
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HUMAN NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 29 May 2013
doi: 10.3389/fnhum.2013.00235

Combination of resting state fMRI, DTI, and sMRI data to
discriminate schizophrenia by N-way MCCA jICA+

Jing Sui 1,2*†, Hao He1,3†, QingbaoYu1, Jiayu Chen1,3, Jack Rogers4, Godfrey D. Pearlson5,6,7,
Andrew Mayer 1,8,9, Juan Bustillo8,9, Jose Canive8,9,10 and Vince D. Calhoun1,3,5

1 The Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
2 LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
3 Department of ECE, University of New Mexico, Albuquerque, NM, USA
4 Division of Natural Science, New College of Florida, Sarasota, FL, USA
5 Olin Neuropsychiatry Research Center, Hartford, CT, USA
6 Department of Psychiatry, Yale University, New Haven, CT, USA
7 Department of Neurobiology, Yale University, New Haven, CT, USA
8 Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
9 Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
10 Psychiatry Research Program, New Mexico VA Health Care System, Albuquerque, NM, USA

Edited by:
Veronika Schöpf, Medical University
Vienna, Austria

Reviewed by:
Robert C. Welsh, University of
Michigan, USA
Georg Langs, Medical University of
Vienna, Austria

*Correspondence:
Jing Sui , The Mind Research
Network, 1101 Yale Blvd, NE,
Albuquerque, NM 87106, USA
e-mail: kittysj@gmail.com
†Jing Sui and Hao He are co-first
authors for this paper.

Multimodal brain imaging data have shown increasing utility in answering both scientifically
interesting and clinically relevant questions. Each brain imaging technique provides a differ-
ent view of brain function or structure, while multimodal fusion capitalizes on the strength
of each and may uncover hidden relationships that can merge findings from separate neu-
roimaging studies. However, most current approaches have focused on pair-wise fusion and
there is still relatively little work on N -way data fusion and examination of the relationships
among multiple data types. We recently developed an approach called “mCCA+ jICA” as
a novel multi-way fusion method which is able to investigate the disease risk factors that
are either shared or distinct across multiple modalities as well as the full correspondence
across modalities. In this paper, we applied this model to combine resting state fMRI
(amplitude of low-frequency fluctuation, ALFF), gray matter (GM) density, and DTI (frac-
tional anisotropy, FA) data, in order to elucidate the abnormalities underlying schizophrenia
patients (SZs, n=35) relative to healthy controls (HCs, n=28). Both modality-common and
modality-unique abnormal regions were identified in SZs, which were then used for suc-
cessful classification for seven modality-combinations, showing the potential for a broad
applicability of the mCCA+ jICA model and its results. In addition, a pair of GM-DTI compo-
nents showed significant correlation with the positive symptom subscale of Positive and
Negative Syndrome Scale (PANSS), suggesting that GM density changes in default model
network along with white-matter disruption in anterior thalamic radiation are associated
with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal
lobe may relate to the corresponding functional/structural changes in prefrontal cortex and
superior temporal gyrus that are thought to play a role in the clinical expression of SZ.

Keywords: multimodal fusion, mCCA + jICA, resting state fMRI, DTI, sMRI, schizophrenia, ALFF, GM

INTRODUCTION
Multimodal brain imaging techniques are playing increasingly
important roles in elucidating structural and functional properties
in normal and diseased brains, as well as providing the conceptual
glue to bind together data from multiple types or levels of analysis.
The related computational methods are also valuable for clinical
research on the mechanisms of disease progression. The goal of
multimodal fusion is to capitalize on the strength of each imag-
ing modality as well as their inter-relationships in a joint analysis,
rather than to analyze separately.

Each imaging modality provides a different view of brain func-
tion or structure, and data fusion capitalizes on the strengths of
each imaging modality/task and their inter-relationships in a joint
analysis, creating an important tool to help unravel the black box

of psychotic disorders, such as schizophrenia (SZ) (Calhoun et al.,
2006; Sui et al., 2012a). Recent advances in data fusion include
integrating multiple (task) fMRI data sets (Sui et al., 2009b, 2010;
Kim et al., 2010) from the same participant to specify common ver-
sus specific sources of activity to a greater degree than traditional
general linear model-based approaches. This can increase confi-
dence when making conclusions about the functional significance
of brain regions and activation changes in brain diseases. In addi-
tion, the combination of function and structure may provide more
informative insights into both altered brain patterns and connec-
tivity (McCarley et al., 2008; Michael et al., 2010; Sui et al., 2011).
For example, a lower and different function–structure connection
is often found in patients with SZs compared with healthy controls
(HCs) (Zhou et al., 2008; Venkataraman et al., 2010; Camchong
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et al., 2011; Michael et al., 2011), while varied brain patterns are
also identified frequently (Calhoun et al., 2008; Xu et al., 2009;
Brown et al., 2012; Lu et al., 2012).

WHY GO BEYOND TWO MODALITIES?
However, most current approaches have focused on pair-wise
fusion and there is still relatively little work on N -way data
fusion and examination of the full relationships among mul-
tiple data types. Given the availability of more powerful MR
scanners, there are typically more than two imaging modalities
available for one participant. Hence, we believe the joint multi-
variate analysis of multiple data types (e.g., resting state fMRI,
task-related fMRI, DTI, and sMRI) will improve our ability to
understand brain diseases. We have proposed an N -way fusion
model, “multi-set canonical correlation analysis (mCCA)+ joint
independent component analysis,” i.e., “mCCA+ jICA,” which
successfully identified both modal-common and modal-unique
group-discriminative patterns for HCs and SZs via combination
of task-related fMRI, DTI, and sMRI data (Sui et al., 2013). Consid-
ering the importance of the interpretation of multi-way features,
the method and tool we propose will enable examination of full
correspondence across N modalities by achieving reliable inter-
modality associations and high decomposition accuracy together,
thus making discoveries of changes in one modality causing related
alterations in distant, but connected regions in other modalities
possible.

To our knowledge, there have been only a few reports com-
bining three or more types of brain imaging data to investigate
brain disorders (e.g., Correa et al., 2009) examined changes that
are related across fMRI, sMRI, and EEG data for SZ (Groves et al.,
2011) compared Alzheimer’s patients and age-matched controls
by combining gray matter (GM) density and three diffusion data
measures [fractional anisotropy (FA), mean diffusivity, and tensor
mode]. For resting state fMRI data, several pair-wise fusion appli-
cations have been reported (Teipel et al., 2010; Long et al., 2012;
Segall et al., 2012); however, there has been no report that combine
resting state fMRI with other two or more different types of brain
imaging data to study SZ.

In this project, we applied the N-way fusion model,
“mCCA+ jICA” (Sui et al., 2013), to compare not only modality-
common but also modality-unique abnormalities among resting
state fMRI, sMRI, and DTI data, which is the first attempt to
combine such three types of data to discriminate SZ patients
(n= 35) from HCs (n= 28). N -way fusion of brain imaging data is
more challenging than pair-wise combination, since many fusion
applications rely on studying correlations between highly distilled
measures (e.g., small regions of interest), while there is still rela-
tively little examination of the full relationships among data types.
The method and tools we propose will enable such an exami-
nation and can be potentially useful for identification of unique
biomarkers of brain disorders. Furthermore, the high-dimensional
neuroimaging data is typically very noisy and massive redundancy
reduction is usually necessary to facilitate the identification of
relationships among modalities. For this purpose, each modal-
ity is first reduced to a “feature” for each subject, which tends to
be more tractable than working with the large-scale original data
(Calhoun and Adali, 2009) and provides a simpler space to link the

data (Smith et al., 2009), e.g., an fMRI contrast map from the gen-
eral linear model, a GM segmentation image from the sMRI scan
and voxel-wise DTI measures such as FA. For resting state fMRI
data, we used the amplitude of low-frequency fluctuation (ALFF)
as fusion input (Zang et al., 2007; Zou et al., 2008; Calhoun and
Allen, 2013), which has been used previously for default mode or
other applications in multiple papers (Calhoun et al., 2012; Turner
et al., 2012; Yu et al., 2012b, 2013).

MATERIALS AND METHODS
THEORY DEVELOPMENT
Existing multivariate fusion methods have different optimiza-
tion priorities and limitations: some enable common as well as
distinct levels of connection among modalities, such as mCCA
(Correa et al., 2009) and partial least squares (PLS) (Lin et al.,
2003; Chen et al., 2009), but their separated sources may not be
sufficiently spatially sparse. For example, mCCA maximizes the
inter-subject covariation across two sets of features and gener-
ates two linked variables, one from each dataset, i.e., canonical
variants (CVs); which correlate with each other only on the
same indices (rows) and their corresponding correlation values
are called canonical correlation coefficients (CCC). This strategy
allows for both common and distinct aspects of two features, but
the brain maps of several components may look similar when
the CCCs are not sufficiently distinct. Some approaches per-
form well in spatial decomposition, such as jICA (Calhoun et al.,
2006) and linked ICA (Groves et al., 2012), which aim at max-
imizing the independence among estimated sources combining
more than two modalities, but only allow a common mixing
matrix. These two methods enable detection of features com-
mon to all modalities at the expense of features which may be
distinct to one or more of them (a situation which becomes
more likely when combining more than two modalities). Multiple
previous studies that combined function and structure (Olesen
et al., 2003; Rykhlevskaia et al., 2008; Camara et al., 2010; Sui
et al., 2012b) provide support for the assumption that com-
ponents decomposed from each modality have some degree of
correlation between their mixing profiles among subjects. This
motivates our data-driven model that is optimized for both flex-
ibility in inter-modal associations and high capability on source
separation.

The basic strategy of mCCA+ jICA is shown in Figure 1.
MCCA is first adopted to project the data in a space so that the
correlations among mixing profiles (Dk, k = 1, 2, . . ., n) of n (n= 3
in this study) modalities are jointly maximized (in their sum of
squared correlations). The resulting CVs Dk are sorted by correla-
tion which provides a closer initial match to the potential highly
or weakly correlated mixing profiles between components, which
will make the subsequent application of jICA more reliable. At
this time, the associated maps Ck may not be completely separated
by mCCA. We then apply jICA on the concatenated maps (C1,

C2, . . ., Cn) to obtain the final maximally independent source Sk.
In other words, mCCA first relates multiple datasets with flexible
linkages (correlation) in their mixing matrices, which matches well
with the assumptions of jICA that is subsequently applied to the
joint spatial maps. Hence, mCCA and jICA are complementary to
one another, and can relax the limitations of each listed above if
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Sui et al. fMRI-DTI-sMRI fusion to discriminate schizophrenia

FIGURE 1 | N -way mCCA + jICA fusion strategy of for real human data (n = 3 in this study).

used together, generating both highly and weakly correlated joint
components that are independent.

We assume that the multimodal dataset Xk, is a linear mix-
ture of Mk sources given by Sk, mixed with a non-singular mixing
matrix (or loading parameters) Ak for each, k denotes modality.

Xk = Ak Sk k = 1, 2, . . . , n (1)

where Xk is a subjects-by-voxels feature matrix (we use voxels for
our description but it could also be, e.g., time points or genes).
The sources Sk, are distinct within each dataset, while the columns
of Ai and Aj have higher correlation only on their correspond-
ing indices, i, j ∈ {1, 2, . . ., n} i 6= j are modality number. Given
that there are N subjects, typically, the number of voxels L in Xk is
much larger than N. Due to the high dimensionality and high noise
levels in the brain imaging data, order selection is critical to avoid
over fitting the data. Using the improved minimum description
length (MDL) criterion (Li et al., 2007), the number of indepen-
dent components Mk are estimated for each modality and we set
the final component number for jICA as M =max(M 1, M 2, . . .,
Mn). Dimension reduction is then performed on Xk using singular
value decomposition to determine the signal subspace given by

Yk = Xk Ek k = 1, 2, . . . , n (2)

where Yk is in size of N ×M and Ek contains eigenvectors cor-
responding to significant (the top M highest) singular values.
Multi-set CCA (Li et al., 2009) is thus performed on Yk, gener-
ating the CVs Dk = Ykwk by maximizing the sum-of-squares of all
correlation values in the corresponding columns of Dk so that

E{DT
k Dk} = I; E{DT

k Dj} ≈ diag (r (1)

k,j , r (2)

k,j ...r (M )

k,j ) (3)

where k, j ∈ {1, 2, . . ., n}, k 6= j. Based on the linear mixture
model, we simultaneously obtain the associated components Ck

via Xk=Dk·Ck, Ck= pinv(Dk)·Xk. However, the performance
of mCCA for blind source separation (BSS) may suffer when

r (1)

k,j , r (2)

k,j ...r (M )

k,j are very close in values, which might occur in

applications using real brain data, since the multimodal connec-
tion among components usually are not very high and could be
similar in value (Sui et al., 2011). Therefore, Ck will typically be
a set of sources that are not completely independent. Joint ICA is
then implemented on the concatenated maps (C1, C2, . . ., Cn), to
maximize the independence among joint components by reducing
their second and higher order statistical dependencies, as in Eq. 4.
ICA as a central tool for BSS has been studied extensively and we
utilized Infomax (Bell and Sejnowski, 1995) in our work due to its
good stability.

[S1, S2...Sn]=W · [C1, C2...Cn] (4)

Finally, n sets of independent components Sk are achieved, with
their corresponding mixing matrices Ak linked via correlation. The
proposed scheme “mCCA+ jICA” can be summarized as shown
in Figure 1.

Xk = (Dk ·W
−1) · Sk , Ak=Dk ·W

−1 (5)

Multi-set canonical correlation analysis+ jICA was compared
with its alternatives in simulation in Sui et al. (2013), where results
show that combination of mCCA and jICA mitigates the perfor-
mance deficits of each and achieves more reliable and better sep-
aration on both sources and mixing matrices. Interestingly, when
the estimated component number is higher than the ground truth,
the source estimation performance continues to be high, while the
estimation of mixing coefficients achieves best performance when
M equals to true values.

HUMAN BRAIN DATA
Participants
Multi-set canonical correlation analysis+ jICA was applied to
DTI, resting state fMRI, and sMRI data of 63 subjects recruited as
part of a multimodal SZ center for biomedical research excellence
(COBRE) study at the Mind Research Network1. Informed consent

1http://cobre.mrn.org
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was obtained from all subjects according to institutional guidelines
required by the Institutional Review Board at the University of
New Mexico (UNM). Table 1 lists the demographic information.
All subjects were screened and excluded if they had history of neu-
rological disorder, history of mental retardation, history of severe
head trauma with more than 5 min loss of consciousness, or his-
tory of substance abuse, or dependence within the last 12 months
(except for nicotine). HCs were free from any Axis I disorder,
as assessed with the SCID-NP (Structured Clinical Interview for
DSM-IV-TR, Non-patient version). Patients met criteria for SZ
defined by the DSM-IV-TR based on the SCID-P interview (First
et al., 1995). All patients were on stable medication prior to the
fMRI scan session. The two groups did not differ with regard to
age, gender, and ethnicity, see Table 1. Symptom scores were deter-
mined based on the positive and negative syndrome scale (PANSS)
(Kay et al., 1987).

Imaging parameters
All the data were collected on a 3-T Siemens Trio scanner with
a 12-channel radio frequency coil at the Mind Research Net-
work. The imaging parameters were as follows: fMRI : resting
state data were collected with single-shot full k-space echo-planar
imaging (EPI) with ramp sampling correction using the inter com-
missural line (AC/PC) (anterior commissure/posterior commis-
sure) as a reference (TR= 2 s, TE= 29 ms, matrix size= 64× 64,
flip angle= 75 °, slice thickness= 3.5 mm, slice gap= 1.05 mm,
field of view (FOV) 240 mm, matrix size= 64× 64, voxel
size= 3.75 mm× 3.75 mm× 4.55 mm. sMRI : a multi-echo
MPRAGE sequence was used with the following parameters:
TR/TE/TI= 2530/(1.64,3.5,5.36,7.22,9.08)/900 ms,flip angle= 7
°, FOV= 256× 256 mm, slab thickness= 176 mm, matrix
size= 256× 256× 176, Voxel size= 1 mm× 1 mm× 1 mm, Pixel
bandwidth= 650 Hz, Total scan time= 6 min. DTI : data was
collected along the AC/PC line, throughout the whole brain,
FOV= 256× 256 mm, slice thickness= 2 mm, NEX (number of
excitations)= 1, TE= 84 ms, TR= 9,000 ms. A multiple channel
radio frequency coil was used, with GRAPPA (generalized autocal-
ibrating partially parallel acquisition) (×2), 30 gradient directions
with a diffusion sensitivity, b= 800 s/mm2. The b= 0 experiment
was repeated five times, and equally inter-spread between the 30
gradient directions. All b= 0 images were registered to the first
b= 0 image with a six degrees-of-freedom transformation. This
was followed by registering the b= 800 s/mm2 image to the b= 0
image immediately before it by an affine 12 degrees-of-freedom
transformation. The two transformations were multiplied and
then one transformation applied to the b= 800 s/mm2 image to
align it to the first b= 0 image. This resulted in all images being
registered to the first b= 0 image. FLIRT (FMRIB’s Linear Image
Registration Tool) was used for all registration steps.

Table 1 | Demographic information of the subjects.

Num Age Gender Ethnicity

HC 28 39±15 21M/7F 21 Whites

SZ 35 36±12 26M/9F 22 Whites

p Value 0.36 0.99 0.58

Resting state fMRI
Resting-state scans were a minimum of 5 min, 4 s in duration (152
volumes). Subjects were instructed to keep their eyes open dur-
ing the scan and stare passively at a foveally presented fixation
cross, as this is suggested to facilitate network delineation com-
pared to eyes-closed conditions and helps ensure that subjects
are awake.

fMRI preprocessing
SPM8 software package2 was employed to perform fMRI pre-
processing. Slice timing was performed with the middle slice
as the reference frame. Images were realigned using INRIalign,
a motion correction algorithm that is unbiased by local signal
changes (Freire et al., 2002). Data were then spatially normalized
into the standard Montreal Neurological Institute (MNI) space
(Friston et al., 1995) with affine transformation followed by a non-
linear approach with 4× 5× 4 basis functions. Images (originally
collected at 3.75 mm× 3.75 mm× 4.55 mm) were then slightly
upsampled to 3 mm× 3 mm× 3 mm, resulting in a data cube of
53× 63× 46 voxels. Before smoothing, we further regress out the
six motion parameters for each slice to remove the motion effect.
Finally,data were spatially smoothed with a Gaussian kernel of full-
width half maximum (FWHM) of 10 mm× 10 mm× 10 mm. For
the rest fMRI, we extracted the voxel-wise ALFF to generate a map
for each subject. The ALFF calculation consisted of computing
the fast Fourier transform (FFT) of each voxel time series, taking
the square root of the power spectrum to obtain amplitude, and
averaging amplitude in (0.01, 0.1) Hz. Prior to computing ALFF,
the original 4D fMRI data sets were divided by their global mean
(over time and space) to normalize differences in scan intensity
units. ALFF maps computed in this manner were used previously
in a comparative classification analysis (Erhardt et al., 2011) and
the use of ALFF maps in a “second-level” ICA has been previously
studied (Calhoun and Allen, 2013).

DTI preprocessing
DTI data were preprocessed by FMRIB Software Library (FSL)3

and consisted of the following steps: (a) quality check, any gradi-
ent directions with excessive motion or vibration artifacts were
identified and removed; (b) motion and eddy current correc-
tion; (c) correction of gradient directions for any image rotation
done during the previous motion correction step; (d) calculation
of diffusion tensor and scalar measures such as FA, which were
then smoothed and resized to a final 53× 63× 46 matrix for each
subject, see more details in Sui et al. (2011).

sMRI preprocessing
sMRI data were also preprocessed using the SPM8 software pack-
age which was used to segment the brain into white-matter (WM),
GM, and cerebral spinal fluid with unmodulated normalized para-
meters via the unified segmentation method (Ashburner and Fris-
ton, 2005). After segmentation, the GM images were smoothed
to a FWHM Gaussian kernel of 10 mm (White et al., 2001) and

2http://www.fil.ion.ucl.ac.uk/spm/software/spm8
3www.fmrib.ox.ac.uk/fsl
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re-sliced to a matrix of 53× 63× 46 voxels. Subject outlier detec-
tion was further performed using a spatial Pearson correlation
with the template image, to ensure that all subjects were properly
segmented (for details, see Segall et al., 2009).

Normalization
After feature extraction (preprocessing), the 3D brain images of
each subject were reshaped into a one-dimensional vector and
stacked, forming a matrix with dimensions of 63× number of
voxels for each of the three modalities. These three feature matri-
ces were then normalized to have the same average sum-of-squares
(computed across all subjects and all voxels/locus for each modal-
ity) to ensure all modalities had the same ranges. Following nor-
malization, the relative scaling (a normalization factor) within a
given data type was preserved (i.e., 1.08, 0.24, 0.39 for ALFF, FA,
GM respectively), but the normalized input units have the same
voxel-wise mean square variance for all modalities. Next, the data
was processed via the pipeline shown in Figure 1, i.e., dimension
reduction→multi-set CCA→ jICA→ component analysis. The
component number was estimated using modified MDL (Li et al.,
2007) to be 10, 5, 8 for fMRI, DTI, and sMRI respectively. We
thus choose M = 10 for the following analysis since we have found
that a slight overestimation of the component number does not
adversely affect the results in simulation (Sui et al., 2011). Note
that the estimated IC number is lower than that used for 4D fMRI
data typically, since mCCA+ jICA works on extracted features of
interests, instead of the original imaging data. However, a consid-
erable amount of variance is retained for the M = 10 case, i.e., 95,
96, 99% for fMRI, DTI, and sMRI respectively.

ANALYZING GENERATED COMPONENTS AND MIXING COEFFICIENTS
After applying the mCCA+ jICA to the human brain data, inde-
pendent component Sk and the mixing matrices Ak for each
modality (k = 3 in this study) were generated, providing a vari-
ety of ways to analyze the inter-correlation between modalities as
well as the group differences, as in Sui et al. (2011). In this paper,
we are most interested in:

Shared/distinct abnormalities
Two-sample t -tests were performed on mixing coefficients of each
IC for each modality (i.e., first 28 elements corresponding HC ver-
sus last 35 elements corresponding SZ from mth column of Ak

for the mth IC of modality k), the results tell us which compo-
nents are significantly abnormal in SZ. If the components of the
same index show group differences in more than one modality,
they are called modality-common (or joint) group-discriminative
ICs. By contrast, if the component shows significant group dif-
ference only in a single modality, it is called a modality-unique
group-discriminative IC. That are what we call shared or distinct
abnormalities.

Inter-modality correlation
We also looked into the column-wise correlations between A1, A2,
and A3 pair wisely. It is likely that the joint group-discriminative
components have a strong inter-modality correlation between
their mixing coefficents, which indicates the interaction and
correspondence among modalities.

Impact of clinical measures
The derived mixing coefficients also provide a way to investigate
the relationships between the identified components and subjects’
clinical data, e.g., the correlation between mixing coefficients of
patients for each component and antipsychotic medication doses
[standardized as olanzapine equivalents (Gardner et al., 2010)]
or PANSS scores. In this paper, we computed the correlation with
PANSS (Kay et al., 1987), which rate the scale of severity of positive,
negative, and general symptoms in SZ.

Potential use for classification
To test the potential use of the identified group-discriminative
components (i.e., corresponding rows of Sk of modality k), we
next used them to generate features (e.g., the Z map above cer-
tain threshold) and train a classifier, to see whether they are able
to predict diagnosis or serve as potential biomarkers, which may
prove the great significance for multimodal analysis.

For each modality, we transferred the group-discriminating
components (for ALFF and GM, we use only two ICs with mini-
mum p values) into Z values and thresholded at |Z | > 3.5, generat-
ing a mask from each component. The masks of the same modality
were then combined and applied to the raw input matrix of each
modality, which served as the input to the further classification
based on uni-modal and multimodal features. Each individual
was assigned one of two class memberships (SZ versus HC).
We trained four different classification algorithms: linear support
vector machine (LSVM) (Cortes and Vapnik, 1995), radial basis
function support vector machine (RSVM) (Amari and Wu, 1999),
k-nearest neighbor algorithm (KNN) (Geva and Sitte, 1991), and
Gaussian naïve bayes (GNB) (McCallum and Nigam, 1998). Each
algorithm was trained on 50% of the data (randomly chosen sam-
ples) with 10-fold cross validation, and tested on the other half for
1000 times, with the mean and maximal success rate recorded.
Because this paper is not mainly focused on classification, we
will not address the details of each algorithm. One limitation
of this experiment is that the data set used to identify group-
discriminating components is the same as the one which we did
classification with, since we don’t have other similar resting fMRI-
DTI-sMRI data at hand for cross validation and our main aim is to
test whether mCCA+ jICA is able to serve as an effective feature
selection method for group prediction.

RESULTS
GROUP DIFFERENCES IN HUMAN BRAIN DATA
Two-sample t -tests found both modality-common group-
discriminative ICs (e.g., IC6 and IC7 in green frames, as shown
in Figure 2) as well as modality-unique group-discriminative ICs,
e.g., GM_IC5, ALFF_IC3 in our case. Interestingly, the modal-
connection between joint-discriminative ICs indicate significant
correlations (GM-ALFF IC6: r = 0.28, p= 0.025; FA-GM IC7:
r = 0.38, p= 0.002; FA-ALFF IC7: r = 0.31, p= 0.015) between
their mixing profiles.

CORRELATION WITH PANSS SCORES
There was no significant correlation regarding the antipsychotic
medication doses. However, two ICs: FA_IC4 (anterior thalamic
radiation, ATR and superior longitudinal fasciculus, SLF) and
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Sui et al. fMRI-DTI-sMRI fusion to discriminate schizophrenia

FIGURE 2 | Group-discriminating regions across three
modalities, with a threshold of |Z | > 2.5. Two-sample t -tests were
performed on mixing coefficients of each IC for each modality. If the
components of the same index show group differences in more

than one modality, they are called modality-common (or joint)
group-discriminative ICs in green frames; otherwise, it is called a
modality-unique group-discriminative IC, e.g., GM_IC5, ALFF_IC3 in
red frames.

GM_IC4 (subregions of the default mode) were significantly cor-
related with positive PANSS scores, while there was no significant
correlation with negative PANSS score. The scatter plots and linear
trends are shown in Figure 3.

The specific identified regions of the components of interest
and their abbreviations are summarized in Table 2 for resting
state fMRI components (Talairach labels), Table 3 for DTI (WM
tracts), and Table 4 for sMRI (MNI labels) respectively. For fMRI
and sMRI, each IC is transformed into a Z map by dividing its stan-
dard deviation across all voxels, and the voxels above the threshold
(|Z | > 2.5) were converted from MNI coordinates to Talairach
coordinates and entered into a database to provide anatomic and
functional labels for the right (R) and left (L) hemispheres. The
volume of identified voxels in each area is provided in cubic cen-
timeters (cm3). Within each area, the maximum Z value and its
MNI coordinates are provided for all three tables. To summarize
the WM results, we used the Johns Hopkins WM tractography

atlas (from FSL) (Hua et al., 2008), from which 20 structures were
identified; mostly large bundles. In Table 3, the WM tract labels,
the identified volume (cc), and the percentage that indicates the
overlap of the identified voxels with each WM tract are listed in
detail.

CLASSIFICATION BASED ON SELECTED COMPONENTS
After transferring the group-discriminating components into Z
values and thresholded at |Z | > 3.5, the mask from each compo-
nent were generated and applied to the raw input matrix of each
modality, resulting in three feature matrices in dimension of sub-
ject by voxels, i.e., FA: 63× 312, ALFF 63× 566, GM 63× 1035,
which served as the input to the further classification based on
uni-modal and multimodal features.

Each individual was assigned one of two class memberships
(SZ versus HC) and we have seven modal combinations (three
single, three pair-wise, one three-way) as shown in Figure 4.
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FIGURE 3 |The scatter plots and linear trends of components with significant correlation between positive PANSS score and its loadings.

After comparison, RSVM achieved the best classification accuracy
among the four algorithms we trained with each of seven modal
combinations; its mean, and maximum rates were summarized in
Figure 4, where GM features obtained the highest accuracy in sin-
gle modality, while FA+GM predict best among all seven modal
combinations (mean 0.79, max 0.96).

DISCUSSION
In this paper we applied the mCCA+ jICA model to three-way
fusion of resting state fMRI, sMRI, and DTI data. The aim of the
method is to identify precise correspondence among n data types
and make possible the investigation of both shared and distinct
abnormalities spanning multiple modalities for a specified brain
disorder. Some abnormalities may occur in specific modalities,
while others may be found in more than one modality simultane-
ously. Also, hidden linkages between components from different
modalities may underlie in the data.

GROUP DIFFERENCES
IC 7 significantly differentiated SZ from HC in all three modalities,
suggesting the following abnormalities in SZ: (a) prefrontal cortex
and left superior temporal gyrus (STG) (rest fMRI); (b) ATR, cor-
ticospinal tract (CSF), and forceps major (FMAJ; WM, DTI); and
(c) regions of the motor cortex, medial/superior frontal cortex,
and temporal gyrus (GM density). Furthermore, these identified
affected regions may share some underlying relationship in SZ.
The FA changes in ATR, CST, and FMAJ were previously asso-
ciated with disconnectivity of brain networks in SZ in separate
studies (Schlosser et al., 2007; Friedman et al., 2008; Sussmann
et al., 2009). In particular, ATR projects from the anterior and
medial regions of the thalamus to the frontal lobe, while CST
subserves motor control. Accordingly, GM_IC7 shows strong alter-
ations in motor cortex and, corresponding nicely to findings in
Douaud et al. (2007) where the abnormalities in the primary sen-
sorimotor and premotor cortices and in WM CST tracts were
detected. Moreover, ALFF_IC7 implicates prefrontal cortex as

abnormal, which plays an important role in the sensory integra-
tion and has been frequently reported dysfunction in SZ (Badcock
et al., 2005; Hamilton et al., 2009; Yu et al., 2012a). These two
pairs of components (FA-ALFF IC7, FA-GM IC7) depict a set of
functional-anatomical “connected” regions. Note that both pairs
have significant correlations (0.31/0.38) between their subject-
mixing profiles as mentioned before, suggesting that disrupted
WM connectivity may contribute to coordinated brain dysfunc-
tion, especially in the frontal and motor cortex, which is frequently
hypothesized to be “disconnected” from other brain regions in SZ
(Williams et al., 2004). Our results suggest that the anisotropy
changes may relate to functional/structural changes in brain con-
nectivity that are thought to play a central role in the clinical
expression of SZ (Douaud et al., 2007).

Furthermore, GM-ALFF IC6 is another joint group-
discriminative component, with middle/medial frontal cortex and
thalamus (Woodward et al., 2012) indicated in ALFF map and
temporal/frontal cortex shown in GM changes. The abnormality
in each component have been previously found associated with
the SZ deficits separately (Onitsuka et al., 2004; Zhou et al., 2007a;
Edgar et al., 2012). Specifically, the result in Jayakumar et al. (2005)
was in well accordance with our findings that SZ patients have
significantly smaller global and regional GM volumes in inferior
frontal, superior temporal, and parahippocampal gyri etc. Our
results also suggest that functional disconnectivity associated with
frontal lobe (also shown in ALFF_IC3) is present in SZ during
rest (Hoptman et al., 2009). This is consistent with the notion
that deregulation of medial frontal regions is associated with self-
directed thoughts. This may lead to confusion between the source
of internal and external stimuli, and may provide a neurophysi-
ological basis for hallucinations (Whitfield-Gabrieli et al., 2009).
This would have to be verified in future work.

We also identified ICs of interest showing significance only in
one modality, such as GM_IC 5, 9, 10 and ALFF_IC3 (pink frame).
The three structural components indicated regions including STG,
precuneus, prefrontal cortex, insula, and thalamus, Hence, GM
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Table 2 | Anatomic regions of the GM components of interest.

Area Brodmann area Vol. (cm3) Z max value (L/R) (x, y, z)

GM IC6 (JOINT)

Positive

Superior temporal gyrus 13, 22, 38, 39, 41 4.4/3.4 3.6 (−48, −40, 8)/4.6 (48, −38, 7)

Middle temporal gyrus 21, 22, 37, 39 5.4/1.3 4.5 (−48, −35, 2)/3.5 (48, −32, 2)

Middle frontal gyrus 6, 8, 9, 46 3.4/1.5 3.7 (−50, 16, 32)/3.0 (50, 19, 32)

Inferior frontal gyrus 9, 44, 45, 47 3.8/0.1 3.1 (−50, 10, 33)/2.1 (42, 30, 12)

Negative

Middle temporal gyrus 21 0.7/0.3 3.1 (−45, −55, 6)/2.6 (42, −52, 8)

Parahippocampal gyrus 30 0.3/0.2 3.0 (−24, −46, 5)/2.6 (27, −46, 5)

GM IC7 (JOINT)

Positive

Superior temporal gyrus 21, 22, 39 1.0/2.0 2.9 (−48, −40, 8)/3.6 (50, −26, −1)

Middle temporal gyrus 19, 20, 21, 22, 39 1.8/2.9 3.2 (−48, −32, 2)/3.5 (48, −26, −4)

Inferior frontal gyrus 13, 46 1.2/1.6 2.7 (−39, 30, 12)/3.1 (39, 35, 9)

Parahippocampal gyrus 28, 36 1.3/1.0 2.8 (−27, −12, −15)/2.4 (30, −7, −17)

Fusiform gyrus 37 0.8/0.4 2.8 (−48, −47, −13)/2.5 (48, −47, −13)

Negative

Precentral gyrus 4, 6 6.1/6.0 4.3 (−24, −23, 65)/3.3 (15, −23, 67)

Lingual gyrus 18 0.6/1.0 4.0 (3, −73, −6)/4.2 (12, −82, −14)

Paracentral lobule 4, 5, 6, 31 2.6/2.5 4.2 (0, −29, 51)/3.9 (3, −32, 51)

Postcentral gyrus 1, 2, 3, 5, 7, 40 4.3/3.3 4.1 (−21, −26, 65)/3.0 (50, −29, 51)

Medial frontal gyrus 6, 8, 32 3.0/4.2 4.1 (0, −23, 56)/3.6 (3, −20, 56)

Posterior cingulate 29 0.3/0.4 3.2 (−3, −58, 6)/3.6 (3, −58, 6)

Superior frontal gyrus 6, 8 3.4/3.2 3.3 (0, 5, 49)/3.2 (21, −8, 67)

Precuneus 7, 39 1.4/4.9 3.3 (−30, −62, 34)/3.2 (9, −74, 42)

Inferior parietal lobule 40 1.6/2.0 3.3 (−42, −35, 54)/3.3 (48, −32, 54)

GM IC4

Positive

Middle temporal gyrus 19, 21, 22, 37, 39 6.2/2.2 3.7 (−42, −69, 15)/2.9 (53, −58, 11)

Superior temporal gyrus 13, 22, 38, 39, 41, 42 5.2/2.6 3.5 (−53, −57, 19)/3.0 (50, −52, 14)

Supramarginal gyrus 40 2.9/2.4 3.4 (−53, −54, 22)/2.8 (53, −45, 30)

Precuneus 7, 19, 23, 31, 39 3.2/6.0 3.2 (0, −51, 36)/3.3 (3, −36, 43)

Parahippocampal gyrus 19, 28, 34 2.3/0.9 3.2 (−24, −38, 5)/2.7 (24, −41, 5)

Cingulate gyrus 24, 31, 32 2.0/2.1 3.1 (0, −42, 35)/3.2 (3, −33, 40)

Anterior cingulate 25 0.6/0.3 3.1 (0, 5, −8)/2.7 (3, 5, −10)

Postcentral gyrus 2, 40 2.0/0.2 3.1 (−50, −33, 49)/2.1 (50, −32, 51)

GM IC5

Positive

Precuneus 7, 19, 39 2.9/1.5 4.0 (−24, −65, 36)/4.6 (30, −59, 36)

Cerebellum 8.8/7.8 3.7 (0, −47, −8)/3.5 (3, −50, −8)

Middle frontal gyrus 6, 10 1.0/0.7 3.6 (−33, 39, 20)/2.9 (33, 47, 6)

Thalamus 1.8/1.0 3.5 (−6, −23, 12)/2.7 (3, −14, 12)

Middle temporal gyrus 19, 21, 22, 37, 39 1.8/0.9 3.1 (−48, −38, 5)/2.9 (48, −35, 2)

Negative

Superior temporal gyrus 21, 38 1.5/0.6 3.1 (−30, 16, −24)/2.4 (45, 20, −16)

GM IC9

Positive

Superior temporal gyrus 22, 38 1.4/2.5 3.1 (−45, 11, −11)/3.7 (48, 11, −6)

Cuneus 7, 17, 18, 23, 30 2.6/0.7 3.5 (−12, −93, 5)/2.4 (18, −96, 8)

Superior frontal gyrus 6, 8, 9, 10 4.0/3.1 3.3 (−24, 48, 31)/3.1 (21, 11, 49)

Middle frontal gyrus 6, 8, 9, 10 5.3/2.6 3.1 (−33, 58, 3)/2.7 (27, 3, 52)

Precuneus 7, 19, 31 1.5/0.6 3.1 (−27, −62, 34)/2.9 (30, −62, 36)

Medial frontal gyrus 6, 8, 10, 32 1.3/1.1 3.1 (0, 11, 44)/3.0 (21, 5, 49)

(Continued)
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Table 2 | Continued

Area Brodmann area Vol. (cm3) Z max value (L/R) (x, y, z)

Negative

Middle temporal gyrus 19, 22, 39 1.8/1.5 3.9 (−48, −43, 5)/5.0 (42, −57, 22)

GM IC10

Positive

Angular gyrus 39 0.6/0.4 3.7 (−33, −54, 36)/3.8 (36, −56, 36)

Precuneus 7, 19, 39 1.5/0.6 3.7 (−30, −62, 36)/3.1 (36, −62, 36)

Supramarginal gyrus 40 0.4/0.4 3.1 (−36, −51, 36)/3.2 (36, −51, 36)

Middle frontal gyrus 6, 8, 9, 10 1.0/2.6 3.0 (−33, 16, 27)/2.9 (33, 19, 27)

Lingual gyrus 17 1.7/0.5 3.0 (−12, −87, 2)/2.6 (18, −87, 4)

Negative

Inferior frontal gyrus 9, 44, 45, 47 2.7/2.1 3.7 (−48, 14, −3)/3.7 (48, 17, −6)

Superior temporal gyrus 22, 38, 42 4.2/1.7 3.7 (−48, 11, −6)/3.2 (50, 14, −6)

Insula 13 1.6/0.1 3.5 (−45, 8, −5)/2.2 (45, 8, −5)

Table 3 | White-matter tract labels of the FA components of interest.

Abbreviation WM tracts Vol. (cm3) % Z max (R/L)

FA IC7 (JOINT)

Positive

ATR Anterior thalamic radiation 2.3/7.2 5/14 4.7 (26, 31, 13)/5.2 (28, 25, 6)

CST Corticospinal tract 2.1/2.3 6/7 5(25, 33, 7)/5.1(31, 34, 14)

CG Cingulum 0.5/0.7 2/2 2.9(18, 21, 18)/3.1(28, 14, 31)

FM Forceps minor/Forceps major 1.7/3.4 3/7 3.9(27, 47, 21)/5(27, 26, 22)

IFO Inferior fronto-occipital fasciculus 1.1/2 2/5 3.9(16, 11, 22)/3.7(35, 45, 21)

ILF Inferior longitudinal fasciculus 1.7/3.1 4/7 3.9(12, 19, 17)/5.3(41, 31, 15)

SLF Superior longitudinal fasciculus 5.6/4.6 5/4 4.8(6, 25, 15)/5.4(44, 27, 15)

UF Uncinate fasciculus 0.3/0.5 3/4 3.8(22, 51, 13)/2.9(40, 37, 10)

Negative

ATR Anterior thalamic radiation 1.1/0.9 2/2 3.3(20, 38, 27)/3.4(27, 27, 4)

CST Corticospinal tract 1.9/1.4 5/4 3.5(25, 27, 7)/4.6(29, 31, 8)

SLF Superior longitudinal fasciculus 3.2/4.1 3/4 5.2(12, 39, 29)/6(46, 30, 11)

FA IC4

Positive

ATR Anterior thalamic radiation 0.8/4.2 2/8 7.8(27, 26, 2)/7.4(28, 24, 1)

CST Corticospinal tract 2.7/1.9 7/6 8.5(26, 26, 1)/9.3(27, 26, 1)

ILF Inferior longitudinal fasciculus 0.7/2.2 2/5 2.9(11, 32, 12)/4.2(44, 30, 12)

SLF Superior longitudinal fasciculus 1.6/3.0 2/3 5.6(4, 26, 17)/5.3(48, 29, 10)

Negative

ATR Anterior thalamic radiation 2.3/1.2 6/4 4.2(24, 24, 8)/4.3(28, 31, 11)

IFO Inferior fronto-occipital fasciculus 2.1/1.7 4/4 3.6(19, 9,23)/3.7(40, 15, 25)

ILF Inferior longitudinal fasciculus 2.1/1.4 5/3 3.4(13, 15, 18)/3.3(45, 32, 13)

SLF Superior longitudinal fasciculus 4.4/6.3 5/6 5(7, 27, 15)/5.1(48, 29, 14)

concentrations were significantly reduced in the above regions in
the SZ group, consistent with other findings (Ha et al., 2004; Chua
et al., 2007; Segall et al., 2009). Since structurally segregated and
functionally specialized regions of the human cerebral cortex are
interconnected by a dense network of cortico-cortical pathways
(Hagmann et al., 2008; Segall et al., 2012), supporting the hypoth-
esis that the SZ deficit may lie in aberrant structural changes and
disconnectivity among different cortical areas.

CORRELATION WITH POSITIVE SYMPTOMS
Positive symptoms refer to an excess or distortion of normal
psychological functions, e.g., hallucinations and delusions. In
Figure 3, the higher positive symptoms were correlated with iden-
tified voxels in the middle/STG, precuneus, anterior cingulate,
and the parahippocampal gyrus in GM_IC4. This is consistent
with similar findings in fMRI (Garrity et al., 2007) where PANSS
positive scores were associated with abnormal activation of STG,
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Table 4 | Anatomic regions of the group-discriminating fMRI components.

Area Brodmann area Vol. (cm3) Z max value (L/R) (x, y, z)

ALFF – IC 6 (JOINT)

Positive

Superior frontal gyrus 8, 9, 10, 11 3.8/4.8 9.5 (−30, 43, −15)/9.5 (21, 43, −17)

Middle frontal gyrus 6, 10, 11, 46, 47 6.5/5.8 7.9 (−30, 40, −17)/7.8 (30, 40, −17)

Inferior frontal gyrus 11, 46, 47 2.4/3.3 7.4 (−24, 31, −19)/6.0 (15, 31, −17)

Medial frontal gyrus 10, 11, 25 5.8/6.8 6.0 (−12, 28, −17)/6.1 (9, 43, −17)

Superior temporal gyrus 22, 38 0.4/0.4 3.5 (−56, 11, −6)/2.8 (59, 11, −6)

Anterior cingulate 10, 25, 32 1.0/0.3 3.5 (−12, 49, −5)/2.3 (15, 46, −5)

Thalamus 0.3/0.2 3.0 (−6, −11, 14)/3.0 (6, −5, 11)

ALFF – IC 7 (JOINT)

Positive

Superior frontal gyrus 6, 10, 11 0.8/0.3 5.4 (−18, 64, 8)/3.4 (9, 67, 8)

Superior temporal gyrus 22, 38 5.4/0.1 4.9 (−33, 13, −28)/2.3 (30, 10, −31)

Medial frontal gyrus 10 0.9/0.0 4.3 (−6, 64, 5)/−999.0 (0, 0, 0)

Inferior frontal gyrus 44, 45, 46, 47 2.0/0.0 4.0 (−53, 20, −9)/−999.0 (0, 0, 0)

Middle frontal gyrus 10, 11 1.3/0.3 3.4 (−42, 52, −10)/3.7 (30, 62, 19)

Negative

Cingulate gyrus 23, 24, 32 2.2/2.8 3.5 (−9, 4, 27)/4.1 (9, 4, 27)

Anterior cingulate 24, 33 0.5/0.8 3.5 (−6, 10, 24)/4.0 (12, 13, 24)

Superior frontal gyrus 8, 10, 11 1.1/1.7 3.7 (−30, 32, 51)/3.9 (18, 43, −15)

Middle temporal gyrus 21, 38, 39 0.1/0.8 3.0 (−56, −66, 28)/2.6 (62, −35, −8)

ALFF – IC 3

Positive

Superior frontal gyrus 6, 8, 9, 10, 11 14.3/14.1 6.6 (−21, 57, 28)/6.5 (18, 65, 16)

Middle frontal gyrus 6, 8, 9, 10, 11, 46 12.5/11.6 5.0 (−27, 59, 19)/5.6 (24, 62, 19)

Medial frontal gyrus 6, 8, 9, 10 4.9/4.5 4.7 (−3, 49, 42)/4.7 (3, 49, 42)

Inferior frontal gyrus 9, 10, 45, 46, 47 2.6/2.0 3.9 (−42, 55, 0)/2.9 (56, 10, 33)

Superior temporal gyrus 38 0.6/0.1 3.1 (−42, 19, −26)/2.2 (39, 22, −26)

FIGURE 4 | Classification accuracy based on selected group-discriminative components from mCCA + jICA for seven modal combinations.

precuneus. Similarly GM volumes in anterior and posterior cin-
gulate regions were correlated with positive symptoms (Choi et al.,
2005; Yan et al., 2012). Additionally, in Meda et al. (2012), similar

regions were also reported in resting state fMRI data, in which
anterior default mode and frontal-occipital regions have signifi-
cant correlation with the PANSS positive subscale in SZ. All these
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findings suggest a general hypothesis that psychotic symptoms
derive from functionally disconnected brain circuits, e.g., the dis-
integrated brain connectivity between medial frontal/prefrontal
and parietal networks in SZ (Zhou et al., 2007b). For FA_IC4,
the FA values in left ATR and SLF showed a significant negative
correlation with positive PANSS, consistent with (Caprihan et al.,
2008; Cui et al., 2011), suggesting that deficits of WM integrity
in left frontal-parietal lobe may also be involved in the patho-
physiology of positive symptoms. Finally, this data also supports
the hypothesis that the failure of left-hemisphere lateralization
might be involved in the pathophysiology of SZ (Szeszko et al.,
2005).

CLASSIFICATION BASED ON SELECTED ICs
The classification in Figure 4 shows that GM feature achieves the
best classification among three single modalities, consistent with
the fact that the selected GM components have much smaller p
values than ALFF or FA. The most powerful prediction can be
accomplished by using features from FA+GM, which is able to
detail the multifaceted pathology that is likely to be present in
SZ compared with single modality. Our results suggest that mul-
timodal fusion of the selected group-discriminative components
can improve the potential diagnosis prediction, in accordance with
Sui et al. (2009a) and Yang et al. (2010), however, fusing as many
modalities as possible in the training sample does not guaran-
tee best classification rates, as we showed here and reported in
Zhang et al. (2012); thus it would be helpful to compare a com-
bination of uni-modal and multimodal results, as we did in Kim
et al. (2010), to detect the potential biomarkers. We plan to pursue
this possibility in future work by using larger data sets and vari-
ous modalities, which aims to have bigger effect size and achieve
higher accuracy.

FUTURE WORK
In this paper we develop and evaluate a novel multivariate method
that can explore cross-information in multiple (more than two)
data types and applied it to compare SZ patients to controls using
an fMRI-DTI-sMRI combination. This is a novel attempt to per-
form a fusion of three different imaging modalities. The method
described here could be applied straightforwardly to study other
brain diseases (or subsets of a particular illness, such as psychotic
or non-psychotic bipolar disorder). In addition, the choice of
which multimodal data type to utilize is flexible, i.e., EEG, MEG, or
genetic data, different features like fractional ALFF (fALFF) from
fMRI (Kalcher et al., 2013) are also applicable. In a recent study,
we found both ALFF and fALFF to be interesting and decided to
start with ALFF (Turner et al., 2012), and will consider fALFF in
future work. Finally the proposed method is very computationally
efficient.

A limitation to the current study is that the subject number is
not very high. Several statistical tests did not survive from the mul-
tiple comparisons, which may be complemented in future studies
by including more subject samples or by multi-site recruitment.
Additionally, mCCA+ jICA operates on extracted features, rather
than the original imaging data (e.g., using FA values instead of
raw DTI data). Although some of the information is lost using
this method, a “feature” tends to be more tractable than work-
ing with the large-scale original data due to the reduced number
of dimensions (Calhoun and Adali, 2009) and provides a sim-
pler space to link the data (Smith et al., 2009). Note that in our
study we did not perform WM tractography but provided a type
of summary statistic. A major strength of mCCA+ jICA is that
it can discover changes in one modality, e.g., which are related to
alterations in distant, but connected regions in other modalities,
without requiring a direct link.

Another point worth noting is that we did not collect physio-
logic data during the rest fMRI session as studies of patients tend
to make this more difficult to collect. However it would be worth
evaluating this in future work. With the advent of more rapid scan-
ning (e.g., multiband sequences) which can adequately sample the
cardiac noise, it is becoming much more feasible to characterize
physiologic noise in large patient studies. We did not collect infor-
mation on nicotine use either in these subjects, which may have
potential effects on the imaging results, and would better be taken
into account in the future. For example, recent studies indicated
evidences of smoking effect in resting-state networks (Janes et al.,
2012) and more prevalence in subjects with psychiatric disorder
like SZ (Dickerson et al., 2013).

Multimodal fusion is an effective approach for analyzing bio-
medical imaging data that combines multiple data types in a
joint analysis. It helps to identify the unique and shared variance
associated with each imaging modality that underlies cognitive
functioning in HCs and impairment in mental illness. In this real-
world fusion application, we highlighted data from rest fMRI, WM
tract, and GM concentration from SZ and healthy control sub-
jects. We identified both modality-common and modality-unique
group-discriminating aspects that verified the abnormalities in SZ,
as well as replicated and extended previous findings. Such obser-
vations add to our understanding of the neural correlates of SZ.
The proposed model promises a widespread utilization in the neu-
roimaging community and may be used to identify potential brain
illness biomarkers.
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