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This study aimed to directly assess the effect of changes in blood glucose levels
on the psychological processing of emotionally charged material. We used functional
magnetic resonance imaging (fMRI) to evaluate the effect of blood glucose levels
on three categories of visually presented emotional stimuli. Seventeen healthy young
subjects participated in this study (eight females; nine males; body weight, 69.3 ± 14.9 kg;
BMI, 22 ± 2.7; age, 24 ± 3 years), consisting of two functional MRI sessions: (1) after
an overnight fast under resting conditions (before glucose administration); (2) after
reaching the hyperglycemic state (after glucose administration). During each session,
subjects were presented with visual stimuli featuring funny, neutral, and sad content.
Single-subject ratings of the stimuli were used to verify the selection of stimuli for each
category and were covariates for the fMRI analysis. Analysis of the interaction effect
of the two sessions (eu- and hyperglycemia), and the emotional categories accounting
for the single-subject glucose differences, revealed a single activation cluster in the
hypothalamus. Analysis of the activation profile of the left amygdala corresponded to the
three emotional conditions, and this profile was obtained for both sessions regardless
of glucose level. Our results indicate that, in a hyperglycemic state, the hypothalamus
can no longer respond to emotions. This study offers novel insight for the understanding
of disease-related behavior associated with dysregulation of glucose and glucose
availability, potentially offering improved diagnostic and novel therapeutic strategies in the
future.
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INTRODUCTION
The hypothalamus is no longer regarded solely as an organizing
center for the integration of somatic and autonomic responses,
but as a key organ in the processing of human emotions (Karlsson
et al., 2010). Recent studies using event-related functional mag-
netic resonance imaging (fMRI) have demonstrated that the
processing of valence-laden stimuli results in hypothalamic activ-
ity patterns comparable to those of the amygdala (Mobbs et al.,
2003; Wild et al., 2003; Habel et al., 2007; Watson et al., 2007;
Reiss et al., 2008; Schwartz et al., 2008; Derntl et al., 2009), a
structure critical for the processing of emotion (Fossati, 2012).
Furthermore, the rich reciprocal neural connections between the
amygdala and hypothalamus strongly suggest support a role for
the hypothalamus in emotion (Herman and Cullinan, 1997; Price,
2003; Hikosaka et al., 2008). For example, the symptoms of the
sleep disorder, narcolepsy (Thannickal et al., 2000), strongly indi-
cate hypothalamic involvement in the processing of emotion.
Specifically, cataleptic attacks that include a complete loss of
muscle tone are the cardinal symptom of narcolepsy and occur

predominantly following strong and sudden emotional arousal
(Guilleminolt and Fromherz, 2005; Siegel and Boehmer, 2006).
This phenomenon is solely contained within the hypothalamus,
as cataplexy is fully explained by the loss of hypocretinergic
neurons (Siegel, 1999).

Because of its role in sleep and sleep disorders, hypocretin has
been the target of numerous research efforts (Van den Pol, 2012).
Rodent studies have revealed that hypocretin cells have the highest
discharge rates during active wakefulness and exploration and the
lowest during REM sleep (Mileykovskiy et al., 2005). Importantly,
hypocretin activation seems to be related to positively, as opposed
to negatively, valenced arousal states. For example, studies look-
ing at Fos expression show that hypocretin levels are not increased
with footshock, a situation of strong negative valence (Furlong
et al., 2009). Similarly, hypocretin unit activity decreases in novel
situations eliciting withdrawal, but increases with novel situations
eliciting exploration (Borgland et al., 2009; Sharf et al., 2010;
McGregor et al., 2011). In addition, in humans, low cerebrospinal
hypocretin levels are related to depression (Brundin et al., 2009).
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In an fMRI study, it was shown that there is increased neural
activity within the amygdala and the hypothalamus during the
processing of both positive and negative stimuli; interestingly,
the hypothalamic activation was at the precicse anatomical loca-
tion of the hypocretin cells (Karlsson et al., 2010). Consistent
with a role for hypocretin in the processing of emotion, recent
human microdialysis studies have revealed that hypocretin levels
are not affected by general arousal; they are elevated with feelings
of excitement or laughter, but not with feelings of frustration or
sadness (Blouin et al., 2013).

Intriguingly, the in vitro activity of hypocretin cells reveals
strong inhibition after the administration of physiological lev-
els of glucose (Burdakov et al., 2005, 2006). Over the past few
decades, there have been a number of studies suggesting a role
for glucose in the modulation of cognitive processes. The bene-
ficial effects of glucose have been observed for a wide range of
experimental settings and cognitive tasks across different medi-
cal populations and species. In humans, an enhancement effect
following glucose administration has been shown for: cognitive
performance resulting in a reduction of reaction times (Adan
and Serra-Grabulosa, 2010); selective and sustained attention and
control (Gagnon et al., 2010; Serra-Grabulosa et al., 2010); con-
tinuous performance tests of attention (Flint, 2004); cognitively
demanding tasks (Scholey et al., 2001); and learning and mem-
ory (for an extensive review see Smith et al., 2011). In clinical
populations with severe cognitive deficits, the administration of
glucose has been shown to improve cognitive function, for exam-
ple, memory performance in Alzheimer’s disease (Manning et al.,
1993; Messier et al., 1997), although there are also negative reports
(Craft et al., 1999). Furthermore, in schizophrenia, higher blood
glucose levels have been shown to improve verbal memory and
declarative learning (Newcomer et al., 1999; Stone and Seidman,
2008).

Based on the evidence of glucose effects on cognitive function,
it seems plausible to predict that glucose may also alter mood and
arousal, and specifically, emotions. Under stressful conditions,
induced by a foot shock, rats exhibit a significant elevation in
blood glucose levels (Verago et al., 2001; Farias-Silva et al., 2002;
Eguchi et al., 2011) that, according to one study, is comparable
to an injection of 100 mg/kg of glucose (Hall and Gold, 1986). In
humans, emotionally arousing pictures (Blake et al., 2001) are not
only better remembered, but also lead to a higher blood glucose
levels compared to neutral pictures, whereas emotional words
are better recalled and recognized than neutral words, without a
direct link to glucose levels (Ford et al., 2002).

In contrast to the extensive literature about the behavioral
effects of glucose, little is known about the neural mechanisms
underlying these observations in humans. Most studies inves-
tigating the neural correlates of emotions look solely at the
role glucose may exert in facilitating memory. Emerging evi-
dence suggests that this cognitive enhancement is mediated by a
glucose-induced effect on the hippocampus, since the enhance-
ment is only observed when this cortical structure is critically
involved (Parent et al., 2011; Smith et al., 2011). Yet, glucose
may also enhance performance by altering amygdala function, as
clearly shown by direct glucose administration to the amygdala
(Schroeder and Packard, 2003). Studies investigating the role of

glucose on memory enhancement using emotional stimuli also
found improved memory recall as well as activation differences
not only within the hippocampus but also in the amygdala and
frontal regions, all related to glucose levels (Brandt et al., 2006,
2010; Parent et al., 2011).

It is, therefore, tempting to speculate that hypothalamic cells
are not only responsive to emotional stimuli, but are also both
modulated by stimulus valence, as well as glucose levels, and the
interaction thereof. In order to address this issue, we used fMRI to
investigate the effect of blood glucose levels on the processing of
three different categories of visually presented emotional stimuli
(funny, neutral, and sad) in seventeen healthy subjects, compar-
ing two different glucose levels. We hypothesized that, while the
first level (euglycemia) would yield only modulations induced
by emotions, the second level (hyperglycemia) would show the
interaction.

METHODS
SUBJECTS AND DATA ACQUISITION
Seventeen young, healthy volunteers (eight women/nine men;
average body weight, 69.3 ± 14.9 kg; BMI, 22 ± 2.7; age, 24 ± 3
years) underwent two fMRI sessions on a 3T TIM Trio scanner
(Siemens Medical, Erlangen, Germany), using a 32-channel head
coil (25 axial slices; slice thickness 1.9 mm; 128 × 128 matrix;
TR/TE = 2000/40 ms). All experiments were performed at the
MR Center of Excellence, Medical University of Vienna, Vienna,
Austria, in accordance with the 1975 Helsinki declaration and
local ethics regulations.

Subjects were instructed to fast overnight from 8:00 p.m. until
scanning the next day, which started between 11:00 a.m. and
2:00 p.m. (no intake of food or beverages, except water). Blood
glucose levels were measured before the start of the experiment
using an Accu-Check GO (Roche Diagnostics, Vienna, Austria).
A venous catheter was used to draw blood for assessing glucose
levels during the experiment. Two fMRI sessions were acquired
each: (1) in the euglycemic state (before glucose administra-
tion); and (2) after reaching the hyperglycemic state (after glucose
administration). Each session lasted about 15 min.

PARADIGM
In each of the two sessions, subjects were presented with a set
of 30 pictures taken from the complete set comprising 60 pic-
tures. Stimuli featured funny, neutral, and sad content. More
specifically, pictures depicted a wide range of scenes, such as
car crashes, nature settings, empty office buildings, electrical
appliances, humans and animals in comic situations, were pre-
sented for 4 s each in randomized order. Two sets were chosen to
exclude novelty effects and were presented in randomized order.
Stimulus material and stimulus presentation was identical to that
of Karlsson et al. (2010). Subjects were asked to passively attend
the stimuli without being instructed to fixate on a specific part of
the image.

Between the two sessions, a 10% glucose solution (Fresenius
Kabi, Graz, Austria) was infused intravenously until a blood
glucose level of 160–180 mg/dl was reached. Stimulus presen-
tation order was randomized across subjects. After the fMRI
measurements, and when the glucose level had leveled off to a
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euglycemic state, subjects were asked to rate all presented stimuli
using a modified SAM scale comprising the dimensions valence
and arousal (Bradley and Lang, 1994). These data were used
to verify the selection of the stimuli categories and to exclude
systematic differences in individual assessment across the two
sessions, using repeated measurement ANOVAs separately per
dimension.

DATA ANALYSIS
Image preprocessing for all subjects was performed with SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), including
slice-timing (Sladky et al., 2011) and motion correction, normal-
ization to an anatomical image template, and spatial smoothing
using a Gaussian kernel (FWHM = 8 mm). In addition, realign-
ment parameters were added as nuisance regressors to model
for residual motion effects. Statistical analysis was performed at
the individual and group levels using SPM8. Single-subject data
analysis included calculation of statistical parametric maps using
the general linear model with regressors corresponding to the
different emotional conditions (funny/neutral/sad).

For second-level analysis, analyses of variances were performed
as implemented in SPM8 using the two different fMRI sessions
(before/after glucose administration) as one factor, and the emo-
tional categories as the second factor with three levels (funny,
neutral, and sad).

In an initial evaluation, the individual glucose level differences
between the two sessions were added as a covariate of no inter-
est to obtain neuronal difference effects of sessions and runs, i.e.,
main effects for emotional categories and sessions.

To account for possible regulation effects due to glucose levels
on the session-specific activation patterns and the perception of
emotional stimuli, individual session-specific glucose values were
included. Using these covariates, a second model was calculated.
Both models were thresholded at p < 0.001, uncorrected.

RESULTS
GLUCOSE LEVELS
Mean glucose levels were 84.35 mg/dl (±7.3 SD) for the first ses-
sion and 177.96 mg/dl (±14.5 SD) for the second session. The
mean latency for the subjects to reach the predefined glucose
levels was 1 h and 16 min (±25 min SD).

BEHAVIORAL DATA
On average, valence measures for the euglycemic sessions were
5.10 (±1.76 SD), and 5.22 (±1.85 SD) for the hyperglycemic
sessions. Arousal levels reached 5.60 (±1.81 SD) for the eug-
lycemic sessions, compared to 5.88 (±1.93 SD) for the hyper-
glycemic sessions. There was no significant difference between
the measures. Global analysis pooling across the two sessions
yielded a significant difference between the three stimulus
conditions of funny, neutral, and sad [F(2, 32) = 215.075, p <

0.000], as well as for arousal [F(2, 32) = 40.052, p < 0.000]. A
detailed analysis, including session analysis, returned a signifi-
cant result for the factor summarizing the three conditions, but
there was no significant effect for session [valence: F(1, 16) =
2.232, p = 0.155; arousal: F(1, 16) = 0.012, p = 0.915] nor any
interaction effects between session and emotional category
[valence: F(2, 32) = 2.547, p = 0.094; arousal: F(2, 32) = 0.940,
p = 0.401].

fMRI DATA
Results of the first 2 × 3 ANCOVA, using the glucose level differ-
ences as a covariate, revealed bilateral activation differences in the
primary visual cortex and amygdala, depending on the emotional
category (see Figure 1 and Table 1 for detailed results). More
specifically, the left amygdala activation profile corresponded to
the three emotional conditions and was obtained for both ses-
sions, regardless of glucose level. Within this region, positive
and negative emotional categories (i.e., funny and sad) showed

FIGURE 1 | Axial slices depicting the main effect of emotional categories resulting from a 2 × 3 ANCOVA using the individual glucose level difference

as a covariate (p < 0.001 uncorrected for whole-brain volume analysis; for a more detailed description of activated brain regions, please see Table 1).
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Table 1 | Listing for corresponding regions shown in Figures 1, 3, 5,

and 6 (p < 0.001 uncorrected for whole-brain volume analysis).

Region Voxels Z -values

Figure 1 l. middle temporal gyrus 2969 7.57

r. middle temporal gyrus 3267 7.29

l. precuneus 1999 5.16

r. calcarine gyrus 868 4.88

r. hippocampus 130 4.36

Figure 3 r. hippocampus 74 4.01

r. fusiform gyrus 89 3.99

l. calcarine gyrus 98 3.98

r. insula 64 3.94

l. thalamus 49 3.77

Figure 5 l. hypothalamus 3 3.25

Figure 6 r. supramarginal gyrus 45 4.39

l. cuneus 80 3.94

r. superior temporal gyrus 37 3.93

r. caudate nucleus 70 3.84

r. anterior cingulate gyrus 35 3.75

Reported are the largest five significantly activated clusters. Clusters were

automatically labeled using the AAL toolbox (Eickhoff et al., 2005).

increased activation compared to baseline, while no alteration
from baseline was found for the neutral emotional condition (see
Figure 2). A post-hoc ROI analysis within the amygdala revealed
no significant difference between funny versus sad stimuli across
both glucose sessions.

For the main effect sessions, i.e., contrasting the two sessions
regardless of emotional category, higher activation was observed
unilaterally in the right temporal cortex, within the hippocampus
(see Figure 3 as an activation overview and Figure 4 for contrast
estimates in the hippocampus) and the fusiform gyrus, as well as
in the thalamus (see Table 1 for detailed results). The first session
was the euglycemic state, compared to the hyperglycemic state,
the second session.

While neutral stimuli did not show any change related to the
two sessions, increased activation levels were found for the first
session, diminishing in the second session for the emotional cat-
egories funny and sad. Finally, summarizing activation changes
related to the two sessions and the emotional category differences
corresponding to the interaction, effects were found only within
the hypothalamus (see Figure 5 and Table 1 for detailed results).
A post-hoc linear contrast within the interaction showed that the
hypothalamus, although differentiating between the emotions in
the first session, was not modulated by emotions in the second
session.

The second model using the individual session-specific glucose
values as a covariate showed significant activation in the left and
right intra-parietal lobules and the right medial cingulate gyrus
(see Figure 6) when comparing both sessions with respect to the
two glucose levels. Table 1 summarizes all the findings of glucose-
related brain activity enhancement in the processing of emotions
in young, healthy subjects.

DISCUSSION
In this study, an analysis of the interaction effect of hypo-
and hyperglycemia and stimulus category (funny, neutral, sad)
revealed a single activation cluster in the hypothalamus. This
finding is in accordance with prior reports on hypothalamic activ-
ity during the processing of emotional stimuli (Reiss et al., 2008;
Schwartz et al., 2008; Karlsson et al., 2010). Furthermore, as pre-
viously reported, the activation cluster correlates precisely with
the anatomical location of the hypothalamic hypocretin cells
(Karlsson et al., 2010). Karlsson et al. (2010) investigated the
effects of funny and sad stimuli compared to neutral stimuli,
and demonstrated modulation effects for both the amygdala and
hypothalamus. Their observation of a U-shaped activation pro-
file in the hypothalamus concurs with our findings of positive
and negative emotional categories revealing high mean beta val-
ues, which indicate increased activation in the euglycemic state.
However, this modulation vanishes with increased glucose levels.
In this hyperglycemic state, the hypothalamus no longer responds
to emotions. We, therefore, conclude that at this anatomical site
of the hypothalamus, there is a small cluster of cells whose activ-
ity is simultaneously modulated by glucose levels and stimulus
valence.

fMRI is a non-invasive imaging method that detects transient
hemodynamic and functional changes in the brain in response
to a variety of stimuli (Bandettini, 2012). The small size of the
hypothalamus and its nuclei, combined with low signal changes
in fMRI, require specifically optimized protocols (Robinson et al.,
2008, 2009) to enable imaging of responses to food-related stimuli
in this part of the brain. The use of fMRI to study hypothala-
mic function in humans has been reported previously (Karlsson
et al., 2010). To date, only a few fMRI studies have investigated
the involvement of hypothalamic neuronal activity after glucose
ingestion in humans (Matsuda et al., 1999; Liu et al., 2000;
Smeets et al., 2005, 2007; Vidarsdottir et al., 2007; Purnell et al.,
2011).

The hypothalamus is involved in the regulation of food intake
and is also responsible for integrating a wide array of hor-
monal and neural information (Levin et al., 2004), as well as for
the evaluation of reward quality and related emotions (Lénárd
and Karádi, 2012). This coupling of hypothalamic function-
ing and glucose ingestion was first shown by Matsuda et al.
(1999), who reported on differences in hypothalamic function
in lean subjects, in vivo, using fMRI to monitor hypothalamic
function after oral glucose intake (Matsuda et al., 1999). After
glucose ingestion, an increased signal was obtained in the par-
aventricular and ventromedial nuclei in lean subjects, whereas
this inhibitory response was attenuated and delayed in obese
subjects. A prolonged dose-dependent decrease in fMRI signal
in the hypothalamus after glucose ingestion was confirmed by
Smeets et al. (2005), who suggested a possible function for the
observed hypothalamic response to changes in blood insulin
levels. In addition to fMRI-related findings, other research has
revealed increased slow diffusion parameters in the hypotha-
lamus during hypoglycemia induced by fasting (Lizarbe et al.,
2013).

The results of Smeets et al. (2005) suggest that the hypotha-
lamus acts as a driving mechanism in areas involved in the
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FIGURE 2 | Description of contrast estimates for the results of the main effect of emotional categories, as shown in Figure 1 in the left amygdala.

FIGURE 3 | Axial and coronal slices showing significant activation for

the main effect runs (for a detailed description of the analysis, please

see text; p < 0.001 uncorrected for whole-brain volume analysis; for a

more detailed description of activated brain regions, please see Table 1).

processing of emotional stimuli, much like the amygdala, after
glucose administration. This finding is also in accordance with
experimental reports of hypothalamic functions being altered
by glucose intake (Matsuda et al., 1999), and in line with the

U-shaped activation curve exhibited within the hypothalamus in
response to negative, neutral, and positively valenced stimuli dur-
ing euglycemic states (Karlsson et al., 2010). Furthermore, this
interaction effect of glucose and emotion control was recently
recognized in a behavioral study (Niven et al., 2013), which
uncovered a correlation of blood glucose levels with poor emo-
tional regulation; the authors hypothesized that glucose pro-
vides a limited energy resource upon which self-control relies.
The combined demonstration of behavioral data and func-
tional imaging, as realized in our study, enables the inves-
tigation of emotional modulation effects related to glucose
intake.

A limiting factor in our study is that there was no ran-
domization of glucose level sessions. As euglycemia as a sec-
ond session would involve the administrations of large doses
of insulin to reach a euglycemic state after the hyperglycemic
state, we abstained from randomization for safety reasons and
unpredictable side effects.

Our findings can pave the way for a more detailed understand-
ing of diseases associated with dysregulation of glucose and glu-
cose availability in the brain, including early metabolic changes
starting in childhood (McCrimmon et al., 2012; Reagan, 2012). It
has also been shown that glycemic variability significantly impacts
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FIGURE 4 | Description of contrast estimates for the results of the main effect runs in the hippocampus, as shown in Figure 3.

FIGURE 5 | Shown are sagittal, coronal, and axial slices overlaid with

activity clusters corresponding to the interaction effect related to the

two sessions and emotional categories (p < 0.001 uncorrected for

whole-brain volume analysis; for a more detailed description of

activated brain regions, please see Table 1).

mood and quality of life in diabetes (Penckofer et al., 2012), and
emotional disorders can negatively affect the course of diabetes
(Dziemidok et al., 2011). Moreover, obesity, suggested recently to
be a brain-related dysfunction in which reward-driven impulses
for food take over response selection systems, was associated
with elevations in emotionally driven impulsivity and cognitive
inflexibility (Strüber et al., 2008; Delgado-Rico et al., 2012), as
well as with emotions that trigger overeating and night-eating
(Birketvedt et al., 2002; Koenders and Van Strien, 2011). Those
findings might be strongly related to the neural correlates of the
processing of emotions. It is reasonable to suggest that the cluster
of cells revealed in the current experiment, possibly comprising
hypocretin cells, predominantly mediate those effects. Our results

FIGURE 6 | Shown are sagittal and coronal slices overlaid with activity

clusters using individual run-specific glucose levels as covariates

(p < 0.001 uncorrected for whole-brain volume analysis; for a more

detailed description of activated brain regions please see Table 1).

offer novel insights into the understanding of disease-related
behavior, which could potentially offer improved diagnostic and
novel therapeutic strategies in the future.
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