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INTRODUCTION

Valid research on neglect rehabilitation demands a statistical approach commensurate with
the characteristics of neglect rehabilitation data: neglect arises from impairment in distinct
brain networks leading to large between-subject variability in baseline symptoms and recov-
ery trajectories. Studies enrolling medically ill, disabled patients, may suffer from missing,
unbalanced data, and small sample sizes. Finally, assessment of rehabilitation requires
a description of continuous recovery trajectories. Unfortunately, the statistical method
currently employed in most studies of neglect treatment [repeated measures analysis
of variance (ANOVA), rANOVA] does not well-address these issues. Here we review an
alternative, mixed linear modeling (MLM), that is more appropriate for assessing change
over time. MLM better accounts for between-subject heterogeneity in baseline neglect
severity and in recovery trajectory. MLM does not require complete or balanced data,
nor does it make strict assumptions regarding the data structure. Furthermore, because
MLM better models between-subject heterogeneity it often results in increased power to
observe treatment effects with smaller samples. After reviewing current practices in the
field, and the assumptions of rANOVA, we provide an introduction to MLM. We review
its assumptions, uses, advantages, and disadvantages. Using real and simulated data, we
illustrate how MLM may improve the ability to detect effects of treatment over ANOVA,
particularly with the small samples typical of neglect research. Furthermore, our simula-
tion analyses result in recommendations for the design of future rehabilitation studies.
Because between-subject heterogeneity is one important reason why studies of neglect
treatments often yield conflicting results, employing statistical procedures that model this
heterogeneity more accurately will increase the efficiency of our efforts to find treatments
to improve the lives of individuals with neglect.

Keywords: spatial neglect, rehabilitation, mixed linear modeling, statistical methods, power simulation, type | error
simulation

In this research, typically two or more patient groups are assessed

Spatial neglect, a deficit in perceiving, orienting, or initiating
action toward stimuli in contralesional space (Heilman et al,
2003), affects an estimated one half of right hemisphere stroke
survivors annually (Paolucci et al., 2001; Buxbaum et al., 2004;
American Heart Association, 2011; Nijboer et al., 2013). Individu-
als with spatial neglect experience greater disability than do other
stroke survivors (Buxbaum et al., 2004; Jehkonen et al., 2006):
they have longer hospitalizations (Kalra et al., 1997), poorer reha-
bilitation outcomes (Gillen et al., 2005), and greater incidence of
chronic functional disability (Paolucci et al., 2001). Thus, there
is an urgent need to identify therapies that successfully induce
recovery of neglect-related cognitive and motor impairment. Our
ability to identify these therapies, however, is constrained by the
methods we use to assess them.

We argue that the statistical approach typically employed in
studies of neglect rehabilitation — repeated measures ANOVA
(rANOVA) — is inappropriate given the characteristics of the
neglect syndrome and the nature of neglect rehabilitation research.

prior to the administration of an experimental or control treat-
ment and assessed again one or more times after the treatment.
The critical question is whether the amount of change across
the assessments is different for the different treatment! groups.
Thus, in assessing change across time, rehabilitation research stud-
ies are longitudinal studies. We argue that it is time for neglect
rehabilitation scientists to join many other psychological scien-
tists in using mixed linear modeling (MLM) for longitudinal data
analysis.

Here we first review techniques currently employed in reha-
bilitation studies of neglect. We then review key characteristics

!n the current paper, the terms treatment and rehabilitation are used interchange-
ably, given that the goal of most neglect treatment studies is rehabilitation. However,
these two terms can have distinct meanings: treatment sometimes refers to inter-
ventions designed to address only symptoms of a disorder, while rehabilitation
consistently refers to interventions designed to ameliorate the underlying cause of
symptoms.
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of neglect that critically impact the kind of data rehabilitation
researchers encounter, discussing how current techniques fail to
adequately address these issues. Finally, we introduce MLM and
show how it more appropriately accounts for the inherent variabil-
ity in the neglect syndrome, allowing for more accurate estimation
of treatment-related parameters. Using both real and simulated
data, we demonstrate the superior ability of MLM to discrimi-
nate recovery trajectories of patient groups relative to rANOVA.
Although authors in several fields have deemed MLM superior to
rANOVA for most longitudinal and repeated measures data (e.g.,
Tate and Pituch, 2007; Kwok et al., 2008; Pietrzak et al., 2010;
Bernal-Rusiel et al., 2013), neglect rehabilitation researchers have
yet to embrace this approach. Our goal in the current paper is
to contrast MLM with rANOVA, the analysis technique most fre-
quently used in neglect rehabilitation. Furthermore, in an effort
to guide nascent MLM users in the field of neglect rehabilitation,
we provide power and Type I error analyses for data structures
like those encountered in neglect research. These analyses result in
recommendations for the design of future neglect rehabilitation
studies.

CURRENT ANALYSIS TECHNIQUES AND THEIR ASSUMPTIONS

The assessment of individuals at multiple points over time leads
to nested and correlated data structures: assessments over time are
nested within each subject. These measurements taken from the
same subject are likely to be more similar to one another than those
taken from different subjects (Raudenbush, 2009). Thus, neglect
rehabilitation data involves dependent, rather than independent,
observations. This dependence among observations renders the
use of some statistical procedures such as linear regression or
analysis of variance (ANOVA) inappropriate, while other statistical
methods such as the dependent samples ¢ test, rAANOVA, and mul-
tivariate ANOVA (MANOVA) may be appropriate under certain
circumstances.

We performed a review to assess the current use of statistics in
neglect rehabilitation studies: we identified studies for the review
via a PubMed literature search using three sets of search terms:
“neglect” and “rehabilitation”; “spatial neglect” and “treatment”;
and “visual neglect” and “treatment.” We included in our review
neglect treatment studies that performed statistical group com-
parisons of two different neglect treatments, or of a treatment
to a control group, or of a group to themselves (e.g., cross-
over design), with a minimum of two assessment time-points
(minimum pre-post). We included only human rehabilitation
studies.

Our review identified 78 studies meeting the above criteria,
published between January, 1990, and December, 2012. Table 1
depicts key characteristics of these studies’ design and analy-
ses. As can be seen in the Table, the majority of neglect reha-
bilitation studies employed rANOVA. The average sample size
was 18.11 (SD =10.58, median = 14.5), but 25% of the stud-
ies had total sample sizes of 11 or fewer. Of the 78 stud-
ies, 34 studies employed only pre-post measurement (i.e., two
measurement waves); 33 employed three measurement waves;
8 employed four waves and three studies employed six waves.
Thus, most studies employed rANOVA, had two assessment

Table 1 | Status of current data analysis in neglect rehabilitation.

Statistical Number of Meansamplesize Mean measurement
technique studies (min, max) waves (min, max)

t Test 14 17.1 (4, 39) 26(2,4)

rANOVA 45 17.9 (4, 40) 2.7 (2,6)

MANOVA 1 20 (20, 20) 6 (6, 6)
Non-parametric 15 16.5 (10, 30) 251(2,4)

One-way ANOVA 1 60 (60, 60) 3(3,3)

MLM 1 21 (21, 21) 6 (6, 6)

None 1 15 (15, 15) 3(3,3)

Total 78 18.1 (4, 60) 2.8(2,0)

rANOVA, repeated measures ANOVA.

Variance-Covariance Matrix

1 2 3 4 5
1 o> COV COV COV CcoV
2COV ¢ COV COV cov
3COV COV o¢® COV COV
4 COV COV COV o¢® CoV
5COV COV COV COV o&?

FIGURE 1 | Variance-covariance matrix depicting homogeneity of
variance and compound symmetry assumptions of a repeated
measures ANOVA with six repeated assessments.

sessions/measurement waves, and had sample sizes of 15 or
less.

Repeated measures ANOVA, the most frequently employed
statistical technique, makes three primary assumptions: (1)
normality; (2) homogeneity of variance; and (3) either compound
symmetry or sphericity (Twisk, 2003). Normality is the assump-
tion that residual variance is normally distributed. Homogeneity
of variance is the assumption that variances at all assessment
points (and in all groups) are equal. Compound symmetry is
the assumption that covariances between all measurement points
are equal. Figure 1 represents these latter two assumptions in a
variance-covariance matrix for a study with six repeated assess-
ments. The variances at each assessment point are equal (main
diagonal) and the covariances between all assessment points are
equal (tip: read the Figure like a correlation table, with covari-
ances as squared correlations). A less stringent way of approx-
imating the compound symmetry requirement is the sphericity
assumption, which is the assumption that all possible pairs of
difference scores between the repeated measures have the same
variance (see Rabe-Hesketh and Skrondal, 2012, p. 264, for a more
detailed description of compound symmetry vs. sphericity). Data
meeting the compound symmetry assumption meets sphericity,
but not vice versa. In addition to these assumptions, ANOVA
requires complete data, as well as relatively equal samples sizes to
ensure homogeneity of variance (Fitzmaurice and Molenberghs,
2009).
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Among the other statistical techniques employed in neglect
rehabilitation research, MANOVA does not require spheric-
ity or compound symmetry, but it does require normality.
Dependent samples t tests also require both normality and
homogeneity of variance. While non-parametric tests do not
entail strict assumptions about the data structure, these are
less powerful to detect effects, particularly with violations of
homogeneity of variance, and are more limited in their use
(e.g., inability to directly test interactions; Siegel and Castel-
lan, 1988; Zimmerman, 1998). Furthermore, similar to ANOVA,
the MANOVA, ¢ test, and non-parametric test all require com-
plete data, with MANOVA and ¢ tests also requiring relatively
equal cell sizes (Twisk, 2003; Fitzmaurice and Molenberghs,
2009).

THE NEGLECT SYNDROME AND NEGLECT REHABILITATION DATA

Here we review characteristics of the neglect syndrome that affect
the structure of neglect rehabilitation data. Some of these char-
acteristics create particular issues for the neglect rehabilitation
researcher, while other characteristics create issues that are com-
mon amongst longitudinal patient-based research studies. As we
discuss in detail below, rANOVA falls short in handling each of
these issues.

Between-subject heterogeneity

Working in the area of neglect rehabilitation presents a special
challenge: neglect is not a homogeneous disorder. Rather, spa-
tial neglect is a syndrome resulting from disruption in poten-
tially distinct brain networks, leading to diverse impairments,
such as object-centered neglect, perceptual-attentional “where”
spatial dysfunction, and motor-intentional “aiming” spatial dys-
function, any one of which may or may not be present in a
given patient (Na et al., 1998; Barrett and Burkholder, 2006;
Hillis, 20065 Verdon et al., 2010; Corbetta and Shulman, 2011).
As a result, there is variability across patients both in the type
and severity of symptoms prior to treatment, as well as in
how those symptoms change over time either with or with-
out treatment (e.g., Hamilton et al., 2008; Manly et al., 2009;
Rengachary et al., 2011; Goedert et al., 2012; Nijboer et al,,
2013). Thus, neglect rehabilitation demands a statistical approach
that accounts for potentially large between-subject heterogene-
ity among patients both at baseline and in their recovery
trajectories.

In rANOVA, variability due to between-subject differences is
modeled with the “subjects” term. As a main effect of subjects,
it portrays the total variability in the data due to subjects, aver-
aged over the repeated assessments. Thus, while rANOVA mod-
els between-subject variability, it does not distinguish between-
subject differences in baseline performance from between-subject
differences in recovery trajectories (i.e., slope of the change over
the repeated assessments). More accurate modeling of these two
separate contributions of subjects to the overall variability in the
data has the potential to decrease the amount of error variabil-
ity, thereby improving power to detect treatment effects. How-
ever, the ability to do this eludes the researcher who employs
rANOVA.

—e—Treatment -m - Control

30
g
5 20
2
3 10
g ]
[} T
0
2 Pre Post 1 Post 2

Assessment Time

FIGURE 2 | Depiction of fictional, idealized recovery trajectories in the
control, and treatment groups of a neglect rehabilitation study. Larger
values on the y-axis indicate more severe neglect.

Change over time

Although the use of only pre- and post-treatment assessments
is very common, evaluating the success of rehabilitation neces-
sitates an interest in change over time — that is, an interest in
patients’ recovery trajectories. Whether a treatment changes the
nature of neglect patients’ recovery trajectories is a question
regarding continuous development. Figure 2 represents the fic-
tional results of an idealized neglect treatment study in which the
severity of neglect in both a control and treatment group have
been assessed three times. A key question for neglect rehabilita-
tion is whether the slope of the recovery trajectory in the treatment
group differs from that of the control group — that is, whether
there is a time by group interaction. Figure 2 represents ideal-
ized data as both groups have a similar starting neglect severity
and the control group changes little after the treatment (i.e., a
very shallow slope on the recovery trajectory), while the treat-
ment group has a steep slope on its recovery over the repeated
assessments.

Repeated measures ANOVA does not provide a descrip-
tion of continuous change over time in this situation. In the
ANOVA, time is a discrete factor variable, rather than a con-
tinuous variable. Thus, were we to analyze the fictional data
in Figure 2 and find a significant group by time interaction,
we would know that somewhere among the six means (three
assessments for each of the two groups) there were signifi-
cant differences not accounted for by either the main effect of
session or the main effect of group. Post hoc tests would be
needed to determine where those significant differences were
(Twisk, 2003; Keppel and Wickens, 2004). Thus, ANOVA does
not provide a descriptive value of the magnitude of the change
over time, such as the slope value that is produced in linear
regression.

Violations of compound symmetry and sphericity

Although distinct in a number of respects, neglect rehabilitation
research also faces problems common amongst studies of change
over time (for a review, see Gibbons et al., 2010). Repeated mea-
sures taken from the same subjects are likely to be correlated
(Twisk, 2003; Raudenbush, 2009). Furthermore, they are likely to
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have an auto-regressive covariance structure, such that data-points
closer together in time tend to be more correlated with one another
than data-points farther away in time. That is, the strength of auto-
correlation in the data decreases as time between the assessments
increases (e.g., Littell et al., 2000; Fitzmaurice and Molenberghs,
2009). For example, referring to Figure 1, an auto-regressive struc-
ture would be apparent if the correlation (or covariance) between
measurements taken at time 1 and 2 were higher than that observed
between time 1 and 3.

Given that repeated measures taken from the same indi-
viduals often have an auto-regressive covariance structure, the
assumptions of compound symmetry and sphericity required for
rANOVA may be violated in neglect rehabilitation data. Although
one can test for violations of sphericity, these tests are sensi-
tive to sample size and are likely to be significant with small
violations of sphericity in large samples and, conversely, fail to
reach significance with large violations of sphericity in small
samples (Twisk, 2003). When the assumption of sphericity is
violated, some researchers have turned to employing correc-
tions on the degrees of freedom from the rANOVA (e.g., Green-
house and Geisser, 1959), or to non-parametric methods. Both
options, however, suffer from reduced power to detect treatment
effects. Other researchers choose to employ repeated measures
MANOVA, which does not entail the compound symmetry or
sphericity assumption, but it does require complete data with rel-
atively equal cell sizes (Twisk, 2003; Fitzmaurice and Molenberghs,
2009).

Correlations between baseline performance and recovery
trajectories

In addition to the likelihood of having an auto-regressive covari-
ance structure, there may be a distinct relationship between
neglect patients’ baseline severity and the slope of their recov-
ery trajectories. Although one might expect that the better-off a
patient is at baseline, the less room that patient would have for
improvement (e.g., Wang et al., 2009), recent studies of spatial
neglect demonstrated the opposite: patients better-off at base-
line improved more with a prism adaptation treatment than did
more severe patients (e.g., Mizuno et al., 2011; Chen et al., 2012;
Goedert et al., 2012). Thus, there is an expectation that sub-
jects’ starting point and the slope of their recovery trajectory
will be correlated. This correlation is theoretically interesting as
it can reveal information about the nature of the neglect treat-
ment (e.g., may only work for less severely impaired patients).
Furthermore, this correlation represents systematic variability in
the data that can potentially be modeled in an analysis, thereby
potentially reducing error variability increasing power. How-
ever, it is not possible to model this correlation when using
rANOVA.

Small sample sizes, missing data, and unequal cell sizes

Similar to other patient-based longitudinal work, neglect rehabil-
itation researchers face missing data, unequal cell sizes, and small
samples. These issues, however, may be particularly exacerbated
when studying neglect: stroke survivors with spatial neglect usu-
ally have multiple medical conditions and are, as a group, more

disabled than other stroke survivors (Buxbaum et al., 2004; Jehko-
nen et al., 20065 Paolucci et al., 2010). This makes data collection
at rigidly fixed intervals very challenging. When subjects miss an
assessment due to circumstances outside the researcher’s control
(Fitzmaurice et al., 2011), this leads to missing data. Furthermore,
neglectis also associated with higher caregiver burden and reduced
self-awareness (Buxbaum et al., 2004), which may lead to increased
attrition, resulting in unbalanced sample sizes among treatment
groups or overall small sample sizes.

AN ALTERNATIVE TO ANOVA: MIXED LINEAR MODELING
Given that as rehabilitation researchers we are interested in change
over time, it would be beneficial to adopt a statistical tool devel-
oped for the purpose of analyzing change over time. One such
tool, MLM or multilevel modeling (also referred to as hierarchi-
cal linear modeling, mixed-effects modeling, and random effects
analysis), has emerged as a clear alternative to ANOVA for analysis
of longitudinal and repeated measures data (see West et al., 2007,
for a review). The MLM approach is a regression-based approach
that differs from rANOVA in two key respects critical to neglect
rehabilitation and other longitudinal research studies: (1) While
ANOVA accounts for the correlated structure of repeated measures
by modeling a main effect of subjects (i.e., the effect of subjects
averaged over the repeated assessments), in MLM one can model
subject-level differences in both intercepts (i.e., starting neglect
severity) and in slopes (i.e., neglect recovery over time), as well as
the correlation between subjects’ intercepts and slopes. (2) With
ANOVA, one asks whether any of the repeated measurement points
differs from any of the others, but with MLM, one obtains a slope
of the recovery trajectory that describes how a patient’s symptoms
change over time.

To introduce MLM, let’s take as a starting point the equation
for simple linear regression and assume we want to predict neglect
severity (Y;) with assessment time-point as the sole predictor:

Y; = by + by (assessment) + ¢; (1)

Here, Y; is the predicted Y value at time-point i, by is the group-
level intercept and b; is the group-level slope on assessment (it
describes the average recovery trajectory across all subjects), and
g; is the residual error variability at time-point i. Because this is a
regression analysis, assessment time in Eq. 1 is treated as a contin-
uous predictor. Standard regression, however, assumes indepen-
dence of observations. It is therefore not appropriate for repeated
measures data, such as the repeated assessment of neglect over
time. In contrast, MLM is appropriate for repeated measures data.

Although it is a regression-based model, MLM accounts for
the dependencies in repeated measures data by separately model-
ing variability due to subjects, with the option to do so for both
between-subject differences in intercepts and between-subject dif-
ferences in slopes. These subject effects are termed random effects.
In the case of repeated assessments within subjects, this separate
modeling of subject effects occurs via the creation of two levels of
regression equations. At the highest level is a regression equation
that describes the group-level intercept and slope, as depicted in
Eq. 1. This group-averaged intercept and slope are the fixed effects
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in the MLM analysis. At the lowest level in the MLM analysis
are subject-specific regression equations representing the random
effect of subjects?. At this level, the predicted Y differs for each
subject j such that:

Y = (b + boj) + (b + hlj)(assessment) +e; (2)

Here, Yj; is the predicted Y value at time-point i for subject j, bo
is the group-level intercept, bo; is the difference between subject
7’s intercept and the group-average intercept, b; is the group-level
slope, and by; is the difference between-subject j’s slope and the
group-average slope. Thus, taking Eqs 1 and 2 together, MLM
models variability in the intercept and slope as averaged over the
group (fixed effects), and it models variability due to individual
differences around the group intercept (random intercept), as well
as variability due to individual differences around the group slope
(random slope). The MLM model can also be constructed so as
to estimate the observed correlation between subjects’ intercepts
and slopes. Although computationally the MLM analysis builds
an individual regression equation for each subject, the typical
output from statistical packages running MLM analyses provides
summary terms for the random intercept and slope, reporting
the amount of variance in the data due to these effects. Addi-
tional analysis commands can be used to extract the subject-level
regressions.

What is the purpose of modeling these random effects? A
researcher may desire to model these subject-level random effects
because of an interest in the individual variability in its own right.
For example, as stated earlier, in the case of prism adaptation treat-
ment for neglect, there appears to be a negative correlation between
patients’ starting severity (i.e., their intercept) and their response
to treatment (i.e., the slope of their recovery trajectory over time;
Chen et al., 2012; Goedert et al., 2012). Conversely — or addition-
ally — a researcher may be interested in modeling subject-level
random effects as a means of potentially reducing error variability
in the statistical analysis, with the possibility of improving power
to detect group-level treatment effects (Gueorguieva and Krystal,
2004; Brown and Prescott, 2006; Fitzmaurice et al., 2011). For the
neglect rehabilitation researcher, finding a treatment that works at
the group-level is the likely goal of this analysis. Thus, the main
focus of interpretation in neglect rehabilitation would likely be on
the fixed effects (i.e., group-level effects).

Assumptions and decisions when using MLM

Mixed linear modeling is not without its own assumptions. Stan-
dard MLM assumes normality in residuals of the fixed and ran-
dom effects. It assumes homogeneity of variance at all levels of

2Note, in MLM terminology, the random effects of subjects, as described here, would
be considered level-1 effects and the group-level fixed effects would be considered
level-2 effects. Whether “subjects” are the level-1 or level-2 effects depends, however,
on the study design. In a study of patients nested within hospitals, patients would
be the lowest level (i.e., level-1) and hospitals would be the higher level (i.e., level-2;
see Chapter 1 of West et al., 2007, for a comparison of study designs appropriate
for MLM and a description of what constitutes the levels in those designs). One
could also create a 3-level model with multiple measurement points (level-1) nested
within patients (level-2), which themselves are nested within hospitals (level-3).

the model, and, like simple linear regression, it assumes a linear
relation between the predictor and outcome (Singer and Wil-
lett, 2003). While a number of these assumptions are similar to
those of rANOVA and MANOVA, with MLM it is possible to
modify the standard analysis to accommodate violations of these
assumptions.

Indeed, unlike rANOVA, when performing an MLM, the
researcher must make a number of decisions for how to structure
the analysis. One such decision is with regards to the struc-
ture of the residual covariance matrix: the residual variability
represented by the terms ¢ and e in Eqs 1 and 2 refer to resid-
ual covariance structures (i.e., structures similar to that depicted
in Figure 1). When performing an MLM, the researcher must
decide whether to impose assumptions on the covariance struc-
ture and what assumptions to impose. For example, one could
assume an auto-regressive covariance structure (as described in
Violations of Compound Symmetry and Sphericity). A number
of different covariance structure choices are available in sta-
tistical packages. Alternatively, the researcher could decide to
make no assumptions about the residual covariance structure,
estimating the covariance directly from the data, thereby ren-
dering homogeneity of variance and other assumptions about
the variance-covariance structure unnecessary (e.g., Littell et al.,
2000).

Although basic MLM makes assumptions of linearity and nor-
mality, like other regression models, the researcher has the option
to build non-linear relations into the MLM (e.g., polynomial
trends, linear splines; Littell et al., 2000; Singer and Willett, 2003;
Twisk, 2003; Davidian, 2009). With MLM (as with regression)
non-normality may be accommodated via bootstrapping the stan-
dard errors of the intercept and slope parameters (Guan, 2003).
Thus, MLM models allow for a better match between the model
assumptions and the actual data typically observed in neglect
rehabilitation and other longitudinal studies.

However, in MLM one must decide how to evaluate signifi-
cance of the parameter estimates — i.e., how to assess significance
of the fixed intercept and slope. Although assessing the signifi-
cance of terms in the rANOVA is typically straightforward, the
researcher deciding to use a degrees of freedom correction for vio-
lations of sphericity (e.g., Greenhouse—Geisser or Huynh—Feldt)
is making a decision about how to assess significance. In MLM
the primary issue is with regards to estimating degrees of free-
dom, and different statistical packages provide different options
and defaults. For example, in STATA and Mplus, Wald’s z is the
method for assessing significance, which assumes infinite degrees
of freedom. Thus, it is only appropriate for large samples. SPSS
and SAS assess significance of fixed effects using an F distribution.
They offer different options for computing degrees of freedom for
the F test, all of which take into account the size of the sample
and number of repeated observations in the analysis. Finally, one
must decide whether to use a maximum likelihood estimation pro-
cedure or restricted maximum likelihood for the MLM analysis.
(A complete discussion of these latter two issues is beyond the
scope of the current paper; for a thorough discussion of both,
the reader is directed to West et al., 2007, pp. 25-29, 3638, and
110-113).
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Advantages of MLM and a longitudinal modeling approach

Greater power with smaller samples. Because of the immediate,
urgent need to move new therapies forward into widely available
clinical practice guidelines, neglect rehabilitation research requires
an approach that can make use of smaller sample sizes than those
required for typical parametric analysis. Because MLM considers
the correlated and nested data structure inherent in measuring the
same subjects repeatedly, it results in a much more accurate esti-
mation of variance to calculate between-subject treatment effects
(Fitzmaurice et al., 2011). Modeling random intercepts and slopes
can result in reduced standard errors for the estimates of the
fixed effects (Littell et al., 2000; Gueorguieva and Krystal, 2004;
Brown and Prescott, 2006)3. Thus, MLM can result in greater
power to detect group-level differences, as well as in more narrow
confidence intervals around the group-level parameter estimates.

Description of the recovery trajectory. A second benefit of the
MLM analysis is that it allows us to describe recovery trajectories
of treatment and control groups. Again, referring to the fictional
data depicted in Figure 2, using MLM we could assess the group
by time interaction and if we determine it is significant, produce
separate group-level slopes for our treatment and control groups.
Thus, MLM, like linear regression, yields a metric that describes
the magnitude of change over time in our two groups.

Flexible model-building and analysis. An additional benefit of
the MLM analysis is that one can readily examine the effects of
controlling for additional nuisance variables that may happen to
be continuous rather than categorical (e.g., differences in baseline
status) or that may be time-varying as opposed to constant across
the assessment time-points (Rabe-Hesketh and Skrondal, 2012).
Furthermore, these analyses can be conducted while controlling
for potential interactions between the continuous predictors and
the recovery trajectories (e.g., Cnaan etal., 1997). For example, one
could ask whether there were differences in the group-level recov-
ery trajectories while controlling for any improvements across the
sessions that may be attributable to baseline status (i.e., while con-
trolling for a baseline status by assessment-session interaction).

3This is not a necessary effect of modeling the random effects (Rabe-Hesketh and
Skrondal, 2012), but frequently results when modeling the random effects for data
with large between-subject variation relative to within-subject variation (discussed
by Brown and Prescott, 2006; Fitzmaurice et al., 2011; Gueorguieva and Krystal,
2004). It is a result we have observed in our own MLM analyses of neglect rehabil-
itation data, likely due to large between-subject variation. That is, adding random
effects to an MLM model that first contained fixed effects typically does not change
the fixed effect coefficients, but it reduces the standard error on those coefficients.
However, as discussed by Rabe-Hesketh and Skrondal (2012, pp. 167-168), the exact
result of introducing random effects into the MLM also depends on whether the
fixed effect factor is completely within-cluster (i.e., within-subjects), as time is when
assessing change over time, or whether the fixed effect factor is completely between-
cluster. For within-cluster fixed effects, adding specification of the random effects
can reduce the standard errors of the fixed effect parameter estimates (relative to
ordinary least squares regression). The opposite can occur for completely between-
cluster fixed effect factors. Furthermore, the magnitude of these changes varies with
sample size (Snijders and Bosker, 1993, p. 253). Other factors affect the fixed effects
standard errors, such that when the sample size is small, the data are not balanced,
and between-subject variability is small relative to within-subject variability, the
estimated standard errors may be too small (i.e., a biased estimate of the variance)
and corrections may be necessary when significance testing (Brown and Prescott,
2006, pp. 75-76; Kenward and Roger, 1997).

Although rANOVA and MANOVA can accommodate continuous
covariates, one cannot use ANOVA and MANOVA to examine
complicated interactions among continuous and factor predictors
or among two or more continuous predictors (Twisk, 2003).

Good tolerance for missing data and unequal cell sizes. Mixed
linear modeling is tolerant of both unequal cell sizes (i.e., unbal-
anced data) and data that are missing at random (Laird and Ware,
1982; Quene and van den Bergh, 2004; Kwok et al., 2008; Skron-
dal and Rabe-Hesketh, 2008; Molenberghs and Fitzmaurice, 2009;
Gibbons et al., 2010). This relative robustness in the face of miss-
ing and unbalanced data results from characteristics of the MLM
analysis: (1) treating time as a continuous rather than a factor
variable (Kwok et al., 2008) and (2) using maximum likelihood
estimation, which entails finding the set of parameter estimates
that maximizes the likelihood of the data, rather than least squares
estimation, as employed in ANOVA.

In sum, MLM meets the demands of neglect rehabilitation
research: it accounts for the between-subject heterogeneity in base-
line and recovery that is expected given the distinct brain networks
potentially contributing to the neglect syndrome. It affords greater
power and it is tolerant of missing and unbalanced data.

DEMONSTRATION AND SIMULATION ANALYSES USING
MLM vs. REPEATED MEASURES ANOVA

In this section we compare the performance of MLM and
rANOVA. We start with a re-analysis of a set of our own published
data (Chen et al., 2012), comparing the results using an MLM
analysis to those using rANOVA. Next, we use simulation meth-
ods to compare the power and Type I error rates of MLM and
ANOVA under a variety of conditions facing researchers in the
field of neglect rehabilitation (i.e., varying sample sizes, varying
effect sizes, different number of assessment sessions). Although
other simulation studies have compared the power and Type I
error rates of MLM and rANOVA (e.g., Gueorguieva and Krystal,
2004; Maas and Hox, 2005), these studies have simulated mini-
mum sample sizes of 20, 30, or even 50, all of which are larger
than the average study of neglect patients, whose median sample
size is 14.5 (Table 1). Furthermore, previous simulation studies
have assumed a zero correlation between subjects’ intercepts and
slopes — a situation uncharacteristic of neglect rehabilitation data
(Mizuno et al., 2011; Chen et al., 2012; Goedert et al., 2012). Thus,
to confirm that MLM is indeed more powerful than rANOVA for
neglect rehabilitation data, without a concomitant increase in Type
I error rates, we performed a set of simulations generating power
and Type I error rates for conditions likely to be encountered by
the neglect rehabilitation researcher.

For both the real and simulated data, we assume a study in
which we have two groups, each measured over time. Thus the full-
factorial analysis includes the main effects of group and assessment
time-point as well as their interaction. Here, we focus on the power
of the analyses to detect the treatment group by assessment-session
interaction, because the key focus of neglect rehabilitation stud-
ies would be to detect group differences in change over time. All
analyses and data simulation were performed using STATA/IC
12.1.
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RE-ANALYSIS OF PUBLISHED CHEN ET AL. (2012) DATA

We first turn to a set of data described in a recent study pub-
lished by members of our research group (Chen et al., 2012).
Capitalizing on work demonstrating an association between
motor-intentional neglect symptoms and the frontal cortex (e.g.,
Ghacibeh et al., 2007), as well as work demonstrating that
prism adaptation improves motor-intentional, but not perceptual-
attentional, neglect (Striemer and Danckert, 2010; Fortis et al,,
2011) we expected that patients with frontal lesions might expe-
rience more improvement with prism adaptation treatment than
those without frontal lesions. Twenty-one right brain-damaged
subjects with left spatial neglect underwent 2 weeks of prism adap-
tation treatment (once daily for 5days per week). We assessed
subjects’ neglect with the Catherine Bergego Scale (CBS) just
prior to the start of prism adaptation treatment and weekly
thereafter for 5weeks. We used subjects’ clinical CT or MRI
scans to map their lesions and categorized subjects as having
the presence (n=13) or absence (n=38) of a frontal lesion.
Although the original study reported a more complicated MLM
analysis, here we focus on a simple analysis including the pre-
dictors of frontal lesion (present, absent), assessment session
(one through six), and the frontal lesion by assessment-session
interaction.

Analyses and results

For the MLM we modeled the frontal lesion by assessment-session
factorial as fixed effects (with assessment session as a continu-
ous variable) and we modeled subjects’ intercepts and slopes as
random effects. Because we were primarily interested in the fixed
effects, we used maximum likelihood estimation, which provides
more accurate estimates of the fixed effects than does restricted
maximum likelihood, which may better-model random effects
(West et al., 2007). We used an unstructured covariance matrix for
the random effects, which meant our analysis could estimate a cor-
relation between the random intercepts and slopes. And, we used a
residual covariance matrix that assumed homogeneity of variance
across the assessment sessions. Although STATA reports Wald’s
z for evaluating the significance of the fixed effects, we report
the results of F tests, calculated using between-within degrees of
freedom (West et al., 2007). As mentioned previously, use of z
assumes a large sample, and may overestimate the significance of
fixed effects. Therefore, we assessed their significance using the
same df and F distribution that would be used in the comparable
mixed between-within ANOVA. Results of this MLM analysis are
depicted in Table 2.

For the rANOVA we modeled the full factorial of frontal lesion
(presence, absence) and assessment session (one through six), with
assessment session as a discrete, factor variable. The test of spheric-
ity was significant, p < 0.001, indicating neither the compound
symmetry nor sphericity assumption was met in this set of data.
Table 3 depicts the results of the rANOVA and, given the violation
of sphericity, Greenhouse—Geisser corrected p-values.

Comparing across analyses, we see that the MLM detected a sig-
nificant lesion by session interaction, while the ANOVA did not.
Inspection of the group-level slopes from the MLM revealed that
the group without frontal lesions had a slope on their recovery
trajectory that did not differ significantly from zero, b = —0.63,

Table 2 | Results of MLM analysis of Chen et al. (2012) data.

b SE 95%ClI F test
Fixed effects
Session —-0.63 0.42 -146,0.19 F(1, 86)=2.25, p=0.137
Frontal lesion —239 406 -10.34,556 F(1,19)=0.35, p=0.562
Session x lesion —1.17 0.53 —2.21, -0.13 F(1, 86)=4.88, p=0.030
Random effects
SD (slope on 0.927 0.24 0.56, 1.53 NA
session)
SD (intercept) 8.423 151 5.93,11.96 NA
Corr (int, slope) —0.933 0.05 —0.99, —0.71 NA
Residual SD 256 022 2.16, 3.03 NA

Table 3 | Results of repeated measures ANOVA of Chen et al. (2012)
data.

Source  Partial SS df F test G-G corrected p
Frontal 1142.59 1 F(1,19)=8.44, p=0.009

lesion

Subjects  2572.08 19

Session  451.20 5 F(5, 78 =9.68, p<0.001 p<0.001
Session x 89.74 5 F(5, 78 =192, p=0.099 p=0.185

lesion

Residual 72777 78

SE=0.13, 95% CI [—1.46, 0.19], while the group with frontal
lesions showed significant improvement across the assessment ses-
sions, b = —1.80, SE=0.32, 95% CI [—2.42, —1.18]. Conversely,
the ANOVA indicated significant main effects of session and pres-
ence of frontal lesion, while the MLM did not. Note that for the
ANOVA, the effect of session indicates that at least one of the six
assessment sessions significantly differs from another. In contrast,
for the MLM, the non-significant effect of session signifies that,
controlling for the group by session interaction, the group-average
linear slope on session was not significantly different than zero.

The significant main effect of presence vs. absence of frontal
lesions for the ANOVA, but not the MLM, suggests that this effect
might be an artifact of the random effects structure of the data that
is accounted for by the MLM but not by the ANOVA. In particular,
note that with the MLM we have estimated the variability due to
individual differences in subjects’ slopes from the group slope (SD
for slope on session) as well as the variability due to individual
differences in subjects’ intercepts from the group intercept (SD on
intercept). Finally, the MLM estimates the correlation between the
subjects’ intercepts and slopes. Because lower scores on the CBS
indicate less severe neglect, this negative correlation of —0.93 indi-
cates that subjects with less severe neglect at baseline demonstrated
greater improvement across the assessment sessions.

We see from this re-analysis of the Chen et al. (2012) data that
MLM was better-able to detect a difference between the recovery
trajectories of the groups with and without frontal lesions. Addi-
tionally, the MLM analysis described the continuous change in the
data with the slope values: across the six assessments, the group
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with frontal lesions improved an average of 1.80 points on the
CBS per week, while the group without frontal lesions improved
an average of 0.63 points per week.

SIMULATION STUDY

In order to compare the power and Type I error rates of MLM
and rANOVA under varying circumstances likely to be encoun-
tered by neglect rehabilitation researchers, we performed a Monte
Carlo simulation study: we repeatedly generated data sets and per-
formed MLM and rANOVA analyses on each of the generated
datasets. In total, we performed 24 simulations in which we gen-
erated data sets that varied in sample size (N =6, 20, or 30), the
number of assessment sessions/measurement waves (3 or 6), and
effect size. Here we chose to present the simulation of 3 and 6 mea-
surement waves because a minimum of three assessment points is
considered critical for the assessment of change over time (see
Discussion). Furthermore, the focus of our simulation was on
the ability to detect a group by assessment-session interaction,
because this would indicate a difference in response to treatment
in the two groups. Because we were interested in the interaction,
we measured effect size as the standardized difference between
the slopes of the two groups (d=0.20, 0.50, 0.80, or 1.00; assum-
ing a SD on the group-level slopes of 2.00). Finally, we assessed
Type I error rates with simulations in which the standardized dif-
ference between the group slopes was zero. Table 4 summarizes
the group-level fixed effect slopes used in the data-generation
process at each effect size. The simulation yielded estimates of
power and Type I error. These estimates indicate the proportion
of samples we would expect to achieve significance at a signifi-
cance level of 0.05. We provide these estimates for the repeated
measures ANOVA (rANOVA), the Greenhouse—Geisser corrected
rANOVA (GG-ANOVA), the Wald’s z test of the MLM fixed effects
(MLM-z), and the F test of the MLM fixed effects (MLM-F). A
complete description of the simulation method appears in the
Appendix.

Simulation results and discussion

Three assessments/measurement waves. Figure 3 depicts the
power to detect the group by session interaction with three
measurement waves. Looking across effect sizes, it is clear that the
MLM (for both z and F) has superior power to the ANOVA, par-
ticularly at smaller sample and smaller effect sizes. The rANOVA
with the Greenhouse—Geisser correction has the poorest power,
except at large effect and large sample sizes. For example, for an

1"

Table 4 | Summary of group-level fixed slopes for putative “contro
and “treatment” groups at each simulated effect size.

Group
Effect size (d) Control Treatment
0.20 0.00 -0.40
0.50 0.00 —-1.00
0.80 0.00 —1.60
1.00 0.00 —2.00
0.00 0.00 0.00

effect size of d = 0.20, the GG-rANOVA would reach significance
less than 4% of the time for samples of size 6 and only 6% of the
time for samples of size 20. Conversely, the MLM using Wald’s z
(MLM-z) has greater power than the other estimates, except where
there is convergence among all the measures for the effect size of
d = 1.00 with at least 20 subjects.

But a complete picture of these measures’ performance requires
an inspection of their concomitant Type I error rates, which are
depicted in Figure 4A. Given the choice of 0.05 as the significance
level, the extent to which any of the estimates shows a Type I error
rate greater than or less than 0.05 suggests bias in the statistical
test. As can be seen in Figure 4A, the MLM using Wald’s z shows
unacceptable levels of Type I error at a sample size of six. Although
this rate of Type I error reduces at larger sample sizes, it still hovers
just below 0.06, likely due to the large sample assumption of the
z distribution. Thus, our results confirm the inappropriateness of
Wald’s z for smaller sample sizes.

The MLM-F has a Type I error rate that is just below 0.05 for
the smallest sample size and right at 0.05 for samples of size 20
and 30. Thus, for three measurement waves, the MLM-F does not
show bias. The rANOVA, however, remains below 0.05 across sam-
ple sizes, and thus, shows a slight conservative bias, which would
lead to Type II errors (i.e., failure to detect a real effect). The GG-
rANOVA is even more conservatively biased than is the rANOVA:
it too would lead to Type II errors.

In sum, with three measurement waves, the MLM using the F
distribution with between-within degrees of freedom (West et al.,
2007) shows good power, while also showing no bias in Type I
error rates. This result is consistent with other simulation work
showing that MLM performs well in estimating fixed effects with
few repeated measurements (Bell et al., 2010). We extend this pre-
vious work by showing the superiority of the MLM even for very
small sample sizes (N = 6), as long as one uses the F distribution
for assessing significance.

Six assessments/measurement waves. Figure 5 depicts the power
to detect the group by session interaction with six measurement
waves. Looking in particular at the small effect sizes, we see a
pattern that is very different from that observed with three mea-
surement waves. With sample sizes of 20 and 30, the rANOVA
demonstrates superior power to the other three statistics. Consis-
tent with the pattern observed with three measurement waves, the
Greenhouse—Geisser corrected ANOVA shows poor power except
with larger samples and large effect sizes. Similar to what was
observed with three measurement waves, the estimates of all the
analyses converge with samples of at least 20 at the largest effect
size (d =1.00).

Again, for a complete picture of the analyses’ performance
we must inspect their Type I error rates, which are depicted in
Figure 4B. Figure 4B depicts not only the simulations described
above, but an additional simulation of the Type I error rates in a
sample size of 100. In the Figure, we can see that both MLM-z and
MLM-F are biased at smaller sample sizes, with Type I error rates
well above 0.05 at a sample size of six. However, this bias reduces
as the sample size increases, with the Type I error rate converging
on 0.05 at larger sample sizes. Conversely, for the rANOVA, Type
I error rates remain unacceptably large even at the largest sample
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FIGURE 3 | Average power on the session by group interaction with
three measurement waves. (A) for d =0.20; (B) for d =0.50; (C) for
d=0.80; (D) for d =1.00. d, standardized difference between group slopes.
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rANOVA = repeated measures ANOVA, GG-rANOVA is Greenhouse-Geisser
corrected repeated measures ANOVA, MLM-Z is Wald's Z from the MLM,
MLM-F is the between-within df for F from the MLM.

size of 100. The Greenhouse—Geisser corrected rANOVA shows
conservative bias at the smaller sample sizes, but like the MLM
estimates, its Type I error rates converge on 0.05 at the larger
sample sizes.

Simulation summary. The Monte Carlo simulation allows us to
compare the performance of MLM and rANOVA with different
sample and effect sizes. In sum, the simulation study demon-
strates that overall, MLM using Wald’s z creates too much Type
I error, while the rANOVA using the Greenhouse—Geisser correc-
tion is too conservative, sacrificing too much power. The simu-
lation study further demonstrates that with three measurement
waves, the MLM-F has superior power and is unbiased, while the
rANOVA has poorer power and is conservatively biased (i.e., Type
T error rates less than 0.05). Thus, with three repeated assessments,
the MLM-F is better-able to detect treatment effects without an
increase in Type I error rates. With six measurement waves, the

ANOVA has more power at smaller sample sizes, but also has an
unacceptably high rate of Type I error at all samples sizes (i.e., even
at N =100 the Type I error rate of rANOVA is at 0.08). Conversely,
the Type I error rates of the MLM converge on 0.05 at larger sample
sizes. Thus, it appears that with six repeated assessments, the MLM
more accurately estimates the fixed effects with increases in sample
size; whereas the accuracy of the rANOVA does not systematically
increase with increases in sample size.

GENERAL DISCUSSION

We argued that neglect rehabilitation demands a statistical
approach commensurate with characteristics of the neglect syn-
drome. In the re-analysis of our previously published data we
demonstrated how MLM provides a description of the recov-
ery trajectory and how it was better-able to detect the difference
in the recovery trajectories of the groups with and without
frontal lesions. Furthermore, the difference between the MLM and
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FIGURE 4 | Type | error rates on the session by group interaction with (A) three and (B) six measurement waves.

rANOVA analyses suggest that the ANOVA may have inappropri-
ately modeled variability arising from individual differences in
recovery trajectories.

The results of our simulation suggest that MLM does indeed
have superior power at smaller sample sizes, and that it can be
confidently used with the small samples often employed in neglect
rehabilitation research if analyzing a small number of measure-
ment waves. With many measurement waves (in this case six),
larger sample sizes may be needed for MLM to accurately estimate
the fixed effects. This result is consistent with the observations of
others (Snijders, 2005), that accuracy of estimation of the fixed
effects is primarily driven by the size of the sample at that level of
estimation. Furthermore, our results likely overestimate the ability
of ANOVA relative to MLM, given that we simulated complete and
balanced data structures. Relative to ANOVA, MLM has the added
advantage of continuing to perform well even when data are miss-
ing at random (Gueorguieva and Krystal, 2004; Quene and van
den Bergh, 2004), a situation likely encountered by researchers of
neglect rehabilitation.

MORE THAN ANALYSIS TOOL: LONGITUDINAL MODELING AS A
RESEARCH APPROACH
Perhaps more than just the benefits afforded by a potentially
more powerful and more appropriate statistical tool, a look at
using MLM could help neglect rehabilitation researchers better-
conceptualize their research problem. As researchers interested in
the rehabilitation of patients with neglect, we must be interested
in how individuals change over time and how we can alter those
recovery trajectories with rehabilitative treatment. Thus, we need
a statistical tool that allows us to describe those trajectories.
However, the ability to describe recovery trajectories is related
not just to the statistical approach, but also to the study design:
the majority of the treatment studies that we reviewed measured
patients’ performance at only two time-points: once before treat-
ment and once immediately after treatment. However, use of only

two assessment points pre- and post-treatment confounds true
change and measurement error (Rogosa et al., 1982; Singer and
Willett, 2003). Furthermore, a simple pre-post difference does not
provide a picture of how patients’ change over time because it tells
us nothing of subjects’ individual recovery trajectories (Singer and
Willett, 2003). For example, are recovery trajectories linear or qua-
dratic? Are the benefits of a treatment experienced immediately
and then level off, or do benefits of the treatment continue as time
post-treatment increases? Assessing neglect patients ata minimum
of three measurement waves will help answer these important
questions about neglect recovery and its relation to rehabilitation.

LIMITATIONS AND BARRIERS IN THE USE OF MLM
Despite the potential advantages of MLM, it is not without its
own limitations. First, although bootstrapping procedures may
be used to overcome violations of normality in the distribution of
the residuals, the use of bootstrapped standard error estimates may
restrict the researcher to less complicated forms of MLM analysis
(e.g., modeling only random intercepts, without modeling of ran-
dom slopes). Second, MLM models do not always resolve. That is,
the maximum likelihood estimation process may not converge on
a set of parameter estimates or may be unable to estimate standard
errors. This is more likely to happen with smaller sample sizes and
with more complex models. Thus, under certain circumstances,
the researcher may be restricted to using a simpler MLM model
(e.g., may have to assume homogeneity of variance rather than
modeling an auto-regressive residual covariance structure).
Finally, MLM procedures are statistically more complex than
is ANOVA. However, MLM procedures are now integrated into
major statistical packages including SPSS, SAS, STATA, and R. It
must be recognized that some of the statistical complexity comes
with the added benefit of greater flexibility in the analyses, such
as the ability to model alternate residual structures so as to avoid
violations of assumptions like homogeneity of variance (Cnaan
et al., 1997).
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FIGURE 5 | Average power on the session by group interaction with six rANOVA = repeated measures ANOVA, GG-rANOVA is Greenhouse-Geisser
measurement waves. (A) for d =0.20; (B) for d =0.50; (C) for d =0.80; (D) corrected repeated measures ANOVA, MLM-Z, Wald's Z from the MLM,
for d =1.00. d = standardized difference between group slopes, MLM-F is the between-within df for F from the MLM.

LIMITATIONS IN THE CURRENT TREATMENT OF MLM

Our discussion of MLM in the current paper is necessarily lim-
ited by our desire to present a simple introduction to MLM for
the neglect rehabilitation researcher who is likely to be currently
using rANOVA. As a result, there are several issues of importance
in using MLM to analyze longitudinal data from treatment (and
other) studies that were beyond the scope of this paper.

First, it is standard when performing MLM to quantifying the
amount of nested dependency in a dataset by calculating the intr-
aclass correlation coefficient (ICC). In the case of repeated assess-
ments nested within subjects, the ICC is the proportion of total
variance in the data that is accounted for by between-participant
differences (Singer and Willett, 2003). ICCs at or close to zero sug-
gest that the data are actually independent rather than dependent,
and that modeling of subjects’ random effects is unnecessary.

Second, the models we presented, both for the fictional data
(Figure 2) and for the re-analysis of the Chen et al. (2012) data,

were necessarily simplified. In a neglect treatment study, MLM
would allow the researcher to control for and assess additional
factors affecting neglect recovery, such as baseline severity. Indeed,
in the previously published Chen et al. (2012) analysis, we con-
trolled for patients’ spontaneous recovery rates as estimated by
the slope of their recovery trajectories prior to initiating a prism
treatment.

Third, in this paper, we focused primarily on the performance
of MLM on fixed effects estimation — that is, the group-level inter-
cepts and slopes — and in particular, on the group by session
interaction. This focus does not do justice to the full potential
of the MLM analysis, particularly for modeling individual change
over time. As we saw in the re-analysis of our previously pub-
lished data, MLM provides estimates not just of fixed effects, but
also of the variability due to the random effects, and the cor-
relation between the random intercept and slope. Additionally,
one can also model cross-level interactions, as well as examine
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individual-level trajectories (e.g., Cnaan et al., 1997; Rabe-Hesketh
and Everitt, 2003). None of the power and Type I error simula-
tions we performed here may be generalized to the subject-level
random effects. Power and precision of the random effects esti-
mation is largely driven by the sample size at that level (Snijders,
2005).

Indeed, MLM may be appropriate for many study designs
involving dependencies among measures (e.g., longitudinal,
repeated measures, and clustered data) with outcomes that are
either continuous, binary, or ordinal (Rabe-Hesketh and Skrondal,
2012). A full discussion of its uses, however, is beyond the scope of
the current paper. West et al. (2007) provide a good treatment of
the use of MLM in different study designs. Furthermore, Liu et al.,
2012 provide a comprehensive discussion of how to decide among
analyses for use with longitudinal data. They argue that rANOVA
might be more appropriate when the researcher wishes to treat
time as a factor variable. However, in an MLM time can be treated
as a factor variable. Indeed, rANOVA may be thought of as a spe-
cial case of MLM — one in which the residual variance-covariance
matrix assumes both homogeneity of variance and sphericity and
in which the only random effect modeled is the random intercept
(i.e., the subjects term in the ANOVA is analogous to the random
intercept of the MLM).

RECOMMENDATIONS FOR NEGLECT RESEARCHERS STARTING IN MLM
QOur simulation results lead us to make several recommendations
for neglect rehabilitation researchers:

(1) If using three assessment sessions, MLM offers more power
than rANOVA, particularly at the small samples sizes typical
of neglect rehabilitation research.

(2) Ifusingsix assessment sessions, TANOVA has high Type I error
rates even at large sample sizes, while MLM performs well as
sample size increases. Thus, if using many repeated assessment
sessions, TANOVA should not be used and the use of MLM
will require a larger sample size (e.g., 30 or more) for valid
statistical inference on the fixed effects.

(3) The default means of assessing significance of the MLM fixed
effects parameters in STATA and Mplus (Wald’s z) should not
be used with the small samples typical of neglect rehabilitation
studies. Rather, the F distribution should be used for assessing
the significance of these effects.

Several resources are particularly useful for researchers get-
ting started in using MLM. Andy Field provides a very accessible
first-introduction to performing MLM analyses, with chapters

dedicated to MLM in his books on SPSS and R (Field, 2010;
Field et al., 2012). West et al. (2007) is an excellent introduc-
tion to performing various types of MLM analyses, illustrating the
analyses in R, SPSS, SAS, and STATA. Rabe-Hesketh and Skrondal
(2012) is an authoritative and thorough examination of MLM for
longitudinal data structures in STATA. Finally, both Fitzmaurice
et al. (2011) and Singer and Willett (2003), provide comprehen-
sive conceptual treatments of using MLM for longitudinal data
analysis.

CONCLUSION

Neglect rehabilitation research demands a statistical approach
commensurate with the characteristics of the neglect syndrome.
Given that neglect arises from disruptions to potentially distinct
brain networks and results in disparate patterns of behavioral
symptoms, the field requires a statistical technique designed to
adequately account for between-subject variability in baseline
status and recovery trajectory. Further, the study of neglect rehabil-
itation requires a technique that allows the researcher to describe
patients’ change over time. MLM meets both these demands of
neglect rehabilitation data. MLM offers the additional advantage
of superior power at small sample sizes, and it does not require
complete data.

Given its power and Type I error rate, and given its robustness
in the face of missing data, we think MLM the ideal tool for ana-
lyzing data from neglect rehabilitation studies. We look forward
to the future of neglect rehabilitation research when, hopefully, it
will be more common to find 3+ measurement waves and when
multilevel modeling to investigate patient change over time is the
new standard.
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APPENDIX

DATA-GENERATION PROCESS FOR SIMULATION

We used the random effects model depicted in Eq. 2 as the
underlying data-generating model, creating different equations
for the “control” and “treatment” groups. We derived parame-
ters from which to generate the random effects and residual
variability by averaging the variability due to subjects’ inter-
cepts, their slopes, and their residuals over the Chen et al.
(2012) data and other data from our lab (Goedert et al,
2012).

To generate each data set, we first set the group-level slopes
for the control and treatment groups per Table 4. We introduced
slightly variability in the group-level intercept, as we had observed
in our own data, setting that of the control to 19.07 and that of
the treatment group to 21.12. We then generated each subjects’
deviation around the mean intercept and slope (i.e., bo; and by;
of Eq. 2) by randomly drawing values from a normal distribution
with means of 0 and a standard deviation of 8.5 for the intercept
and 0.99 for the slope, with the constraint that bgj and b;; would
have a negative correlation of —0.67 (SDs and correlation esti-
mated from Chen et al., 2012 and Goedert et al., 2012). This step
produced a negative correlation between slopes and intercepts, as
observed in our own data and that of others (Mizuno et al., 2011;
Chen et al., 2012). We estimated e;; of Eq. 2 by randomly draw-
ing from a normal distribution with a mean of 0 and SD of 2.56
(residual variance estimated from Chen et al., 2012 and Goedert
etal., 2012).

Thus far, we have described all the components necessary to
generate Yj; based on Eq. 2. However, we added one additional
step in the data-generation process. Because slopes observed in
our real data had a slight negative skew rather than a normal
distribution, we first estimated each subject’s slope as by + byj,
but then transformed this slope value (Feiveson, 2002) using
the method suggested by Fleishman (1978)! to produce slopes
that better-resembled the real data. This new, slightly nega-
tively skewed slope was substituted for by + byj in Eq. 2. We
repeated this data-generation process a minimum of 1000 times
for each of the simulation conditions and ran separate MLM
and repeated measures ANOVA analyses on each of the generated
datasets.

!Fleishman introduced the following transformation to produce simulated data
with a non-normal distribution:

Y =a+ bX +cX? +dX3,

where a, b, ¢,and d, are the mean, standard deviation, skewness, and kurtosis, respec-
tively. For our purposes here, we set the mean and standard deviation equal to the
mean and standard deviation of the slopes generated via the random normal pro-
cedure, but then set ¢ = —0.90 and d = —0.04, to produce a slight skew in the slopes
that mirrored the slight negative skew observed in the individual regression slopes
of our real datasets (Chen et al., 2012; Goedert et al., 2012).

ANALYSES AND CALCULATIONS OF SIMULATED POWER AND TYPE |
ERROR

As with the real data, in the MLM analyses on the generated data,
we used maximum likelihood estimation, modeling both random
intercepts and random slopes, with an unstructured covariance
structure on the random effects. We assumed homogeneity of
variance in the residuals. We were as generous as possible to the
repeated measures ANOVA, modeling only complete and balanced
datasets (equal numbers of subjects in control and treatment
groups). For the MLM, we modeled the full-factorial of session
and group as the fixed effects, with session as a continuous vari-
able. For the ANOVA, we modeled the full-factorial of session and
group, with session as a factor variable, the practice that is common
in the field.

For each of the repeated measures ANOVAs and MLMs, we esti-
mated observed p-values on the group by session interaction. We
estimated p-values associated with the uncorrected repeated mea-
sures ANOVA (rANOVA) and those using the Greenhouse and
Geisser (1959) correction (GG-rANOVA). For the MLM, we esti-
mated p-values both using Wald’s z and the F distribution with
between-within df (West et al., 2007). As stated earlier, because
z assumes a large sample, it is assumed that F would be a more
appropriate distribution to use when testing significance in a rel-
atively small sample. Thus, by estimating and presenting both, we
directly tested that assumption here.

It is possible to estimate power and Type I error directly from
the proportion of p-values below 0.05 on the 1000 datasets gener-
ated for each of the simulations described above (e.g., Gueorguieva
and Krystal, 2004; Rotello et al., 2008). However, such estimates
still demonstrate variability (i.e., the estimates may vary slightly
in a different set of 1000 datasets). Therefore, we estimated power
and Type I error rates in a second step in which we bootstrapped
estimates of power and Type I error: we randomly sampled with
replacement samples of size 800 from the 1000 p-values and calcu-
lated the proportion of p-values below 0.05. For effect sizes greater
than zero, this proportion is an estimate of power. For effect sizes
of zero, this proportion is an estimate of Type I error. We repeated
this random sampling process 100 times and present the mean
of these 100 bootstrapped samples as the estimates of power and
Type 1 error.
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