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INTRODUCTION

Motor system neural networks are activated during movement imagery, observation and
execution, with a neural signature characterized by suppression of the Mu rhythm. In order
to investigate the origin of this neurophysiological marker, we tested whether transcranial
direct current stimulation (tDCS) modifies Mu rhythm oscillations during tasks involving
observation and imagery of biological and non-biological movements. We applied tDCS
(anodal, cathodal, and sham) in 21 male participants (mean age 23.8 4 3.06), over the left
M1 with a current of 2mA for 20 min. Following this, we recorded the EEG at C3, C4,
and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant
effects for biological vs. non-biological movement (p = 0.005), and differential hemisphere
effects according to the type of stimulation (p = 0.04) and type of movement (p = 0.02).
Analyses of surrounding electrodes revealed significant interaction effects considering
type of stimulation and imagery or observation of biological or non-biological movement
(p = 0.03). The main findings of this study were (1) Mu desynchronization during biological
movement of the hand region in the contralateral hemisphere after sham tDCS; (2)
polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e., anodal tDCS led to
Mu synchronization while cathodal tDCS led to Mu desynchronization during movement
observation and imagery (3) specific focal and opposite interhemispheric effects, i.e.,
contrary effects for the surrounding electrodes during imagery condition and also for
interhemispheric electrodes (C3 vs. C4). These findings provide insights into the cortical
oscillations during movement observation and imagery. Furthermore, it shows that tDCS
can be highly focal when guided by a behavioral task.

Keywords: tDCS, EEG, mu rhythm, motor imagery, action observation, primary motor cortex

2006) predominant at the contralateral hemisphere (Fadiga et al.,

I think, therefore I am. This classic Cartesian statement (“Cogito
ergo sum”) could be revised to “I think, therefore I do” to
underscore the notion that the motor neural network is as
engaged during motor imagery (Jeannerod, 2001; Decety and
Grezes, 2006) as during action execution or observation. The
mirror neuron system (MNS) plays a significant role in imitation-
based learning and action comprehension (Rizzolatti et al,
2001; Rizzolatti, 2005) being part of a system capable of mod-
ulating the plan for action execution through mental simu-
lation via observation and internalization of others’ actions
(Gallese and Goldman, 1998).

It is well established that movement observation and imagery
activates supplementary motor area, premotor cortex and pri-
mary motor cortex (M1) (Jeannerod, 2001). Additionally, several
studies using transcranial magnetic stimulation (TMS) show
imagery induced neuroplasticity as indexed by increased motor
evoked potentials (MEPs) and reduced motor threshold (MT)
(Fadiga et al., 1999; Roosink and Zijdewind, 2010) with muscle-
specific activation pattern (Facchini et al., 2002; Fourkas et al.,

1999) and long-lasting effects (Pascual-Leone et al., 1995).

Motor activation during action imagery and observation
can also be measured through synchronization (ERS) and
desynchronization (ERD) of the Mu rhythm (Pfurtscheller
and Aranibar, 1977). Initially described by Gastaut and
Bert (1954) and commonly detected in the frequency range
8-13Hz over the sensory-motor cortex (Pineda, 2008), the
Mu rhythm is desynchronized during movement execution,
observation and imagery. Increases in M1 excitability and con-
sequently Mu desynchronization seem associated with premo-
tor MNS inputs (Jarvelainen et al., 2001; Muthukumaraswamy
and Johnson, 2004). This specific neurophysiological signa-
ture is observed with action observation (Buccino et al., 2001;
Muthukumaraswamy and Johnson, 2004), imagery of self and
other’s movements (Hari, 2006; Francuz and Zapala, 2011) and
in response to static images that induce sensation of movement
(Giromini et al., 2010; Pineda et al., 2011).

In order to better understand the role of the motor cor-
tex in imagery, the use of tools to modify cortical excitability
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(CE)—such as non-invasive brain stimulation—is desirable. For
instance, anodal transcranial direct current stimulation (tDCS)
of the motor cortex enhances CE while cathodal tDCS decreases
it (Nitsche and Paulus, 2000, 2001). Furthermore, previous stud-
ies have shown that cathodal tDCS coupled with motor imagery
leads to decreased MEP while anodal tDCS induces the opposite
results (Quartarone et al., 2004). Conversely, combining anodal
tDCS with motor observation leads to long-lasting attenuation of
neuropathic pain (Soler et al., 2010); therefore the study of com-
bined approach may also provide initial data for a development
of novel therapeutic tools.

Here, we aimed to investigate neurophysiological changes
as indexed by Mu rhythm associated with combination of
tDCS over M1 with movement observation and imagery tasks.
Considering the neuromodulatory effects of tDCS we hypothe-
sized that anodal tDCS might increase Mu ERD and cathodal
tDCS would decrease it while sham condition should result in
the typical Mu rhythm changes associated with motor observa-
tion and imagery. Finally, we hypothesized that tDCS induced
Mu rhythm would be similar for both movement observation
and imagery.

MATERIALS AND METHODS

PARTICIPANTS

Twenty-one right-handed (as verified by the Edinburgh lateral-
ity inventory) males (mean age 23.8 & 3.1) participated in the
study which was approved by the institutional ethics committee of
the Mackenzie Presbyterian University, Brazil and by the National

Ethics Committee (SISNEP, Brazil; CAAE no 0117.0.272.000-11).
All participants gave written informed consent.

PROCEDURE

All participants received on different days with an interval
between sessions of at least 48 hours, sham, anodal and catho-
dal tDCS. Current was ramped-up for 20 s until it reached 2 mA;
stimulation was then given for 20 min, and finally the device was
turned-off with a ramp-down of 20s. Electrodes were 35 cm?,
therefore, the current density was 0.057 mA/cm2. Active electrode
was positioned over the left M1 (C3 according to the EEG 10-20
system) and reference electrode at the supraorbital area (SO)
as shown to be the optimal area for M1 stimulation according
to neurophysiological, behavioral and modeling studies (Nitsche
and Paulus, 2001; Fregni et al,, 2005; Foerster et al., 2012).
tDCS sessions were randomized and counterbalanced between
participants.

For sham tDCS, current was ramped-up for 20s until it
reached 2 mA, then ramped-down in 20s and turned off with-
out participant knowledge so that the participants felt the same
sensation of active stimulation. This procedure has been exten-
sively used and shown to be effective in sham-controlled studies
(Nitsche et al., 2008).

Immediately after tDCS, we positioned the EEG net on the
participant (this step took approximately 10 min). The partici-
pant sat in a comfortable chair at a 110 cm distance from the
computer monitor and received detailed instructions before task
performance (the experimental design is illustrated in Figure 1).

Anodal tDCS

surrounding C3

FIGURE 1 | Experimental Design. The order of observation videos was
random and always followed by the imagery correspondent condition.
The surrounding electrodes are: surround C3 (EGI electrodes: 29, 30,
35, 37 41, 42), Cz, surround C4 (EGI electrodes: 87 93, 103, 105, 110,

Observation How many Imagery

instruction pauses? instruction
| 20 min (I) J Is ; ~18 Imin
I | [ [ |
tDCS (2 mA) EEG

O\
~C4
Electrodes Electrodes

surrounding C4

111). The sound symbols represent the moment when the metronome
stimulus occurs pacing each cycle. For tDCS conditions red represents
the anode and black represents cathode. SO represents the supraorbital
(reference) area.
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OBSERVATION AND IMAGERY TASK

The task was comprised of two experimental conditions—
observation and imagery—each one having two types of
movement—biological and non-biological. The biological obser-
vation blocks were videos lasting 80, each showing 1 Hz cycles
of opening and closing pincer movements of a male right hand.
The maximum aperture between the index finger and the thumb
was 7.5 cm. For the biological imagery blocks, they were asked
to mentally simulate their own right hand in the same move-
ment, pacing at the same rate as it was shown in the observation
condition. Similarly, the non-biological observation blocks were
videos of 80s each showing 1 Hz cycles of two spheres mov-
ing vertically toward each other and then touching simulating
the biological movement. In order to make the non-biological
condition closer to the biological one, the maximum distance
between the spheres was also 7.5cm. The diameter of the two
spheres was 1.5 cm similarly to the thickness of the distal pha-
lanx as shown in the screen. Finally, the color of the spheres
was composed of proportions of Cyan 0%/Magenta 30%/Yellow
70%/Black 0% resulting in a color similar to the presented fin-
gers. For the non-biological imagery blocks, they were asked to
mentally simulate the movement of the two spheres paced at the
same rate as it was shown in the observation condition. In order
to maintain the participant’s attention to the task we presented
2-5 pauses of the movement for 1s in both observation condi-
tions. Participants were asked to mentally count the pauses and
report their answers after completing each trial. Both observation
and imagery conditions had their own control conditions i.e., for
observation control, there was an 80 s video of white noise and
for imagery control, participants were asked to imagine the white
noise for 80s. All cycles of 1 Hz for all blocks were accompanied
by the sound of a metronome to guide the imagery condition.
Each type of block was presented twice in random orders. The
observation condition was always presented before their imagery
equivalent conditions in order for the participant learn the move-
ment. In summary there was one active condition and two
controls for each task (observation and motor imagery)—i.e., (1)
the biological motor movement (observation or motor imagery);
(2) control 1: non-biological movement and; (3) control 2:
no movement control condition. The overall task duration was
approximately 18 min.

EEG RECORDING AND DATA REDUCTION

To investigate the effects of tDCS, we recorded the electroen-
cephalogram using a high-density 128 geodesic sensor net
(Electrical Geodesic). We processed the original data as follows:
(1) Highpass filtering at 1 Hz and Lowpass filtering at 30 Hz; (2)
removal of the first and final 10s of each trial and segmenta-
tion of the remaining 120 s (combination of the 60 s from the two
equal trials) in 2s epochs (as in Oberman et al., 2005), (3) arti-
fact detection (difference >140 wV between channels above and
below the eyes, a difference >55 WV between channels near the
outer canthi, or one or more channels exceeding an amplitude of
200 V), (4) re-referencing of scalp potentials to the average ref-
erence, (5) baseline correction from 200 ms before each segment.
Epochs containing artifacts due to eye blinks, ocular and head
movements were automatically rejected. In order to extract the

Mu rhythm, we performed a wavelet analyses for the frequency
between 8-11 Hz (Francuz and Zapala, 2011) for C3 and C4 and
Cz and the electrodes surrounding C3 and C4. Mu ERD was
thereafter calculated as a ratio of the power during experimental
conditions relative to the respective control condition. This ratio
was used to control variability in absolute Mu power as a result of
individual differences. Since ratio data are inherently non-normal
as a result of lower bounding, a log transform was used for the
analysis. This method has been largely used in Mu rhythm anal-
yses (Oberman et al., 2005; Giromini et al., 2010; Pineda et al.,
2011).

DATA ANALYSES

Repeated-measures ANOVA were run focusing on specific effects
on C3 and C4 or in Cz and the electrodes surrounding C3 and
C4. We performed the analysis of the surrounding electrodes
taking into consideration previous findings that show a differ-
ent pattern between C3 and its surrounding area during motor
imagery, videlicet ERD and ERS, respectively (e.g., Neuper et al.,
2006). For all analyses the dependent variable was the Mu desyn-
chronization index as described earlier. For the main ANOVA we
considered the factors condition (observation vs. imagery), move-
ment (biological vs. non-biological), tDCS (anodal vs. cathodal
vs. sham), and hemisphere [C3 (EGI number: 36) vs. C4 (EGI
number: 104)] and the respective interaction terms. For the sec-
ondary ANOVA we considered the factors condition (observation
vs. imagery), movement (biological vs. non-biological), tDCS
(anodal vs. cathodal vs. sham), and electrodes [surround C3 (EGI
number: 29-30-35-37-41-42) vs. surround C4 (EGI number: 87-
93-103-105-110-111) vs. Cz] and the respective interaction terms.
For the surrounding electrodes ANOVA, we used the mean values
of the previously mentioned electrodes (surround C3, surround
C4, and Cz values). When appropriate, post-hoc comparisons
were carried out using Fisher’s LSD. Statistical significance refers
to a p value < 0.05.

RESULTS
All participants completed the entire experiment. All participants
tolerated the stimulation well and no side effects were reported.

With regard to the main ANOVA considering C3 and C4 only,
we found significant effects for the factor Movement [F(;, 209) =
10.2; p = 0.005; 7112; =0.3] and for the interactions tDCS x
Hemisphere [F(;, 40) = 3.4; p = 0.04; nf, =0.1] and tDCS x
Movement x Hemisphere [F(2, 40) = 4.2; p = 0.02; 7112) =0.2].
Fisher LSD post-hoc analyses considering the factors tDCS and
hemisphere revealed significant differences between cathodal and
anodal tDCS at C3 (p = 0.016). As shown in Figure 2, cathodal
tDCS over C3 resulted in significantly larger Mu desynchroniza-
tion in this area when compared to anodal tDCS independent of
the movement type.

Post-hoc analyses for the three factors (tDCS, type of move-
ment and hemisphere) revealed significant differences between
C3 and C4 during biological movement after sham (p = 0.02),
anodal tDCS (p = 0.001), and cathodal tDCS (p = 0.004).

Concerning sham tDCS, we found a typical effect of Mu desyn-
chronization during biological movement in the contralateral
hemisphere. There was a significant difference for biological and
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FIGURE 2 | TDCS effects on C3 and C4. Bars mean standard errors.
(O, sham tDCS resulted in opposing effects for biological and
non-biological conditions at C3 (p = 0.005); M, anodal tDCS resulted in
ERS at C3 and ERD at C4 (p=0.01); A, cathodal tDCS resulted in Mu
ERD compared to anodal (p = 0.03) and sham (p= 0.02) tDCS at C3

C4

during non-biological movement; @, anodal tDCS resulted in Mu ERD
when compared to cathodal (p=0.01) and sham (p = 0.02) tDCS at C4
during biological movement; @, anodal tDCS resulted in Mu ERS when
compared to cathodal (p=0.001) and sham (p =0.002) tDCS at C3
during biological movement.

non-biological movement at C3 during sham tDCS (p = 0.005),
i.e., Mu desynchronization at C3 during biological movement
and Mu increase during non-biological movement. With regard
to anodal tDCS, there was an interesting interhemispheric effect:
we observed an absence of Mu desynchronization at C3 (hemi-
sphere contralateral to the movement) and simultaneous Mu
desynchronization in C4 (hemisphere ipsilateral to the move-
ment) during biological movement only (p = 0.01). Cathodal
tDCS resulted also in Mu desynchronization at C3 during non-
biological movement compared to sham (p = 0.02) and anodal
tDCS (p = 0.03). In addition, during biological movement obser-
vation and imagery there was a smaller desynchronization of
Mu in the left hemisphere after anodal tDCS compared to
sham (p = 0.002) and cathodal tDCS (p = 0.001), and a signif-
icant Mu desynchronization in the right hemisphere (C4) after
anodal tDCS compared to sham (p = 0.02) and cathodal tDCS
(p = 0.01).

Our analysis with C3 and C4 electrodes show that effects are
not different for movement observation vs. imagery [F(1, 20) =
1.05; p = 0.32; 1, = 0.05].

ANALYSIS OF SURROUNDING ELECTRODES

We then analyzed the electrodes Cz and around C3 and C4
(rather than C3 and C4 themselves), ANOVA revealed a signifi-
cant effect for the interaction tDCS x Condition x Movement
[F(2, 40y = 3.66; p = 0.03; 7112; = 0.15]. Since there was no effect

for the hemisphere of the electrodes, the results of this analysis
are referred to as surrounding electrodes data.

Contrary to the effects found in the C3 and C4 electrodes,
Fisher LSD post-hoc analysis on surrounding electrodes revealed a
tendency for sham tDCS to result in synchronization during bio-
logical imagery and desynchronization during biological observa-
tion (p = 0.09). Also, in the surrounding electrodes, after anodal
tDCS we found Mu ERD during biological imagery but not
during non-biological imagery (p = 0.028). On the other hand,
after anodal tDCS we observed Mu ERD during non-biological
observation while non-biological imagery provoked Mu ERS
(p = 0.048). Also, biological imagery had different effects in the
surrounding electrodes after anodal and cathodal tDCS resulting
in Mu ERD and ERS, respectively (p = 0.011). Finally, biolog-
ical observation led to a contrary effect as cathodal tDCS had
a higher magnitude effect on Mu ERD compared to anodal
(p = 0.023) and sham (p = 0.05). There was also a tendency for
cathodal tDCS to induce Mu ERD in biological observation but
not in non-biological observation (p = 0.06), and for Mu ERD
and ERS during biological imagery after anodal and sham tDCS,
respectively (p = 0.09). These results are illustrated in Figure 3.

DISCUSSION

Motor imagery and observation are extensively correlated with
ERD of the Mu rhythm as seen in previous literature. We con-
firm these findings showing that during biological observation
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FIGURE 3 | TDCS effects on surrounding electrodes. Bars mean standard
errors. O, after anodal tDCS, biological imagery was significantly different
from non-biological imagery (p = 0.028); @, anodal tDCS resulted in Mu ERD
when compared to cathodal tDCS in biological imagery (p = 0.011); A,

cathodal tDCS resulted in stronger Mu ERD on biological observation when
compared to anodal (p = 0.023) and sham (p = 0.05) tDCS; and M, anodal
tDCS resulted in Mu ERS on non-biological observation when compared to
non-biological imagery (p = 0.048).

or imagery primed by sham tDCS, the Mu rhythm is desynchro-
nized at the contralateral hemisphere. Here, we extend previous
findings showing that active tDCS induced changes in mem-
brane neuronal threshold is associated with modulation of the Mu
rhythm during biological movements.

Our sham findings of Mu desynchronization for biological
movement despite of condition (observation vs. imagery) cor-
roborate previous neuroimaging and EEG findings (Ruby and
Decety, 2001; Muthukumaraswamy and Johnson, 2004; Michelon
et al., 2006; Pfurtscheller et al., 2006) and therefore is in line
with the mental simulation theory (Jeannerod, 2001; Rizzolatti,
2005). Furthermore, by showing no differences between move-
ment observation and motor imagery, we extended these findings.

With regard to the active tDCS, both cathodal and anodal
stimulation interfered with the Mu rhythm elicited by the tasks.
However, contrary to our initial hypothesis, we found that anodal
tDCS was related to an increase of Mu power (i.e., synchro-
nization) at C3 while cathodal tDCS resulted in a decrease of
Mu power (i.e., desynchronization) at C3. Our hypothesis was
based on the notion that anodal would facilitate the neurophys-
iological processes associated with movement observation and
imagery (i.e., Mu desynchronization). However, previous non-
invasive stimulation research has reported opposite effects for
cathodal and anodal tDCS (Antal et al., 2007; Moliadze et al.,
2012; Batsikadze et al., 2013). For instance, Batsikadze et al.
(2013) applied cathodal tDCS over M1 for 20 min at 1mA and
2mA intensities and showed decreased and increased CE, respec-
tively. Therefore, the intensity and time of stimulation may result

in differential effects and our minor ERD effect might be due to
a possible cathodal enhancement on CE as recently demonstrated
(Batsikadze et al., 2013).

Still, it is not entirely clear which mechanisms underlie these
effects and thus caution is necessary in interpreting these data.
However, two main explanations seem possible to comprehend
our results. On one hand, our findings might be indicative of the
notion that Mu ERD is not generated only in the cortical areas.
The fact that anodal tDCS induced Mu ERS is in line with the
idea that Mu desynchronization is generated by subcortical sys-
tems. Leocani et al. (2005) investigated a sample of patients with
multiple sclerosis and showed that ERD during programming of
voluntary movement are likely mediated by cortical-subcortical
connections as they found delayed ERD onset in patients with
more severe subcortical damage. This novel finding might be
indicating that simple, learned movements (such as opening and
closing of the fingers) are mainly generated by subcortical systems
and increased cortical activity may interfere with performance of
such movement—here we provide such evidence with neurophys-
iological data. Similarly Antal et al. (2007) reported decrease of
CE when combining hand motor contraction with anodal tDCS,
which is aligned with our data considering the similar activation
during motor observation, imagery, and execution. On the other
hand, these effects might also be due to homeostatic mechanisms.
The depolarizing effect of anodal tDCS might have established
an enhanced CE at C3 in the baseline which induced a para-
doxical effect during the task (a homeostatic effect) resulting in
Mu ERS. This mechanism might be useful for neural protection
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as it avoids a high excitability alteration of the area and pos-
sible de-stabilization of neural network properties (Abbott and
Nelson, 2000). This hypothesis is strengthened by the reverse
effect after cathodal stimulation during biological movement, and
furthermore, explains our controversial effect of Mu ERD after
cathodal tDCS during non-biological movement. This is partic-
ularly underscored by the observation of increased ERS during
sham tDCS for the non-biological condition compared to control.

Supporting the homeostatic hypothesis, some previous stud-
ies have shown reverse effects of tDCS and TMS resulting from:
the combination of both techniques (Siebner et al., 2004), non-
invasive brain stimulation with drugs, (Fregni et al., 2006; Kuo
et al., 2008) and non-invasive brain stimulation with motor task
(Antal et al., 2007). Siebner et al. (2004) found that cathodal tDCS
followed by 1 Hz TMS results in a facilitatory effect which is in
opposition to commonly reported findings in low frequency TMS
studies. In turn, Fregni et al. (2006) found that low-frequency
1Hz rTMS led to CE enhancement in patients with juvenile
myoclonic epilepsy presenting with high plasma valproate level
(a drug that reduces CE) and CE decrease for the patient group
with low valproate level and control group. In addition, Kuo et al.
(2008) showed that combining d-cycloserine with anodal tDCS
yielded longer reaction times in a sequential motor learning task.
Mainly, Antal et al. (2007) reported decreased CE when com-
bining hand motor contraction with anodal tDCS. This is very
aligned with our data considering the similar activation during
motor observation, imagery, and execution.

As previously mentioned, caution is necessary when inter-
preting these data as it is known that tDCS can have effects on
subcortical (Polania et al., 2012a) and cortical structures (Polania
et al., 2012b) through M1 connections. Further studies testing
both our hypotheses are necessary to fully comprehend the gen-
erating source of the Mu rhythm, and thus, make possible a more
accurate interpretation of these neuromodulatory results.

Contrary to our findings, Matsumoto et al. (2010) reported
increased CE and Mu ERD after 10 min of 1 mA anodal tDCS
and decreased CE and Mu ERS after cathodal tDCS compared
to sham. The differences in the results between our study and
Matsumoto’s may be explained by methodological differences. In
particular, the number of participants has major impact in Mu
ERD studies since there is a high variability between participants
in Mu oscillatory pattern (Pfurtscheller et al., 2006). Matsumoto
and colleagues ran the experiment with six participants whereas
we had 21 volunteers. Moreover, we selected the electrodes a pri-
ori based on previous literature while Matsumoto et al. (2010)
made a posterior selection considering electrodes presenting the
higher Mu desynchronization. This method rendered results from
Matsumoto’s article less specific (as they could not analyze the
contrast between C3/C4 and surrounding electrodes—that we
showed to be important) and the post-hoc selection of electrodes
increases the type I error in this study. In addition, another
study which demonstrated relative contradictory results is the
one from Quartarone et al. (2004) which showed no increase
in CE after anodal tDCS companied to motor imagery, arguing
that one of the strategies is enough to result in ceiling effect.
However, by showing that anodal tDCS does not induce motor
imagery increased excitability supports our findings to some

extent. Moreover, as it is expected that tDCS alone increases CE,
the effect of mental imagery blocking this increase in excitability
of anodal tDCS supports our results.

Besides the focal effect under the application area of tDCS, we
found interesting hemispheric differences. We analyzed Mu char-
acteristics in C3, C4, and Cz and the electrodes surrounding C3
and C4. One important point here is that, as shown by compu-
tational model studies, tDCS has a modulatory effect over a large
area application and has also a diffuse widespread action due to
the distance between electrodes (Datta et al., 2009). Interestingly,
despite of the relative non-focal electrical currents induction by
tDCS we could observe specific and opposing effects for C3 and
surrounding electrodes during biological imagery. Furthermore,
this effect was absent during biological observation (except after
anodal tDCS). Finally, we also found opposing effects when com-
paring the contralateral vs. ipsilateral hemisphere (relative to the
movement)—i.e., C3 vs. C4; which is in agreement with inter-
hemispheric transcallosal modulation effects as shown behav-
iorally by other studies (Fregni et al., 2005; Mansur et al., 2005).
These results support previous neurophysiological studies show-
ing relatively focal effects of tDCS (Nitsche et al., 2007). Our
data extend this finding and demonstrate that tDCS effects can
be focalized based on the behavioral task.

The focal ERD/ surrounding ERS theory hypotheses that Mu
synchronization occurs to deactivate networks not related to the
task (Suffczynski et al., 1999). This hypothesis is supported by our
findings as Mu desynchronization over cortical area specifically
related to the task followed by an increase of Mu power in motor
areas not involved in the task has been previously demonstrated
(Pfurtscheller and Neuper, 1994; Neuper et al., 2006; Pfurtscheller
et al., 2006).

Interestingly, we found the surrounding ERS effects only
during the imagery condition. Similar to our findings, Neuper
et al. (2006) have demonstrated surrounding ERS during imagery
tasks but not in execution tasks. They registered Mu oscilla-
tions over C3 and Cz during cube manipulation and imagery
and during foot continuous movement execution and imagery.
All tasks showed focal desynchronization, i.e., Mu desynchro-
nization at Cz for foot-related tasks, and at C3 for hand-related
tasks. Furthermore, they found Mu synchronization at the area
not related to the task during imagery but not execution (e.g.,
Mu power increase in C3 during imagery of foot movement).
Accordingly Pfurtscheller et al. (2006) registered Mu oscillations
during 4 types of kinesthetic imagery in the following areas: right
hand, left hand, both feet, and thong. They observed Mu ERD
in C3 and C4 during both hand motor imagery with evident
contralateral dominance and Mu ERD in Cz during feet motor
imagery. Also, they report Mu ERS in C3 and C4 (hand area)
during motor imagery of feet and tongue. As reported, we found
surrounding inhibition for biological imagery but not for bio-
logical observation condition. Therefore, it seems plausible that
the surrounding inhibition, which reflects an idling or inhibitory
state with low cortical neurons excitability (Klimesch et al., 2007),
may occur due to removal of motor attention from one modality
to another.

The previous studies argued that the execution tasks do not
require high directional attention while motor imagery does; thus
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having a larger focal effect. The high direction of attention seems
to be the underlying process of focal Mu ERD associated with
Mu surrounding ERS; therefore, our results along with previous
literature suggest that motor imagery may have a more focal neu-
roplastic effect and may be used in rehabilitation approaches. This
process seems beneficial to selectively focus and boost the spe-
cific recruited area. Considering the aforementioned findings and
ours, it is plausible that the imagery tasks demand sustained and
focal attention due to their higher complexity as compared to the
automaticity of activation during observation. Insofar, observa-
tion tasks demand less concentration and can be automated like
execution (Neuper et al., 2006).

Our study presents some limitations. Recently, O’Connell
etal. (2012) demonstrated that participants receiving 2 mA tDCS
judged correctly, more than chance, which stimulation they were
receiving (sham vs. active tDCS). We did not directly assess our
participants with regard to blinding, therefore possible effects
due to correctly guessing which tDCS was being applied might
be expected. However, our experiment consisted of three tDCS
sessions (two active and one sham) and our results clearly differ-
entiate between the two active conditions—anodal and cathodal
effects. Additionally, our methods of ramp up and ramp down
of tDCS are similar to previous findings that shows 2 mA as
an effective blinding while O’Connell et al. (2012) used 5s for
each ramp up and down. Finally, females composed 75% of
O’Connell and colleagues sample; in our experiment, all partic-
ipants were males. Despite not being directly assessed by previous
tDCS experiments, gender effects on tDCS perception may be
expected considering previous experiments have shown differen-
tial gender effects on pain perception (for a review see Fillingim
et al., 2009). A second limitation is that our experiment was

performed in a sample of healthy males. Since the effects of tDCS
in some tasks appear to differ according to gender (Boggio et al.,
2008; Lapenta et al., 2012) further studies should test possible dif-
fering effects in females. Furthermore, these results could differ
in populations with atypical M1 activation such as psychogenic
paresis patients (Liepert et al., 2009, 2011) and autistic patients
(Oberman et al., 2005; Théoret et al., 2005; Bernier et al., 2007).
Thus, further studies comprising tDCS, EEG, and motor observa-
tion and imagery are suggested for better knowledge of possible
benefits in populations with atypical brain activation.

In sum, the characteristics of our experiment provide a key dif-
ferentiation as they allow multiple controls for the effects of the
experiment on specific movements and conditions and also on
different areas activations in accordance with their involvement
in the task. Therefore, our setup allowed evaluation of oscilla-
tory pattern differences relative to the complex task with focal
and sustained attention (e.g., imagery) and automated tasks that
require less concentration (e.g., observation) extending reports
of surrounding effects for movement execution, also considered
automatized when compared to imagery. Furthermore, we have
shown that tDCS is able to alter Mu rhythm pattern and also
that active tDCS priming effects depend on the applied polarity,
type of movement, condition, and hemisphere thus introducing
a new perspective to the effects of this brain stimulation tool.
These novel findings also provide fresh insights regarding possible
clinical applications of combined tDCS and motor imagery.

ACKNOWLEDGMENTS

Paulo S. Boggio is supported by a CNPq researcher grant
(304164/2012-7). Olivia M. Lapenta was supported by a Master
grant (CAPES-PROSUP—IES modality I).

REFERENCES

Abbott, L. E, and Nelson, S. B. (2000).
Synaptic plasticity: taming the beast.
Nat. Neurosci. Suppl. 3, 1178-1183.
doi: 10.1038/81453

Antal, A., Terney, D., Poreisz, C., and
Paulus, W. (2007). Towards unrav-
eling task-related modulations
of neuroplastic changes induced
in the human motor cortex. Eur.
J. Neurosci. 26, 2687-2691. doi:
10.1111/j.1460-9568.2007.05896.x

Batsikadze, G., Moliadze, V., Paulus,
W., Kuo, M. F, and Nitsche, M.
A. (2013). Partially non-linear
stimulation  intensity-dependent
effects of direct current stimulation
on motor cortex excitability in
humans. J. Physiol. 51, 1987-2000.
doi: 10.1113/jphysiol.2012.249730

Bernier, R., Dawson G, Webb, S.,
and Murias, M., (2007). EEG mu
rhythm and imitation impairments
in individuals with autism spectrum
disorder. Brain Cogn. 64, 228-237.
doi: 10.1016/j.bandc.2007.03.004

Boggio, P. S., Rocha, R. R, Silva,
M. T, and Fregni, E (2008).
Differential modulatory effects

of transcranial direct current
stimulation on a facial expression
g0-n0-go task in males and females.
Neurosci. Lett. 447, 101-105. doi:
10.1016/j.neulet.2008.10.009

Buccino, G., Binofski, F, Fink, G.,
Fadiga, L., Fogassi, L., Gallese,
V., et al. (2001). Action observa-
tion activates premotor and pari-
etal areas in a somatopic manner:
an fMRI study. Eur. J. Neurosci.
13, 400—404. doi: 10.1111/j.1460-
9568.2001.01385.x

Datta, A., Bansal, V., Diaz, J., Patel,
J., Reato, D., and Bikson, M.
(2009). Gyri-precise head model
of transcranial direct current
stimulation: ~ improved  spatial
focality using a ring electrode
versus conventional rectangular
pad. Brain Stimul. 2, 201-207. doi:
10.1016/j.brs.2009.03.005

Decety, J., and Grezes, J. (2006).
The power of simulation: imagin-
ing one’s own and other’s behav-
ior. Brain Res. 1079, 4-14. doi:
10.1016/j.brainres.2005.12.115

Facchini, S., Muellbacher, W., Battaglia,
E, Boroojerdi, B., and Hallett,

M. (2002). Focal enhancement of
motor cértex excitability during
motor transcranial
magnetic stimulation study. Acta
Neurol. Scand. 105, 146-151. doi:
10.1034/j.1600-0404.2002.10004.x
Fadiga, L., Buccino, G., Craighero,
L., Fogassi, L., Gallese, V., and
Pavesi, G. (1999). Corticospinal
excitability is specifcally modulated
by motor imagery: a magnetic
stimulation study. Neuropsychologia
37, 147-158. doi: 10.1016/S0028-
3932(98)00089-X
Fourkas, A. D., Avenanti, A., Urgesi,
C., and Aglioti, S. M. (2006).
Corticospinal facilitation during
first and third person imagery.
Exp. Brain Res. 168, 143-151. doi:
10.1007/s00221-005-0076-0
Francuz, P, and Zapala, D. (2011).
The suppression of the Mu rhythm
during the creation of imagery
representation  of  movement.
Neurosci. Lett. 495, 39-43. doi:
10.1016/j.neulet.2011.03.031
Fregni, F, Boggio, P. S., Mansur, C. G.,
Wagner, T., Ferreira, M. J. L., Lima,
M. C., et al. (2005). Transcranial

imagery: a

direct current stimulation of
the unaffected hemisphere in
stroke patients. Neuroreport 16,
1551-1555.

Fregni, F, Boggio, P. S., Valle, A. C,,
Otachi, P, Thut, G., Rigonatti,
S. P, et al. (2006). Homeostatic
effects of plasma valproate lev-
els on corticospinal excitability
changes induced by 1Hz rTMS in
patients with juvenile myoclonic
epilepsy. Clin. Neurophysiol. 117,
1217-1227. doi: 10.1016/j.clinph.
2006.02.015

Fillingim, R. B., King, C. D., Ribeiro-
Dasilva, M. C., Rahim-Williams,
B., and Riley, J. L. IIL. (2009).
Sex, gender, and pain: a review
of recent clinical and experimental
findings. J. Pain 10, 447-485. doi:
10.1016/j.jpain.2008.12.001

Foerster, A., Rocha, S., Wiesiolek,
C., Chagas, A. P., Machado, G.,
Silva, E., et al. (2012). Site-specific
effects of mental practice com-
bined with transcranial direct cur-
rent stimulation on motor learning.
Eur. J. Neurosci. 37, 786-794. doi:
10.1111/ejn.12079

Frontiers in Human Neuroscience

www.frontiersin.org

June 2013 | Volume 7 | Article 256 | 7


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Lapenta et al.

TDCS, motor imagery and observation

Gallese, V., and Goldman, A. (1998).
Mirror neurons and the simulation
theory of mind-reading. Trends
Cogn.  Sci. 2, 493-501. doi:
10.1016/S1364-6613(98)01262-5

Gastaut, H., and Bert, J. (1954). EEG
changes during cinematographic
presentation.  Electroencephalogr.
Clin. Neurophysiol. 6, 433—444. doi:
10.1016/0013-4694(54)90058-9

Giromini, L., Porcelli, P, Viglione,
D. J., Parolin, L., and Pineda, J.
A. (2010). The feeling of move-
ment: EEG evidence for mirror-
ing activity during the observations
of static, ambiguous stimuli in the
Rorschach cards. Biol. Psychol. 85,
233-241. doi: 10.1016/j.biopsycho.
2010.07.008

Hari, R. (2006). Action—perception
connection and the  cortical
mu rhythm. Prog. Brain Res.
159, 253-260. doi:  10.1016/
S0079-6123(06)59017-X

Jarvelainen, J., Schurmann, M.,
Avikainen, S., and Hari, R. (2001).
Stronger reactivity of the human

during
observation of live rather than
video motor acts. Neuroreport 12,
3493-3495.

Jeannerod, M. (2001). Neural sim-
ulation of action: a unifying
mechanism for motor cognition.

primary motor cortex

Neuroimage 14, 103-109. doi:
10.1006/nimg.2001.0832

Klimesch, W, Sauseng, P,
and  Hanslmayr, S.  (2007).
EEG alpha oscillations:  the

inhibition—timing hypothesis.
Brain Res. Rev. 53, 63-88. doi:
10.1016/j.brainresrev.2006.06.003

Kuo, M. E, Unger, M., Liebetanz,
D., Lang, N., Tergau, F, Paulus,
W., et al. (2008). Limited impact
of homeostatic  plasticity on
motor  learning in  humans.
Neuropsychologia 46, 2122-2128.
doi:  10.1016/j.neuropsychologia.
2008.02.023

Lapenta, O. M., Fregni, E, Oberman,
L., and Boggio, O. S. (2012).
Bilateral temporal cortex tran-
scranial direct current stimulation
worsens male performance in a
multisensory  integration  task.
Neurosci. Lett. 527, 105-109. doi:
10.1016/j.neulet.2012.08.076

Leocani, L., Rovaris, M., Martinelli-
Boneschi, F, Annovazzi, P., Filippi,
M., Colombo, B., et al. (2005).
Movement preparation is affected
by tissue damage in multiple
sclerosis:  evidence from EEG
event-related desynchroniza-
tion. Clin.  Neurophysiol. 116,
1515-1519. doi: 10.1016/j.clinph.
2005.02.026

Liepert, J., Hassa, T., Tiischer, O., and
Schmidt, R. (2009). Abnormal
motor  excitability in patients
with psychogenic paresis - a TMS
study. J. Neurol. 256, 121-126. doi:
10.1007/500415-009-0090-4

Liepert, J., Hassa, T., Tiischer, O,
and Schmidt, R. (2011). Motor
excitability during movement imag-
ination and movement observation
in psychogenic lower limb paresis.
J. Psychosom. Res. 70, 59-65. doi:
10.1016/j.jpsychores.2010.06.004

Mansur, C. G., Fregni, E, Boggio,
P. S., Ribeiro, M., Gallucci-Neto,
J., Santos, C. M., et al. (2005). A
sham stimulation-controlled trial of
rTMS of the unaffected hemisphere
in stroke patients. Neurology 64,
1802-1804. doi: 10.1212/01.
WNL.0000161839.38079.92

Matsumoto, J., Fujiwara, T., Takahashi,
O., Liu, M., Kimura, A, and
Ushiba, J. (2010). Modulation of
mu rhythm  desynchronization
during motor imagery by tran-
scranial direct current stimulation.
J. Neuroeng. Rehabil. 7, 1-5. doi:
10.1186/1743-0003-7-27

Michelon, P, Vettel, J. M., and
Zacks, J. M. (2006). Lateral soma-
totopic organization during
imagined and prepared movements.
J. Neurophysiol. 95, 811-822. doi:
10.1152/jn.00488.2005

Moliadze, V., Atalay, D., Antal, A,
and Paulus, W. (2012). Close to
threshold  transcranial electrical
stimulation  preferentially  acti-
vates inhibitory networks before
switching to excitation with higher
intensities. Brain Stimul. 5,505-511.
doi: 10.1016/j.brs.2011.11.004

Muthukumaraswamy, S. D., and
Johnson, B. W. (2004). Primary
motor cortex activation during
action observation revealed by
wavelet analysis of the EEG. Clin.
Neurophysiol. 115, 1760-1766. doi:
10.1016/j.clinph.2004.03.004

Neuper, C., Wortz, M., and
Pfurtscheller, G. (2006). ERD/ERS
patterns  reflecting  sensorimotor
activation and deactivation. Prog.
Brain Res. 159, 211-222. doi:
10.1016/S0079-6123(06)59014-4

Nitsche, M. A., Cohen, L. G,
Wasserman, E. M., Priori, A,
Lang, N., Antal, A., et al. (2008).
Transcranial direct current stim-
ulation: state of the art 2008.
Brain  Stimul. 1, 206-223. doi:
10.1016/j.brs.2008.06.004

Nitsche, M. A., Doemkes, S., Karakose,
T., Antal, A., Liebetanz, D., Lang,
N., et al. (2007). Shaping the effects
of transcranial direct current stim-
ulation of the human motor cortex.

J. Neurophysiol. 97, 3109-3117. doi:
10.1152/jn.01312.2006
Nitsche, M. A., and Paulus, W. (2000).
Excitability ~ changes
in the human motor cortex by
weak
rent stimulation. J. Physiol. 527,
633-639.  doi:  10.1111/j.1469-
7793.2000.t01-1-00633.x
Nitsche, M. A., and Paulus, W. (2001).
Sustained  excitability elevations
induced by transcranial. DC motor
cortex stimulation
Neurology 57, 1899-1901.
10.1212/WNL.57.10.1899
Oberman, L. M., Hubbard, E. M,
McCleery, J. P, Altschuler, E.
L., Ramachandran, V. S., and
Pineda, J. A. (2005). EEG evidence
for mirror neuron dysfunction
in autism spectrum disorders.
Cogn. Brain Res. 24, 190-198. doi:
10.1016/j.cogbrainres.2005.01.014
O’Connell, N. E., Cossar, J., Marston,
L, Wand, B. M., Bunce, D,
Moseley, G. L., et al. (2012).
Rethinking clinical trials of tran-
scranial direct current stimulation:
participant blind-
ing is inadequate at intensities of
2mA. PLoS ONE 7:47514. doi:
10.1371/journal.pone.0047514
Pascual-Leone, A., Dang, N., Cohen, L.
G., Brasil-Neto, J. P., Cammarota,
A.,, and Hallet, M. (1995).
Modulation of muscle responses
evoked by transcranial magnetic
stimulation during the acqui-
sition of new fine motor skills.
J. Neurophysiol. 74, 1037—-1045.
Pfurtscheller, G., and Aranibar, A.
(1977).  Event-related  cortical
desynchronization  detected by
power measurements of scalp
EEG.  Electroencephalogr.  Clin.
Neurophysiol. 42, 817-826. doi:
10.1016/0013-4694(77)90235-8
Pfurtscheller, G., Brunner, C., Schlogl,
A., and Lopes da Silva, F. H. (2006).
Mu rhythm (de)synchronization
and EEG single-trial classification
of different motor imagery tasks.
Neuroimage 31, 153-159. doi:
10.1016/j.neuroimage.2005.12.003
Pfurtscheller, G., and Neuper, C.
(1994). Event-related synchroniza-
tion of mu rhythm in the EEG
over the cortical hand area in man.
Neurosci. Lett. 174, 93-96. doi:
10.1016/0304-3940(94)90127-9
Pineda, J. A. (2008). Sensorimotor
cortex as a critical component
of an
ron system: does it solve the
development, correspondence,
and control problems
roring? Behav. Brain Funct. 47,
1-16. doi: 10.1186/1744-9081-4-47

induced

transcranial ~ direct cur-

in  humans.

doi:

and assessor

‘extended’” mirror neu-

in  mir-

Pineda, J. A, Giromini, L,
Porcelli, P, Parolin, L., and
Viglione, D. J. (2011). Mu
suppression and human move-
ment responses to the Rorschach
test. Neuroreport 22, 223-226. doi:
10.1097/WNR.0b013e328344f45¢

Polania, R., Paulus, W., and Nitsche,
M. (2012a). Modulating cortico-
striatal and thalamo-cortical func-
tional connectivity with transcranial
direct current stimulation. Hum.
Brain Mapp. 33, 2499-2508. doi:
10.1002/hbm.21380

Polania, R., Paulus, W., and Nitsche, M.
(2012b). Reorganizing the intrin-
sic functional architecture of the
human primary motor cortex dur-
ing rest with non-invasive cortical
stimulation. PLoS ONE 7:€30971.
doi: 10.1371/journal.pone.0030971

Quartarone, A., Morgante, F, Bagnato,
S., Rizzo, V., Sant’Angelo, A.,
Aiello, E., et al. (2004). Long
lasting  effects of transcranial
direct stimulation  on
motor imagery. Neuroreport 15,
1287-1291.

current

Rizzolatti, G. (2005). The mir-
ror neuron system and its
function in  humans.  Anat.
Embryol. 210,  419-421.  doi:

10.1007/s00429-005-0039-z

Rizzolatti, G., Fogassi, L., and Gallese,
V. (2001).  Neurophysiological
mechanisms underlying the
understanding and imitation of
action. Nat. Rev. 2, 661-670. doi:
10.1038/35090060

Roosink, M., and Zijdewind, 1. (2010).
Corticospinal excitability during
observation and imagery of sample
and complex hand tasks: impli-
cations for motor rehabilitation.
Behav. Brain Res. 213, 35-41. doi:
10.1016/j.bbr.2010.04.027

Ruby, P, and Decety, J. (2001). Effect of
subjective perspective taking during
simulation of action: a PET inves-
tigation of agency. Nat. Neurosci. 4,
546-550. doi: 10.1038/87510

Siebner, H. R., Lang, N., Rizzo, V.,
Nitsche, M. A., Paulus, W., Lemon,
R. N,, et al. (2004). Preconditioning
of low-frequency repetitive tran-
scranial  magnetic
with transcranial direct current
stimulation: evidence for home-
ostatic plasticity in the human
motor cortex. J. Neurosci. 24,
3379-3385. doi: 10.1523/
JNEUROSCI.5316-03.2004

Soler, M. D., Kumru, H., Pelayo, R.,
Vidal, J., Tornos, J. M., Fregni,
E, et al. (2010). Effectiveness of
transcranial direct current stim-
ulation and visual illusion on
neuropathic pain in spinal cord

stimulation

Frontiers in Human Neuroscience

www.frontiersin.org

June 2013 | Volume 7 | Article 256 | 8


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Lapenta et al.

TDCS, motor imagery and observation

injury. Brain 133, 2565-2577. doi:
10.1093/brain/awq184

Suffczynski, P, Pijn, J. P, Pfurtscheller,
G., and Lopes da Silva, F. H. (1999).
“Event-related dynamics of alpha
band rhythms: a neuronal network
model of focal ERD/surround ERS,”
in Event-Related Desynchronization.
Handbook of Electroencephalography
and Clinical Neurophysiology, eds

Théoret, H., Halligan, E., Kobayashi,
M., Fregni, E, Tager-Flusberg, H.,

and Pascual-Leone, A. (2005).
Impaired motor facilitation during
action observation in individuals
with autism  spectrum  disor-
der. Curr. Biol. 15, 84-85. doi:
10.1016/j.cub.2005.01.022

Conflict of Interest Statement: The
authors declare that the
was conducted in the absence of any
commercial or financial relationships

research

that could be construed as a potential
conflict of interest.

Received: 25 April 2013; accepted: 22
May 2013; published online: 06 June
2013.

Citation: Lapenta OM, Minati L, Fregni
F and Boggio PS (2013) Je pense
donc je fais: transcranial direct cur-
rent stimulation modulates brain oscil-
lations associated with motor imagery
and movement observation. Front. Hum.

Neurosci. 7:256. doi: 10.3389/fnhum.
2013.00256

Copyright © 2013 Lapenta, Minati,
Fregni and Boggio. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Human Neuroscience

www.frontiersin.org

June 2013 | Volume 7 | Article 256 | 9


http://dx.doi.org/10.3389/fnhum.2013.00256
http://dx.doi.org/10.3389/fnhum.2013.00256
http://dx.doi.org/10.3389/fnhum.2013.00256
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation
	Introduction
	Materials and Methods
	Participants
	Procedure
	Observation and Imagery Task
	EEG Recording and Data Reduction
	Data Analyses

	Results
	Analysis of Surrounding Electrodes

	Discussion
	Acknowledgments
	References


