examined the extent to which tICA is able
to specifically separate physiological background signals, in par-
ticular heart-beat related signal fluctuations, from other signal
sources in the brain, as this is seen as one of the “killer applica-
tions” of ICA in rs-fMRI (Beckmann, 2012). Moreover, we wanted
to explore whether resting-state network related signals are still
present in those high-frequency domains and could effectively be
identified.

2. MATERIALS AND METHODS
2.1. SUBJECTS
Ten subjects (5 males/5 females, mean age 23.4, SD 3.1 years) were
recruited at Medical University of Vienna. Exclusion criteria were
prior psychiatric or neurologic illnesses, as well as the usual exclu-
sion criteria for MR studies. All subjects gave written informed
consent prior to the scan and the study was approved by the local
institutional review board.
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2.2. MEASUREMENTS
Subjects underwent a 6 min resting-state scan on a Siemens
TIM Trio 3 T scanner using a 32-channel head coil with a
multiplexed EPI sequence by Feinberg et al. (2010), acquir-
ing in total 1024 volumes (flip angle= 30˚, TE/TR= 32/354 ms,
2.4 mm× 1.9 mm× 3.5 mm, bandwidth= 1748 Hz/pixel, 20 axial
slices, 2 mm slice gap, multiband acceleration factor 4, 6/8 par-
tial Fourier). Subjects were instructed to keep their eyes closed,
refrain from movement during the scan and avoid to fall asleep
without concentrating on anything in particular. After the resting-
state scan, a high-resolution anatomical image was acquired using
MPRAGE with 1 mm× 1 mm× 1.1 mm resolution with 160 sagit-
tal slices (TE/TR= 4.21/2300 ms, flip angle 9˚, inversion time
900 ms).

2.3. PREPROCESSING
All data were preprocessed with a combination of AFNI (Cox,
1996) and FSL (Smith et al., 2004), using an analysis framework
in R (Boubela et al., 2012; R Development Core Team, 2013)
on Ubuntu Linux (Version 11.10 “Oneiric Ocelot”). Anatomical
images were skullstripped and normalized to MNI152 standard
space. Functional images were corrected for intensity inhomo-
geneity using a bias field estimation by FSL FAST, skullstripped
and realigned to the 500th volume. Subsequently, functional
images were aligned to the anatomical images in MNI152 standard
space and resampled to 2 mm× 2 mm× 2 mm isotropic resolu-
tion, blurred with an isotropic Gaussian 6 mm FWHM kernel, and
motion parameters (3 translations and 3 rotations) were regressed
out using a generalized linear model (GLM).

2.4. INDEPENDENT COMPONENT ANALYSIS
After the preprocessing steps mentioned above, all further analy-
ses were performed in R (Version Under Development (unstable)
2012-11-27 r61172 “Unsuffered Consequences”; this version was
used to allow the allocation of objects with more than 231 –
1 elements, necessary for the processing of time concatenated
group ICA). At single-subject level, the first 24 volumes of all
subjects were discarded to account for transient effects, and all
voxel time-series were scaled to mean 0 and standard deviation
1. To isolate high-frequency oscillations, a discrete Fourier trans-
form was applied to each voxel’s time course, all magnitudes in
Fourier space corresponding to frequencies below 0.25 Hz (the
highest frequency that can be sampled at a typical TR of 2 s)
were set to 0, and the signal was then transformed back in the
original space using the inverse discrete Fourier transform. Thus,
the signal that was analyzed contained only fluctuations above
0.25 Hz. Single-subject data were analyzed individually as well
as concatenated for group analysis, forming a 10,000 (i.e., 10
subjects× 1000 time points)× 239901 (number of voxels within
the brain mask) matrix. Prewhitening and dimensionality reduc-
tion was performed by principal component analysis (PCA) using
the R package irlba (Baglama and Reichel, 2005, 2012), which
implements implicitly restarted Lanczos bidiagonalization singu-
lar value decomposition (SVD), and the 76 principal components
with the largest eigenvalues were computed and used for the
ICA analysis. All matrix multiplications on the data matrix nec-
essary to compute the SVD and the principal components were

performed using the library phiGEMM (Spiga and Girotto, 2012),
which distributed computation on two NVidia Tesla C2070 graph-
ics processing units. Finally, fastICA (Hyvärinen, 1999) was used
to compute 75 temporally independent components for the time
concatenated group dataset.

2.5. GROUP COMPONENTS
In the group analysis, components were discarded if they were
driven by individual subjects only (as opposed to being present
in all subjects; this can easily be identified in the component
timecourses, see Figure A1 in Appendix). As a formal criterion,
components were discarded if the ratio of the sum of the squares
of the time course of one subject divided by the sum of the squares
of the time courses of all other subjects was larger than 1, i.e., if
one subject contributed more variance to the component than all
other subjects combined.

2.6. CHARACTERIZATION OF RESULTING COMPONENTS
Spatial maps of all resulting components were projected back from
the principal component space into the original space. Temporal
ICA time courses were Fourier transformed to compute power
spectra, and the fraction of the power in each of the frequency
ranges 0.25–0.5, 0.5–0.75, 0.75–1.0, 1.0–1.25, and 1.25–1.4 Hz was
computed.

2.7. LOW-FREQUENCY REFERENCE NETWORKS
To get a sense of how resting-state networks obtained in the high-
frequency range relate to low-frequency resting-state networks,
the data preprocessed as above but without applying the high-pass
filter were analyzed with temporal ICA directly and the resulting
networks were used as reference for the high-frequency networks.

3. RESULTS
Of the 75 tICA components, 25 were found to be consistent
across subjects using the definition above, i.e., no single sub-
ject contributed more to the component than all other subjects
combined. Among these consistent group-level components, four
distinct types of components can broadly be distinguished: pul-
sation or physiological components (8 components), components
resembling known resting-state networks as described by previous
low-frequency sICA studies (2), technical artifacts (2), and other
signal sources (13).

Generally speaking, pulsation components were the most con-
sistent across subjects using the measure described above. They
were located primarily in the ventricles and in the vicinity of
large blood vessels (see Figure 1 left) and exhibited more ampli-
tude in higher frequencies (mainly above 0.6 Hz, see Figure 1
right). Specifically, the ventricular components had peak power
between 0.6 and 0.8 Hz, while other pulsation components includ-
ing mainly the insula had a broader frequency range between 0.6
and 1.4 Hz. Overall, though, it can be said that pulsation artifacts
showed a flat, modulated power spectrum.

The resting-state components identified in the high-frequency
range were the default-mode network and the fronto-parietal net-
work, the corresponding maps are shown in Figure 2. In contrast to
the pulsation artifacts, resting-state network timecourses tended to
have higher amplitude in the lower frequencies (0.25–0.6 Hz). The
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FIGURE 1 |Temporal ICA components attributed to pulsation in ventricles and large blood vessels. Left: maps thresholded at 0.1 (weights in the mixing
matrix). Right: frequency spectra corresponding to the ICA components represented on the left.
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most distinctive characteristic of the spectra of the resting-state
networks as opposed to the pulsation and artifact components is
their skewness – amplitude is highest for lower frequencies and
decreases continually as the frequency increases, and converges to
a minimum at about 0.6 Hz.

Corresponding resting-state networks could also be identified
in the analysis of the non-bandpassed data (Figure 3). It can be
seen that most of the power of the resting-state networks orig-
inates in the low-frequency range (below about 0.2 Hz), but the
qualitatively very similar maps in the high-frequency data sug-
gest that these same networks can also be identified by their
distinctive high-frequency fluctuations, which indeed amount to
about 50% of the total spectral power of these networks. Table 1
summarizes the fraction of power of the fluctuations of these net-
works that fall in the frequency bands 0.01–0.1, 0.1–0.25, and
0.25–1.4 Hz. (For further reference, Figure 4 shows the com-
plete set of components identified by tICA on the unfiltered
data.)

The third group of components were technical artifacts defined
by two unique characteristics. The first emerges from the spatial
maps of these components, which shows alternating bands of high
and low loadings aligned in planes parallel to the acquisition slices
(see Figure 5 left). The second characteristic is the narrow peak of
the frequency spectrum at about 0.8 Hz (see Figure 5 right).

The relative power of each frequency range (0.25–0.5, 0.5–0.75,
0.75–1.0 Hz, 1.0–1.25 Hz, and 1.25–1.4 Hz) of the spectra is shown
in Figure 6. The technical artifacts are easiest to distinguish due
to their power being almost entirely in the range between 0.75
and 1.0 Hz, with much higher relative power in this range than
all other components, and very low power in all other frequency
bands. Resting-state networks can also be distinguished by their
having highest relative power in the lowest of the frequency bands
(0.25–0.5 Hz), while the pulsation components and other arti-
facts have lower power in this frequency range, but tend to have
higher power in all other ranges. Overall, the distribution of rela-
tive spectral power is more similar between resting-state networks

FIGURE 2 |Temporal ICA components representing high-frequency fluctuations in brain regions commonly associated with resting-state networks.
Figure layout as in Figure 1.

FIGURE 3 |Temporal ICA components from non-bandpassed data corresponding to the high-frequency resting-state networks in Figure 2. Figure
layout, color scale, and threshold are identical to the ones in Figure 2.
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Table 1 | Fractional amplitude of fluctuations in various frequency

bands (0.01–0.25, 0.01–0.10, 0.10–0.25, 0.25–1.4 Hz) for RSN 1 and RSN

2 depicted in Figure 3.

0.01–0.25 Hz

(%)

0.01–0.10 Hz

(%)

0.10–0.25 Hz

(%)

0.25–1.4 Hz

(%)

RSN 1 46.77 31.24 15.52 52.49

RSN 2 49.91 33.87 16.04 49.3

and pulsation components than between any one of these groups
and technical artifacts.

Finally, components related to heart-beat could be found in
the components discarded due to their inconsistency across sub-
jects (this inconsistency presumably is due to heart rate differences
between subjects). For each subject, the spectrum of the group
component driven mainly by that subject that can be interpreted
as heart-beat related signal is shown in Figure 7. The power spectra
of these heart-beat components can be distinguished by their peak
at frequencies around 1–1.3 Hz (the exact frequency of the peak
varies, depending on the heart rate variability (HRV) of the indi-
vidual subject). Thus, HRV would be a physiological parameter to
be extracted from our data.

4. DISCUSSION
In this work, we have shown that consistent large-scale high-
frequency signal oscillations in the brain exist and can be attributed
to specific signal sources using temporal ICA. Potentially of most
practical interest among these are the physiological or pulsation-
related components and the resting-state networks, but other sig-
nal sources can be distinguished as well. We have concentrated on
fluctuations of frequencies higher than 0.25 Hz to study consistent
effects that cannot be identified in typical fMRI experiments with
a TR of about 2–3 s, since they are beyond the Nyquist frequency
of the measurements performed in these experiments. It should
be noted that, even though they cannot be isolated when using
TRs of 2–3 s, in the resulting data these high-frequency effects
are nonetheless present in the form of aliased lower-frequency
fluctuations, i.e., so-called physiological noise. The specific iden-
tification of pulsations and artifacts can be useful in disentangling
them from neuronal signal sources, in order to isolate the lat-
ter more specifically, but also to study physiological effects by
themselves.

Two innovations from different fields have been employed in
this study in order to identify the high-frequency components of
fMRI signal. First, the measurement of whole-brain time-series
at the low TR required for a sufficiently high sampling rate has
only become possible with the introduction of multiband EPI
sequences (Feinberg et al., 2010; Moeller et al., 2010; Feinberg
and Yacoub, 2012), allowing the simultaneous acquisition of mul-
tiple slices and leading to a reduction of the TR to 354 ms with the
parameters used in this study. Second, new computational meth-
ods were needed to perform the analysis at hand. This included
improvements in handling the large datasets generated by this
sequence, with both high spatial and high temporal resolution, as
well as fast iterative computation of SVD – and by consequence of

FIGURE 4 | Depending on the number of components chosen, various
temporally independent low-frequency components (≤0.25 Hz) are
separated by the algorithm (LF 1–LF 13, left row). Note that time courses
and corresponding frequency spectra (right side) are not contaminated by
any high-frequency components (e.g., respiration, heart-beat, etc.),
increasing functional contrast-to-noise ratio. The interpretation whether a
component is (predominantly) of vascular or brain tissue origin, however, is
not obvious from the spectra alone.

PCA and ICA – on these datasets, both necessary to divide the sig-
nal acquired into temporally independent sources (Boubela et al.,
2012).
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FIGURE 5 |Temporal ICA components attributed to technical artifacts.
Figure layout as in Figure 1, spatial maps are thresholded at 0.05. Note that
even though they cover almost the whole brain, and thus have at least some

overlap with all other components, tICA is able to separate them from the
other components due to the technical artifacts distinctive temporal
characteristics (visible in their power spectra).

Perhaps the most surprising finding of this study was the iden-
tification of resting-state networks, and most notably the default-
mode network, in the high-frequency data alone. While the tradi-
tional view of resting-state networks as low-frequency fluctuations
below 0.1 Hz has been challenged, previous findings have related
mostly to oscillations below 0.16 (Niazy et al., 2011) and 0.25 Hz
(Van Oort et al., 2012). The present study adds to this the notion
that even in frequencies beyond the frequency range critically sam-
pled by usual fMRI acquisition sequences, oscillations attributable
to resting-state networks can be recognized. Indeed, the amount of
information contained in the high-frequency oscillations of these
two networks is sufficient to produce a spatial delineation con-
sistent with previously published spatial maps, even despite the
small sample size. Consequently, further investigations into the
fluctuation characteristics of resting-state networks embracing the
recent developments in fast fMRI acquisition techniques appear
to be worthwhile. Indeed, whether ’sources of resting-state BOLD
responses are similar to those of stimulus-induced responses’ is
still an open question and part of ongoing research (Kim and
Ogawa, 2012), and it is not yet clear if and to what extent the
theory of hemodynamic coupling can be drawn upon to substan-
tiate the widespread dismissal of high-frequency oscillations in
resting-state fMRI.

The identification of resting-state networks in high-frequency
data of course does not imply that they are primarily
high-frequency phenomena, but rather that the frequency range
of resting-state fluctuations is broader than previously assumed.
Still, it must be noted that only two of the typically described
resting-state networks were found in the high-pass-filtered data of
this study. Both the default-mode network and the fronto-parietal
network are characterized by high low-to-high-power ratio and
high dynamic range (defined as the difference between the peak
power of the spectrum minus the minimum of the power at
higher frequencies compared to this peak) (Robinson et al., 2009;
Kalcher et al., 2012), which seems paradoxical for networks that
can be identified by their high-frequency oscillations. On the other
hand, these two metrics are also associated with the robustness

of the networks, i.e., networks with high power ratio and high
dynamic range are identified more robustly across studies, and
this robustness of the networks might be the reasons why only
these two are identified here. High-frequency oscillations in other
resting-state networks might exist, but in this case, their power
must then be too low to be detected with the SNR level attained in
this study.

The identification and separation of physiological signal
sources made possible by the combination of a high sampling
rate and temporal ICA of the resulting time courses can be seen
as another way of using the high-frequency data and has multiple
applications. First, the ability to disentangle physiological signal
components from signals of neuronal origin could be used for
the correction of the typical BOLD signal and thus for increas-
ing the specificity not only of resting-state, but also of task-fMRI
analyses (based on the assumption that physiological signals are
the same during tasks and during rest). Correction of fMRI time-
series for non-neuronal effects could then be performed using
either the time course itself or a separately measured dataset (e.g.,
a resting-state dataset measured before or after a task-fMRI para-
digm) (Kalcher et al., 2013). As another possible future application,
measuring and separating physiological signals directly from fMRI
data, as opposed to using separately acquired physiological respi-
ratory and cardiac signals, would have the advantage that these
signals could immediately be located in the brain using the spatial
maps of the corresponding components, and would not require
additional equipment for the acquisition of physiological signals.
Indeed, the possibility of directly estimating cardiac and respira-
tory signal from the fMRI data has already been explored, e.g.,
by Beall and Lowe (2007) and Chuang and Chen (2001), and
the methods presented here could be used to improve on these
techniques. One potential advantage of avoiding the need for
additional equipment is an increase in reliability of the com-
plete system due to less individual parts that can possibly fail
which might be critical for particular applications like real-time
fMRI (Weiskopf, 2012). Furthermore, reducing the number of
components separately introduced into the measuring systems
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FIGURE 6 | Fractional amplitude of fluctuations in frequency bands
0.25–0.5, 0.5–0.75, 0.75–1.0, 1.0–1.25, and 1.25–1.4 Hz plotted against each
other for all consistent tICA components. Note that technical artifacts can
easily be separated from all other components in the frequency bands

0.25–0.5, 0.5–0.75, and 0.75–1.0 Hz. Components attributed to classical
resting-state networks appear as mixed with pulsation components, though
they tend to have higher power in the lowest frequency range, between 0.25
and 0.5 Hz, than most of the pulsation components.

means reducing the possible amount of operator bias – thus
effectively increasing reproducibility of fMRI study results and
comparability across studies in the face of possible future meta-
analyses (Huf et al., 2011). Finally, direct measurement in the
subject’s brain could circumvent time-delay issues due to mea-
surement of multiple physiological variables on different parts
of the body, e.g., the acquisition of pulse-oximetry data on the

finger. Of course, these suggestions would require further studies
to demonstrate their suitability for routine application.

Previous approaches taken to eliminate physiological signal
sources include bandpass-filtering to frequencies below 0.1 Hz, but
the adequateness of this method has been questioned – one of the
main reasons for this being that many physiological confounds
(like heart-beat) occur beyond the Nyquist frequency of typical
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FIGURE 7 | Frequency spectra of components attributed to heart-beat (with peaks in the frequency range around 1–1.3 Hz), one component for each
of the 10 subjects.

measurement sequences and are thus aliased into the lower fre-
quency ranges. On one hand, the higher sampling rate as used
in this study avoids aliasing of high-frequency signals into lower
frequencies, thus making the bandpass approach potentially better
able to separate low-frequency from higher-frequency signals than
it has been the case for long-TR measurements. On the other hand,
this study highlights that a considerable amount of information on
resting-state network activity pattern is lost when only looking into
low-frequency fluctuations. This corroborates existing findings by

Tagliazucchi et al. (2011, 2012) that as much as 50% of correlation
patterns are lost when eliminating the information in the BOLD
spikes they investigated. Furthermore, there is evidence that blood-
flow related BOLD signal sources originating in the vessels of the
brain are important confounding factors that should be taken into
account specifically (Strik et al., 2002). Thus, the use of a band-
pass filter to frequencies below 0.1 Hz is only advisable if one is
explicitly interested in low-frequency dynamics alone, as opposed
to studies investigating resting-state networks more generally.
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While the range of applications mentioned above see the physi-
ological components as signal of no interest to be eliminated from
the data, it is equally possible to treat them as the main target for
analysis. The identification of disruptions in the normal pattern
of physiological fluctuations in the brain can be useful for clini-
cal applications, for example in the localization of lesions (Yating
et al., 2013), an application where the high temporal resolution
can be critical for the detection of signal delays. Indeed, pulsa-
tions in the arteries of the brain have already been studied as
main focus of research by Strik et al. (2002), and HRV would be
a valuable parameter when studying patients with cardiovascular
diseases.

Scientific implications of the results shown here might be that
high-frequency signal oscillations should not be ignored, they can
and should be measured with current acquisition techniques and
should not be eliminated from analyses by coarse-grained correc-
tion methods such as bandpassing the entire fMRI time-series.
Future investigations might focus on the development of more
specific correction for physiological effects, if one attempts to
eliminate those from the dataset, for example by using their tICA
component time courses as regressors.

The findings presented here further challenge the traditional
view of resting-state networks as low-frequency oscillations alone
and support the idea of them exhibiting more complex behavior.
Additional work on the temporal dynamics of resting-state net-
work activity patterns might help to understand the structure of
the brain processes underlying the associated BOLD and perfusion
related fluctuations. In this study, only two resting-state networks
could be consistently identified across subjects by their high-
frequency components. This could be interpreted in terms of dif-
ferences in spectral characteristics between resting-state networks,
but could also be due to the scan duration used here (6 min)
being insufficient to detect other networks. Future studies might
uncover similar high-frequency components in other resting-state
networks using longer scan duration or higher sampling rate with
lower TRs and higher sensitivity, e.g., at 7 T.
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APPENDIX

FIGURE A1 | Concatenated time-series (left) and corresponding spectra (right) of two example components. Top: a component dominated by a single
subject – most of the variance of the time course originates from subject 2 (time points 1001–2000 in the concatenated time-series). Bottom: a component that
is equally present in all subjects, i.e., the variance in the concatenated time course is more homogeneous across subjects.
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