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In humans the two cerebral hemispheres have essential roles in controlling the upper
limb. The purpose of this article is to draw attention to the potential importance of ipsilat-
eral descending pathways for functional recovery after stroke, and the use of non-invasive
brain stimulation (NBS) protocols of the contralesional primary motor cortex (M1). Conven-
tionally NBS is used to suppress contralesional M1, and to attenuate transcallosal inhibition
onto the ipsilesional M1. There has been little consideration of the fact that contralesional
M1 suppression may also reduce excitability of ipsilateral descending pathways that may
be important for paretic upper limb control for some patients. One such ipsilateral pathway
is the cortico-reticulo-propriospinal pathway (CRPP). In this review we outline a neuro-
physiological model to explain how contralesional M1 may gain control of the paretic arm
via the CRPP. We conclude that the relative importance of the CRPP for motor control
in individual patients must be considered before using NBS to suppress contralesional
M1. Neurophysiological, neuroimaging, and clinical assessments can assist this decision
making and facilitate the translation of NBS into the clinical setting.

Keywords: stroke, rehabilitation, upper limb, propriospinal, transcranial direct current stimulation

INTRODUCTION
Reaching forward with the arm to manipulate objects with the
hand is a quintessential function for higher order primates. Upper
limb movements involve a fine balance between proximal stability
and distal dexterity, presenting a unique motor control challenge
to the central nervous system. There is a growing body of evi-
dence that skilled upper limb function is under the control of
both contralateral (cM1) and ipsilateral (iM1) motor cortices
(Chen et al., 1997; Gerloff et al., 1998; Muellbacher et al., 2000;
Hummel et al., 2003; Sohn et al., 2003; Verstynen et al., 2005;
Davare et al., 2007; Duque et al., 2008; Perez and Cohen, 2008,
2009; Lee et al., 2010). Exactly how iM1 contributes to ipsilat-
eral upper limb control is unclear, and is likely to involve both
interhemispheric and descending projections. Neurophysiological
studies have shown that iM1 assists cM1 to shape motor output by
modulating the degree of transcallosal inhibition between homol-
ogous muscle representations in the two hemispheres (Sohn et al.,
2003; Davare et al., 2007; Perez and Cohen, 2008). The poten-
tial importance of descending pathways from iM1 to spinal cord
for upper limb control has largely been ignored. In this paper we
present a novel hypothesis to account for how iM1 contributes to
skilled upper limb motor control. We propose that the pathway
involves a robust ipsilateral projection called the cortico-reticulo-
propriospinal pathway (CRPP), based on findings in the cat and
non-human primate (Illert et al., 1981; Alstermark et al., 1984; Isa
et al., 2006). The CRPP descends from iM1 via the reticulospinal
tract and terminates on propriospinal neurons (PNs) located at

C3/4 in the spinal cord (Alstermark et al., 2007). PNs project
to alpha motoneurons (αMNs) innervating muscles involved in
specific tasks so movements can be rapidly generated and mod-
ified as necessary (Pierrot-Deseilligny and Burke, 2005). Our
hypothesis is that neural inputs from the CRPP are integrated
by PNs with those from the disynaptic (indirect) portion of the
contralateral corticospinal tract. As a result, descending inputs
from both hemispheres shape the final motor command reaching
αMNs innervating upper limb musculature for optimal movement
control.

Up-regulation of contralesional motor cortex excitability and
the CRPP pathway may be important for paretic arm function
after stroke (Turton et al., 1996; Netz et al., 1997; Alagona et al.,
2001; Lewis et al., 2004; Misawa et al., 2008), particularly in poorly
recovered patients (Turton et al., 1996; Netz et al., 1997; Gerloff
et al., 1998; Caramia et al., 2000; Trompetto et al., 2000; Lewis
and Perreault, 2007; Misawa et al., 2008). The degree of reorgani-
zation toward contralesional hemisphere control may depend on
the residual integrity of white matter tracts from the ipsilesional
hemisphere (Ward et al., 2006, 2007; Stinear et al., 2008; Grefkes
and Fink, 2011). The neurophysiological model proposed here
explains how increased excitability of the CRPP disrupts the nor-
mal cM1-iM1 balance of descending inputs reaching C3/4 PNs.
In patients with a relatively intact ipsilesional corticospinal tract,
up-regulation of the CRPP pathway would interfere with descend-
ing commands to PNs from the ipsilesional cortex. The model
also accounts for why the CRPP is integral to residual function
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Bradnam et al. Ipsilateral motor pathways after stroke

when the ipsilesional corticospinal tract is severely compromised.
In these patients the CRPP may be the only intact descending
pathway from cortex to spinal cord, and therefore of particular
importance for their motor recovery.

Finally, a contribution by contralesional M1 to upper limb
motor control via the CRPP has implications for NBS protocols
aimed at improving rehabilitation of the paretic upper limb after
stroke. The proposed model shows that contralesional M1 sup-
pression after NBS may affect stroke patients differently depend-
ing on the severity of damage to the ipsilesional corticospinal
tract and the degree of up-regulation of the contralesional CRPP.
Studies that have included more severely impaired patients seem
to indicate paretic upper limb motor performance is degraded by
contralesional M1 NBS (Ackerley et al., 2010; Theilig et al., 2011;
Bradnam et al., 2012). We propose that NBS protocols that aim
to suppress contralesional M1 may be contraindicated for some
patients. We argue that NBS is not a “one size fits all” solution
for recovery after stroke, but that it can be tailored to individual
patients based on neurophysiological and clinical biomarkers that
are relative easy to obtain (Stinear et al., 2007, 2012; Jang et al.,
2010; Kwon et al., 2011; Riley et al., 2011).

A NEUROPHYSIOLOGICAL MODEL FOR IPSILATERAL UPPER
LIMB CONTROL
Many tasks performed with one hand are challenging and require
precise co-contraction of multiple muscles across the upper limb.
Skilled and complex unimanual movements are accompanied by
an increase in iM1 excitability (Hummel et al., 2003; Verstynen
et al., 2005; Morishita et al., 2011; Uehara et al., 2011), poten-
tially by modulation of transcallosal projections (Perez and Cohen,
2008; Morishita et al., 2011; Uehara et al., 2011)_ENREF_8 or by
increased transmission through ipsilateral projections to spinal
αMNs (Gerloff et al., 1998). Using Transcranial Magnetic Stimula-
tion (TMS), iM1 has been found to contribute to sequential move-
ment timing and selective activation of proximal and distal mus-
cles in healthy adults (Gerloff et al., 1998; Carey et al., 2006; Davare
et al., 2007; Duque et al., 2008; Bradnam et al., 2010; McCambridge
et al., 2011). It appears that muscle coordination for precise and
skilled unimanual tasks requires activation of both cortical hemi-
spheres. The neurophysiological model of bilateral motor control
from cM1 and iM1 is illustrated schematically in Figure 1. Both
cortical hemispheres have direct and indirect projections to αMNs
in the spinal cord (Kuypers, 1964; Brinkman and Kuypers, 1973).
From cM1, the corticospinal tract descends in the internal capsule
to the brainstem and onto the spinal cord where the monosynaptic
(direct) portion terminates onto αMNs in the ventral horn (Fries
et al., 1993). The disynaptic (indirect) portion of the tract origi-
nates from distinct populations of neurons in cM1 and descends
alongside the rubrospinal and tectospinal tracts to converge onto
cervical PNs (Alstermark et al., 2007; Lemon, 2008). Ipsilateral
descending motor control is also mediated by direct and indirect
pathways. From iM1, approximately 10–15% of the corticospinal
fibers are uncrossed and project directly to αMNs in the ipsilateral
spinal cord. The indirect ipsilateral descending tract is the CRPP.
The proposed anatomical pathway is as follows. After traversing the
internal capsule separately, descending projections from the ipsi-
lateral premotor cortex and iM1 terminate on reticular neurons

FIGURE 1 | Schematic illustration of bilateral neural control and
ipsilateral neural control after stroke.Top. Descending commands to
presumed PNs and inhibitory interneurons via the ipsilateral
cortico-reticulo-propriospinal tract (CRPP) and the contralateral corticospinal
tract provides balanced input to αMNs in the spinal cord. All projections are
facilitatory except for the inhibitory interneuron, shown in black. CST,
corticospinal tract. RST, reticulospinal tract. INH, inhibitory interneuron.
PNs, propriospinal neurons. MNs, alpha motoneurons. IM1 and CM1,
ipsilateral and contralateral primary motor cortex. Bottom. There is
compensatory up-regulation of the contralesional hemisphere resulting in
greater excitability of the ipsilateral CRPP (bold blue lines) and disruption to
facilitatory and inhibitory descending inputs from the ipsilesional
hemisphere (dashed green lines). PNs are facilitated resulting in impaired
motor control of the paretic upper limb. All projections are facilitatory
except for the inhibitory interneuron, shown in black. Abbreviations as
above except for CH and IH, indicating the contralesional and ipsilesional
hemisphere respectively.
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Bradnam et al. Ipsilateral motor pathways after stroke

in the brainstem that give rise to the reticulospinal descending
tracts (Andrews et al., 1973; Catsman-Berrevoets and Kuypers,
1976). The reticulospinal projections descend in the spinal cord as
inhibitory (lateral) and excitatory (medial) tracts, terminating on
medial motor nuclei in the spinal cord to innervate axial and prox-
imal limb αMNs (Kuypers, 1964; Brinkman and Kuypers, 1973).
In the non-human primate, reticulospinal tracts provide bilateral
innervation to muscles of the proximal upper limb (Davidson and
Buford, 2004, 2006; Davidson et al., 2007).

In the cat and non-human primate reticulospinal projections
converge onto PNs (Brinkman and Kuypers, 1973; Illert et al.,
1977, 1981; Alstermark et al., 1984; Boudrias et al., 2010) in addi-
tion to αMNs. PNs project to αMNs innervating agonist proximal
and distal muscles across the upper limb and to Ia inhibitory
interneurons controlling αMNs of antagonist muscles (Tantisira
et al., 1996). Descending and ascending inhibitory control over
PNs facilitates fine-tuning and precise shaping of motor com-
mands prior to their execution by αMNs. Behavioral studies in the
cat show that partially transecting the spinal cord at C3-4 induces
dysmetria and discoordination of the forelimb (Alstermark et al.,
2007). In humans, the cervical propriospinal system is a candidate
neural network underpinning muscle synergies for upper limb
reaching (Pierrot-Deseilligny and Burke, 2005). Task-specific use
of the hand disinhibits PNs to activate proximal wrist and shoulder
muscle synergies important for limb stabilization (Iglesias et al.,
2007; Roberts et al., 2008; Giboin et al., 2012). According to our
hypothesis, descending commands from the CRPP are integrated
with those from cM1 via the disynaptic (indirect) corticospinal
tract within presumed C3/4 PNs. The balance of descending facil-
itation and inhibition from the two hemispheres dictates overall
spinal PN excitability and subsequent activation of αMNs. There is
evidence in humans for an ipsilateral pathway from iM1 to spinal
PNs in support of our model. c-tDCS applied to iM1 suppressed
both facilitatory and inhibitory projections to ipsilateral PNs in
the spinal cord of healthy adults (Bradnam et al., 2011), although
involvement of the reticulospinal tract cannot be confirmed from
this experiment. It also appears possible to indirectly modulate
both upper and lower limb PN circuits using NBS over M1 (Brad-
nam et al.,2011; Roche et al., 2011,2012). ENREF_31 Future exper-
iments may further elucidate how PNs integrate bilateral descend-
ing commands from motor cortex and the role of the cervical
propriospinal system in complex upper limb tasks in humans.

Inhibitory projections to PNs may originate in premotor cor-
tex rather than M1 (see Figure 1, top panel). This is important
as descending tracts from premotor cortex are separated from
those of M1 within the internal capsule. White matter tracts from
premotor cortex descend in the genu and anterior portion of
the posterior limb of the internal capsule, while those from M1
descend in the posterior limb itself (Fries et al., 1993). Therefore,
the location of a stroke lesion in the internal capsule would have
a significant impact on the residual ability of ipsilesional M1 to
provide inhibitory modulation of PNs and αMNs.

NEUROPHYSIOLOGICAL MODEL OF IPSILATERAL UPPER
LIMB CONTROL AFTER STROKE
After stroke there can be an increase in motor cortex excitabil-
ity in the contralesional hemisphere and reduced excitability of

the ipsilesional hemisphere. This view of interhemispheric imbal-
ance of the motor system after stroke occurs via transcallosal
inhibitory pathways between the two hemispheres (Shimizu et al.,
2002; Murase et al., 2004; Ward et al., 2006, 2007; Grefkes et al.,
2008; Ameli et al., 2009; Grefkes and Fink, 2011). Within the
first 2 weeks after stroke contralesional hemispheric excitabil-
ity can increase in patients with severe deficits (Rehme et al.,
2011). The degree of interhemispheric imbalance in excitability
and motor impairment may be negatively correlated with the
residual integrity of the ipsilesional corticospinal tract after the
stroke (Grefkes and Fink, 2011). This is supported by evidence
that contralesional hemisphere activity is enhanced in patients
with more extensive ipsilesional corticospinal tract disruption and
greater upper limb impairment (Johansen-Berg et al., 2002; Ward
et al., 2003, 2006, 2007; Lotze et al., 2006; Stinear et al., 2008).
In well-recovered patients contralesional hemisphere excitabil-
ity decreases over time (Stinear et al., 2008). In severely affected
patients, contralesional hemisphere excitability gradually increases
as motor function recovers, indicating reorganization toward the
contralesional hemisphere (Stinear et al., 2008). This increase in
contralesional M1 excitability is also marked by facilitation of
ipsilateral descending projections to paretic upper limb muscles
(Turton et al., 1996; Netz et al., 1997; Caramia et al., 2000; Alagona
et al., 2001; Lewis and Perreault, 2007).

Cortical reorganization following spinal cord transection con-
sists of an early phase of bilateral M1 up-regulation, followed later
by increased contralesional M1 and bilateral premotor excitability
(Nishimura et al., 2007; Nishimura and Isa, 2009). Hand dexterity
can be restored by intensive rehabilitation following transection
of the contralateral corticospinal tract in brain or cervical cord
but is accompanied by abnormal co-activation of distal and prox-
imal muscles (Nishimura et al., 2009), in particular forearm and
hand flexors (Zaaimi et al., 2012). Furthermore, these studies have
demonstrated there is only a weak contribution of ipsilateral M1
to residual motor control of the paretic upper limb (Schmidlin
et al., 2004; Zaaimi et al., 2012), indicating intact subcortical
descending pathways are responsible for the observed motor recov-
ery (Nardone et al., 2013). Together these studies support an
emerging concept of reorganization via ipsilateral reticulospinal
and propriospinal systems following disruption to contralateral
corticospinal tract in line with our hypothesis.

A model for how the ipsilateral CRPP may influence upper
limb recovery after stroke is illustrated schematically in Figure 1,
bottom panel. The model demonstrates that the balance of cM1-
iM1 descending inputs reaching C3/4 PNs can be affected by
the stroke lesion. Descending motor control by the ipsilesional
hemisphere is reduced with disruption to the corticospinal tract.
This is associated with an increase in excitability of contrale-
sional M1 and descending output along the ipsilateral CRPP,
leading to a worsening of upper limb impairment. Why might
this occur? Ipsilesional white matter damage confined to the –
posterior limb of the internal capsule may spare the descending
inhibitory projections originating in the premotor cortex that tra-
verse the genu of the internal capsule and the ventral portion
of the posterior internal capsule (Fries et al., 1993). A moder-
ate increase in presumed PN excitability via the CRPP could be
balanced by the residual inhibitory control over PNs from the
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ipsilesional hemisphere. In contrast, extensive damage to the ipsile-
sional descending pathways would compromise both excitatory
and inhibitory projections to presumed PNs. With greater tract
damage there would be little remaining ipsilesional inhibitory
control to counterbalance the significant facilitation of presumed
PNs via the contralesional CRPP. It is also possible that small
lesions may affect the CRPP in isolation and give rise to abnormal
synergistic control through altered input to PNs and inhibitory
interneurons. This model of ipsilateral CRPP up-regulation is
supported by experiments showing that excitability of circuits
mediated by presumed PNs is increased after stroke (Mazevet
et al., 2003; Stinear and Byblow, 2004), suggesting up-regulation
of these indirect descending pathways when the corticospinal tract
is compromised.

The model predicts that contralesional CRPP influences upper
limb function negatively to positively along a continuum that
depends on ipsilesional white matter tract integrity. In patients
with minimal damage to the corticospinal tract, the contrale-
sional CRPP may interfere with residual descending inputs from
ipsilesional hemisphere, at the level of the spinal cord. Greater
descending drive through the ipsilateral reticulospinal tract com-
pared to contralateral corticospinal tract may result in aberrant
recruitment of PNs and inhibitory interneurons. In the presence
of extensive damage, the contralesional CRPP may provide the
only descending cortical commands to reach the spinal cord. This
pathway can only partially compensate for the loss of excitatory
and inhibitory descending control from ipsilesional M1. The loss
of tonic inhibition over αMNs, and aberrant control of PNs, might
explain the emergence of abnormal muscle synergies and spastic-
ity in the paretic upper limb in more severely impaired patients
after stroke. This model highlights the importance of the contrale-
sional CRPP pathway for residual control over the paretic upper
limb, which may have relevance for the use of NBS protocols that
aim to suppress the contralesional M1.

IMPLICATIONS FOR NON-INVASIVE BRAIN STIMULATION
Non-invasive brain stimulation may be a useful adjuvant to re-
balance motor cortex excitability after stroke, with the aim of
improving motor function of the paretic upper limb during
recovery (Hummel et al., 2008). Using NBS to directly facilitate
ipsilesional M1 can improve paretic hand function by increas-
ing excitability of descending projections to αMNs (Fregni et al.,
2005; Mansur et al., 2005; Takeuchi et al., 2005; Boggio et al.,
2007; Nowak et al., 2008; Ackerley et al., 2010; Kim et al., 2010;
Stagg et al., 2012). Conversely, NBS to suppress excitability of con-
tralesional M1 may restore the balance of hemispheric excitability
and also enhance corticomotor drive from ipsilesional M1 to the
paretic upper limb (Takeuchi et al., 2005; Suppa et al., 2008; Grefkes
et al., 2010). Improvements in hand function have been reported
in studies using NBS to suppress contralesional M1 (Fregni et al.,
2005; Boggio et al., 2007; Dafotakis et al., 2008; Nowak et al., 2008;
Grefkes et al., 2010; Kim et al., 2010), however many studies have
examined relatively well-recovered patients. In patients with more
severe impairment suppression of the contralesional M1 has been
equivocal for improving upper limb function (Ackerley et al., 2010;
Theilig et al., 2011; Bradnam et al., 2012; Talelli et al., 2012). The
prevailing view of interhemispheric imbalance of motor cortex

excitability after stroke, and use of NBS to suppress contralesional
M1 to redress imbalance, has not considered effects on output
pathways other than transcallosal projections. Our model pro-
poses that suppression of contralesional M1 can reduce excitability
of the ipsilateral CRPP (Bradnam et al., 2011), and therefore the
use of NBS for suppressing contralesional M1 should be con-
sidered carefully. The effects of suppressing contralesional M1
may be quite different for mildly impaired (Figures 2A,B) versus
moderate to severely impaired (Figures 2C,D) patients, as illus-
trated schematically in Figure 2. In a study of patients with upper
limb weakness after subcortical stroke, c-tDCS improved paretic
proximal upper limb motor control in mildly impaired patients
but degraded control in moderate to severely impaired patients
(Bradnam et al., 2012). The residual structural integrity of the
ipsilesional corticospinal tract was compromised in patients for
whom suppression of the contralesional M1 was detrimental. It
is conceivable that these patients rely more strongly on compen-
satory up-regulation of the contralesional M1 and CRPP. Suppres-
sion of contralesional M1 may reduce residual descending drive
to αMNs, further degrading paretic upper limb motor control.
Conversely, for mildly impaired patients, suppressing contrale-
sional M1 may reduce interhemispheric inhibition of ipsilesional
M1 leading to improved function of the paretic upper limb as
described previously (Fregni et al., 2005; Boggio et al., 2007; Dafo-
takis et al., 2008; Nowak et al., 2008; Grefkes et al., 2010; Kim et al.,
2010). Contralesional M1 suppression also decreases excitability of
the contralesional CRPP and could therefore reduce interference
between descending inputs to the cord from intact ipsilesional
descending pathways and the contralesional CRPP.

This idea has several practical implications. First, measuring
the effects of NBS on corticomotor excitability in contralateral
distal hand muscles does not completely capture all the effects
on descending pathways that reach spinal motoneurons. Second,
suppression of contralesional M1 may be contraindicated in more
severely affected stroke patients (Bradnam et al., 2012). Third, the
proposed CRPP model supports the emerging view that NBS neu-
romodulation should be tailored individually for patients after
stroke based on impairment level (at the chronic stage) (Cramer,
2010; Stinear, 2010; Bradnam et al., 2012) and perhaps, based
on the residual capacity of their descending motor pathways (at
the sub-acute stage). Further research examining the full range of
neurophysiological effects induced by NBS seems warranted. For
example, it may be advantageous to use NBS to either facilitate
or attenuate contralesional hemisphere excitability based on the
degree of damage to the ipsilesional descending pathways. This
remains to be determined.

How might individualization of NBS be implemented to
improve post-stroke rehabilitation? The presence or absence of
motor evoked potentials from TMS and measures of structural
integrity derived from diffusion-weighted imaging (DWI) pro-
vide objective information about corticospinal tract integrity. TMS
and DWI can be used in combination with clinical measures to
predict the potential for recovery of function with rehabilitation
(Stinear et al., 2007, 2012; Jang et al., 2010; Kwon et al., 2011;
Riley et al., 2011). TMS and DWI could also determine which
patients are suitable for suppressive NBS to contralesional M1. A
recent study indicated that patients with moderate damage to the
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Bradnam et al. Ipsilateral motor pathways after stroke

FIGURE 2 | A schematic of proposed effects of contralesional M1
c-tDCS. Line thickness indicates relative excitability, thicker lines represent
greater excitability. Red arrow indicates the stroke lesion. Note (A,B) lesion
affects excitatory projections (i.e., the posterior limb of the internal capsule),
(C,D) lesion affects both excitatory and inhibitory projections (i.e., most of
internal capsule). (A) Patients with mild upper limb impairment. There is
up-regulation of the CRPP from contralesional M1 and residual ipsilesional
inputs to PNs and inhibitory interneurons. (B) Mildly impaired patients after
contralesional M1 c-tDCS. Contralesional M1 and the CRPP are suppressed

removing interference with ipsilesional inputs to PNs. Inhibition over PNs is
restored and paretic upper limb motor control is improved. (C) Patients with
moderate to severe upper limb impairment. There is greater up-regulation of
contralesional M1 and little or no descending input to PNs and inhibitory
interneurons from ipsilesional M1. (D) Severely impaired patients after
contralesional M1 c-tDCS. Contralesional M1 and CRPP excitability is
reduced removing PN facilitation. Motor control is worsened. All projections
are facilitatory except for the inhibitory interneuron, shown in black.
Abbreviations as for Figure 1.
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internal capsule did not have a positive response to contralesional
M1 c-tDCS (Bradnam et al., 2012). Patients in whom motor
control was improved by NBS were characterized by the presence
of responses to TMS from stimulation of ipsilesional M1, and low
impairment levels or no upper limb spasticity as assessed by clin-
ical scales. These relatively simple measures could be used to help
decide whether a given NBS protocol is appropriate for individual
patients.

CONCLUSION
It is becoming increasingly clear that skilled function of the upper
limb relies on the balance of excitability of cM1 and iM1 in healthy
adults. In this article we propose a neurophysiological model of
ipsilateral neural control of the proximal upper limb via the CRPP.

The model highlights the importance of understanding how the
degree of compensatory activity in the contralesional hemisphere
after stroke contributes to paretic upper limb function across a
range of impairment levels. It is proposed that NBS protocols
are not “one size fits all” and should be carefully selected based
on individual patient characteristics. Research has targeted the
development of structural and functional biomarkers that can be
combined with clinical tests to allow NBS to be individually pre-
scribed as an adjuvant to therapy after stroke. These methods of
patient stratification based on objective measures of impairment
should be used to determine the optimum intervention in future
studies of NBS in stroke. Individualization may increase effective-
ness of NBS in clinical trials and expedite translation from research
laboratory to the clinical setting.
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