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Making new breakthroughs in understanding the processes underlying human cognition
may depend on the availability of very large datasets that have not historically existed in
psychology and neuroscience. Lumosity is a web-based cognitive training platform that
has grown to include over 600 million cognitive training task results from over 35 million
individuals, comprising the largest existing dataset of human cognitive performance.
As part of the Human Cognition Project, Lumosity’s collaborative research program to
understand the human mind, Lumos Labs researchers and external research collaborators
have begun to explore this dataset in order uncover novel insights about the correlates of
cognitive performance. This paper presents two preliminary demonstrations of some of
the kinds of questions that can be examined with the dataset. The first example focuses
on replicating known findings relating lifestyle factors to baseline cognitive performance in
a demographically diverse, healthy population at a much larger scale than has previously
been available. The second example examines a question that would likely be very difficult
to study in laboratory-based and existing online experimental research approaches at a
large scale: specifically, how learning ability for different types of cognitive tasks changes
with age. We hope that these examples will provoke the imagination of researchers who
are interested in collaborating to answer fundamental questions about human cognitive
performance.
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INTRODUCTION
While many scientific fields ranging from biology to the social sci-
ences are being revolutionized by the availability of large datasets
and exponentially increasing computational power, the dominant
approach to studying human cognitive performance still involves
running small numbers of participants through brief experiments
in the laboratory. This approach limits the kinds of questions
that can be practically studied in important ways. For one, most
studies depend on a convenience sample of university undergrad-
uates, limiting the broad applicability of findings (Heinrich et al.,
2010). The need for research participants to return to the labora-
tory also limits the ability to study fundamental questions about
the variables that influence learning over time and across the
lifespan.

Understanding how demographic and lifestyle factors influ-
ence cognitive function has important health and policy impli-
cations. These questions are often difficult to examine using
laboratory-based approaches because they require the experi-
menter to recruit sufficient numbers of participants across a
wide range of demographic backgrounds. Studies of how cog-
nitive performance changes with age tend to compare a sample
of university undergraduates to older adults, and as a result can
only tell us about the discrete differences between these samples.
Since age varies continuously in the population, determining

the rate at which performance and learning change with age
across the lifespan would require studying a large number of
participants across a continuous range of ages. This type of study
would be prohibitively time-consuming and expensive to run in
a conventional psychology laboratory. Likewise, even the largest
observational or multi-center controlled clinical trials examining
effects of various interventions on cognitive performance have
generally consisted of no more than several thousand individuals
from restricted geographic and demographic backgrounds—e.g.,
Whitehall II N = 10,314 (Marmot et al., 1991) Women’s Health
Initiative Memory Study N = 8,300 (Craig et al., 2005).

THE LUMOSITY PLATFORM AND DATASET
Given the limitations of conventional approaches, it is worth-
while to consider alternative methods to gathering data on human
cognitive performance. With the rise of the Internet, web-based
research in the behavioral sciences has become more common,
particularly in studies of human cognition (Reips, 2004). While
concerns remain, the potential of web-based research to recruit
larger samples from a wider variety of demographic backgrounds
has been widely acknowledged (Kraut et al., 2003; Birnbaum,
2004; Skitka and Sargis, 2006).

Lumosity is a web-based cognitive training platform that
includes a suite of cognitive training exercises, assessments,
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and an integrated training system designed for the purpose of
improving users’ cognitive abilities. As the user base has grown
rapidly over the past six years, the database of users’ cognitive
performance has become the largest dataset of human cogni-
tive performance to our knowledge. As of January 23, 2013, the
dataset includes 36,140,947 users representing 231 distinct ISO-
3166 country codes. These users have trained on the cognitive
exercises 609,017,147 times and taken online neuropsychological
assessments 6,661,302 times (see Figure 1A for screenshots of the
game and assessment pages).

In addition to engaging in training tasks and taking assess-
ments, users voluntarily provide demographic information,
including their age, gender, and level of education. They also
have the opportunity to participate in a number of surveys about
health, lifestyle, and real-world cognitive activities (Figure 1B).
A user’s location can be roughly determined from his or her
IP address, which allows researchers to relate approximate geo-
graphic information to cognitive performance and to measure
geographic reach (Figure 1C).

While internal research using this growing dataset has been
ongoing for some time, Lumos Labs has recently begun to work
with outside researchers who are also interested in analyzing
cognitive performance at large scale, as one arm of the Human
Cognition Project (HCP), a collaborative research program to
understand the human mind. External researchers interested in
analyzing de-identified portions of the dataset apply through the
HCP website (http://hcp.lumosity.com). As part of the applica-
tion process, researchers are asked to present a specific analysis
plan. The Lumos Labs research and development team, and in
some cases, external research advisors, vet proposals based on the
quality of the specific analysis plan. All well-designed proposals
are accepted. Lumos Labs allows researchers to publish any find-
ings following from the accepted analysis plan without requiring
further consultation with the company. At this time, the large
majority of ongoing projects analyzing the Lumosity dataset are
focused on basic psychological phenomena that are not directly
related to validating cognitive training.

Here, we present two initial demonstrations of the power
afforded by examining human cognitive performance at large
scale. In the first example, we examine how cognitive performance
relates to general health and lifestyle factors, based on a large sur-
vey of hundreds of thousands of users from the dataset. In the
second example, we look at how task improvements change with
age, and how these age-related changes differ for tasks that depend
on different cognitive abilities.

EXAMPLE 1: HEALTH, LIFESTYLE, AND COGNITIVE
PERFORMANCE
Many lifestyle factors have been shown to influence cogni-
tive abilities, and a cognitively active lifestyle has been linked
to reduced levels of potential precursors to dementia (Landau
et al., 2012) and a reduced likelihood of developing demen-
tia (Doraiswamy, 2012). For these reasons, we were interested
in whether users’ initial performance correlated with their self-
reported lifestyle habits. In order to examine this question, we
designed a survey of health and lifestyle habits that has now been
taken by millions of individuals across the world (available at:

http://www.lumosity.com/surveys/brain_grade). Here, we focus
on two particularly interesting questions about lifestyle habits
from this survey that vary continuously in the population: sleep
and alcohol consumption. These variables have been included
in other surveys that also measured cognitive function (e.g.,
Marmot et al., 1991), and we were interested in whether the influ-
ence of these variables on performance in our user base would
correspond to what has been observed in the existing literature.

METHODS AND MATERIALS
We obtained survey data for all users who took the health and
lifestyle survey between March 2011 and January 2012. For each
of these users, we also obtained their initial scores on three cog-
nitive exercises, where available. These exercises were chosen for
reliability as well as coverage: they are some of the most popu-
lar training tasks, are shown within the first few days of training,
and represent distinct cognitive abilities. The three exercises are
described below.

Speed Match is a one-back matching task in which users
respond whether the current object matches the one previously
shown. Users respond to as many trials as they can in 45 s. We
used the number of correct responses the user made before the
end of the task as the measure of performance.

Memory Matrix is a spatial working memory task in which
users are shown a pattern of squares on a grid, and must recall
which squares were present following a delay. The tasks uses a
variant of a one-up one-down staircase method (Levitt, 1971) in
order to find the user’s memory threshold. We used this threshold
as the measure of performance.

Raindrops is a speeded arithmetic calculation task in which
new arithmetic problems continuously appear at the top the
screen inside of raindrops. Users need to answer the problems
before the raindrops reach the bottom of the screen. Once three
raindrops have reached the bottom of the screen, the task ends.
We used the number of correct responses made before the task
ended as the measure of performance.

RESULTS
Figure 2A provides sample sizes and demographic information
from the three tasks. For each task, the relevant measure was
first fit to a general linear model including age (up to 4th degree
polynomial), level of education (approximate years), gender, and
the interactions of these variables as predictors. In the case of
Speed Match and Raindrops, where the relevant measure was
the number of correct responses, the model included a Poisson
link function in order to capture the distribution. The residuals
returned by each model were used as the dependent measure for
the further analyses.

The main effects of self-reported sleep and alcohol intake were
measured for each task via separate multivariate linear regression
models. These models revealed positive linear effects of hours
of sleep for and negative quadratic effects of sleep for all three
tasks (see Table 1 for model coefficients and relevant statistics).
More specifically, we found that cognitive performance in all three
tasks was greater for users reporting larger amounts of sleep up
to 7 h per night, after which it began to decrease (Figure 2B).
The models also revealed significant negative linear and negative
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Name
Birthdate
Gender

Games Assessments

A

B

C

FIGURE 1 | (A) Lumosity includes exercises designed to improve cognitive
performance targeting five areas of cognition, along with assessments based
on standard neuropsychological tasks. (B) Demographic information is

available from users’ profiles and surveys that users can choose to participate
in. (C) A map of users’ locations based on their IP address at last login.

(Continued)
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FIGURE 1 | Continued

The map was generated from a database of user IP addresses at login.
Approximate Latitude and longitude coordinates were obtained for each
IP address using MaxMind’s GeoLiteCity database (available at http://www.

maxmind.com/app/geolitecity). These coordinates were then rounded to the
nearest 1/100th of a degree and aggregated to obtain a count of the

number of users at each rounded coordinate. The size of each dot was
mapped to the floor of the base-10 log of the number of users. As IP
addresses were missing for some users, and in some cases IP
addresses could not be mapped to geographic coordinates, the data
used to generate the map was based on the geographic coordinates for
15,162,193 users.

A

B

C

FIGURE 2 | (A) Exercises used in the analysis of the health and lifestyle survey. (B) The effect of reported sleep on game performance. (C) The effect of
reported alcohol intake on game performance (controlling for age, gender, and level of education).

quadratic effects of alcohol for all three tasks. Low to moder-
ate alcohol intake was associated with better performance in all
three tasks, with performance peaking at a self-reported 1 or 2
drinks per day, depending on the task (Figure 2C), and decreasing

as alcohol intake increased from there. The presence of nega-
tive quadratic effects for both predictors indicated that the effects
of sleep and alcohol intake on performance had an inverted
U-shape.
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Table 1 | Model coefficients and t-statistics for the linear and

quadratic effects of reported hours of sleep and alcohol intake, taken

from the grand regression model.

Variable Speed match Raindrops Memory

matrix

Sleep (linear) B = 1.30
t = 6.33***

B = 1.47
t = 3.29*

B = 0.17
t = 6.90***

Sleep (quadratic) B = −2.83
t = −14.77***

B = −8.25
t = −19.74***

B = −0.28
t = −12.3***

Alcohol (linear) B = −1.40
t = −6.36***

B = −4.96
t = −10.5***

B = −0.14
t = −5.46***

Alcohol (quadratic) B = −1.37
t = −6.96***

B = −2.19
t = −5.22***

B = −0.07
t = −3.01*

*p < 0.01, **p < 0.001, ***p < 0.0001.

DISCUSSION
The associations between sleep, alcohol intake, and cognitive
function observed here are comparable to previous findings from
the Whitehall II study. An analysis of Whitehall II participants
also found that those who reported around 7 h of sleep showed
the highest cognitive performance on a battery of psychological
assessments (Ferrie et al., 2011). Another study of the same cohort
found that alcohol intake reduces the likelihood of poor cognitive
function (Britton et al., 2004), though this study did not observe
the same reduction in cognitive performance at higher levels of
consumption that we found in our analysis. One possible expla-
nation for this difference is that Britton and colleagues focused on
whether a participant’s cognitive performance scored in the bot-
tom quintile, as a measure of “poor cognitive function,” while our
analysis looked at the average performance at each level of alcohol
consumption. The increased scale of our dataset may have allowed
us to observe this non-linearity in the dose-dependent effects of
alcohol consumption. Other unobserved demographic covariates
may also provide some explanation for the divergent findings, as
the Whitehall II cohort is also restricted to civil service workers
from the United Kingdom, while Lumosity users come from a
wide range of demographic backgrounds and are located all over
the world.

As these findings are correlational in nature, there may be
other related but unobserved variables that explain some of
the effects of alcohol consumption and sleep in our data. For
example, the apparent cognitive advantage for those who report
moderate alcohol intake may be in part due to increased social
and cognitive engagement compared to those who report little
or no alcohol consumption. Thus, while we would not want to
strongly assert that the real causal effects of these variables exactly
mirror our findings, these results instead provide a rough profile
of the habits of individuals who tend to show higher cognitive
function that can be filled in as we obtain additional health and
lifestyle data. This first example should also serve as a testament to
the ability to quickly obtain reliable data from a large numbers of
individuals using the survey platform, as we were able to gather all
of this data solely from new users who had joined the site within
a 9-month period.

EXAMPLE 2: COGNITIVE TASK IMPROVEMENTS AND AGING
While aging researchers have discovered a great deal about how
baseline performance declines with age for different cognitive
abilities (Park, 1999; Salthouse, 2009) less is known about how
the ability to learn different kinds of skills changes over the lifes-
pan. Exploring this question using standard laboratory-based
approaches would require recruiting a large number of partic-
ipants across a wide range of ages and bringing them into the
lab to perform multiple tasks many times over the course of
weeks or months. Existing web-based approaches also face their
own difficulties in studying learning over time. Other platforms
that have recently become popular for running psychology stud-
ies on the web, such as Amazon Mechanical Turk (Buhrmester
et al., 2011; Mason and Suri, 2012), are poorly suited for run-
ning the multi-session studies necessary to obtain this type
of data, and even very recent work measuring cognitive per-
formance across the lifespan at a relatively large scale has to
date only examined baseline performance (Hampshire et al.,
2012).

This type of data may be difficult to obtain via other web-
based platforms in part because, while it is relatively simple to
use small payments to individuals and/or online advertising to
quickly obtain baseline cognitive performance data from a large
number of individuals, there is little incentive for participants to
return on a regular basis. In contrast, Lumosity users are specif-
ically interested in cognitive training and are able to train on a
large variety of cognitive tasks as often as they would like. As a
result, they commonly return regularly over the course of months
and years. These unique characteristics make it possible to exam-
ine how learning ability changes year by year over the lifespan, and
how aging might affect learning differently across distinct cog-
nitive abilities. As a preliminary demonstration of the ability to
measure these differences in this dataset, we looked at how a user’s
age influences how much he or she improves over the course of the
first 25 sessions of a cognitive task, and compared tasks that rely
on abilities linked to fluid intelligence, such as working memory
tasks, vs. those that rely more on crystallized knowledge, such as
verbal fluency and basic arithmetic.

METHODS AND MATERIALS
In order to test for differential effects of aging on improvement in
fluid intelligence and crystallized knowledge tasks, we chose four
particular exercises in our database, two of which rely on working
memory, a known correlate of fluid intelligence, and two that rely
on declarative knowledge—verbal fluency and basic arithmetic.
For each of the four tasks, we pulled the first 25 sessions for all
user who had trained on that task at least 25 times. (minimum
N = 22,718). Two of the tasks (Memory Matrix and Raindrops)
were the same as those used in the health and lifestyle analysis.
For these tasks, the same measures that were used in the health
and lifestyle analysis were used. The other two tasks are described
below.

Memory Match is a 2-back working memory task in which
users respond whether the current object matches the one shown
two trials ago. Users respond to as many trials as they can in 45 s.
The relevant measure of performance in this task was the number
of correct responses users made.
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Word Bubbles is a verbal fluency task in which users type
as many words as possible matching a particular word stem,
with the constraint that their score depends on making multi-
ple words of different lengths. The task lasts 3 min. The relevant

measure of performance was the number of correct responses
users made.

Figure 3 shows sample sizes and demographic information for
each task. In order to compare performance across the tasks on

FIGURE 3 | The four exercises used in the aging and learning analysis, and demographic information for each game.
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the same scale, the dependent variable for each task was trans-
formed via a scaling table obtained by applying an inverse rank
normalization procedure to a separate dataset of baseline raw
scores from a large number of users (range = 93,832-3,600,595).
For each task, the empirical percentile for each baseline raw score
was mapped to its corresponding place on a normal distribution
with μ = 100, σ = 15.

For at least one task (Word Bubbles), the mean baseline score
for users who trained at least 25 times was greater than 100,
indicating that the subset of users who chose to train 25 times
had higher baseline scores than the average user who may have
trained only once. In the analysis below, the main effects of the
variables contrasting individual tasks at baseline should control
for any differences between the average baseline score for each
task.

RESULTS
We examined the effect of age on performance at baseline and
on learning across tasks using linear mixed effects model predict-
ing the scaled score based on the user’s age level of education,
gender, task, and session (1st vs. 25th). The model also included
interaction terms for gender × task, education level (approx-
imate years) × task, session × task, age × task, and age ×
task × session. A quadratic effect of age was also included in the
model, along with the same respective interactions with task and
time. Continuous covariates (age and education) were centered
before inclusion in the model. The model also included a separate
random intercept for each user.

The task variables in the model were coded using the follow-
ing planned orthogonal contrasts. Contrast 1 compared the “fluid
intelligence” tasks (Memory Matrix, Memory Match) to the “crys-
tallized knowledge” tasks (Raindrops, Word Bubbles). Contrast 2
compared Memory Match and Memory Matrix. Contrast 3 com-
pared Raindrops and Word Bubbles. Gender, education, and their
interactions with the task contrasts were included in the model
specifically to control for known effects of these variables. Table 2
gives the coefficients and t-statistics for the fixed effects in the
model.

We observed negative age-related differences in performance
on all tasks, as indicated by the negative linear coefficient for age.
However, the presence of an interaction of age and the crystal-
lized/fluid game contrast indicates that performance on the tasks
that rely on fluid intelligence decreased with increasing age at a
faster rate than the tasks that rely on crystallized intelligence. The
negative coefficient for the fluid/crystallized tasks contrast with
the quadratic effect of age suggests that the negative age-related
effect of age on the fluid intelligence tasks started earlier and lev-
eled off compared to the crystallized intelligence tasks, which were
preserved for longer before beginning to decrease. Looking within
the two tasks types, the negative linear age-related difference was
steeper for Memory Match than for Memory Matrix, and was
steeper for Raindrops than for Word Bubbles. These additional
interactions may provide some indication of the relative impor-
tance of fluid and crystallized knowledge and/or processing speed
in these tasks.

In general, users improved with training, as indicated by the
main effect of session. The significant interaction of session with

Table 2 | Coefficients and t-statistics for age and learning mixed

effects model.

Predictor β t

Age (linear) −0.318 −94.6***

Age (quadratic) −0.003 −11.7***

Education (1–7, some high school – PhD) 0.957 32.7***

Gender (Male = 1, Female = −1) 0.558 12.8***

C1: Fluid (1,1) vs. Crystallized (−1,−1) −3.887 −83.5***

C2: Memory Match (1) vs. Memory Matrix (−1) −0.934 −12.3***

C3: Raindrops (1) vs. Word Bubbles (−1) −1.807 −35.6***

Session [t(1) = 0, t(25) = 1] 15.8 265.1***

C1 × Age (linear) −0.079 −32.9***

C2 × Age (linear) 0.017 4.3***

C3 × Age (linear) −0.063 −26***

C1 × Age (quadratic) 0.003 20.3***

C2 × Age (quadratic) 0.001 4.7***

C3 × Age (quadratic) −0.0005 −2.7**

C1 × Education −0.494 −28.9***

C2 × Education −0.171 −6.3***

C3 × Education 0.235 12.5***

C1 × Gender 0.297 11.4***

C2 × Gender −0.172 −4.1***

C3 × Gender 1.577 56.4***

C1 × Session 1.546 25.9***

C2 × Session 5.468 54.2***

C3 × Session −0.106 −1.7

Session × Age (linear) −0.099 −34.2***

Session × Age (quadratic) 0.001 4.8

C1 × Age (linear) × Session −0.057 −19.5***

C2 × Age (linear) × Session −0.006 −1.3

C3 × Age (linear) × Session 0.004 1.2

C1 × Age (quadratic) × Session 0.000 −1

C2 × Age (quadratic) × Session −0.003 −8.0***

C3 × Age (quadratic) × Session −0.001 −5.4***

The model was fit using the lmer function, part of the lme4 package in R.

Significance values are based on highest posterior density intervals derived from

10000 Markov Chain Monte Carlo samples, using the pvals.fnc function in R’s

languageR package.
*p < 0.01, **p < 0.001, ***p < 0.0001.

the first two game contrasts reveals that users improved more
at the fluid intelligence tasks than the crystallized knowledge
tasks, and improved most at Memory Match. The amount of
improvement between sessions decreased as age increased, and
this negative effect of aging on learning was greater for the tasks
that relied on fluid intelligence than those that relied on crystal-
lized knowledge, as indicated by the strong three-way interaction
of this contrast with the linear effect of age and training ses-
sion. Finally, the relatively large three-way (game × quadratic
age × session) interaction for the second task contrast sug-
gests that the reduction in improvement in older adults began
later and accelerated for Memory Match compared to Memory
Matrix, where the reduction in improvement began earlier before
leveling off.
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FIGURE 4 | (A) Mean game score by age at baseline. (B) Difference between 25th and 1st game score by age for each game. Error bars represent standard
errors of the mean.
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DISCUSSION
At baseline, we found that performance decreased in all exercises
with increasing age, but did so to a greater degree for the exercises
thought to rely more on fluid intelligence than those that rely
more on crystallized knowledge (Figure 4A). This finding is in
line with other research that has found that processing speed and
memory span decline earlier than verbal fluency and crystallized
intelligence, which are preserved until later in life (Park, 1999;
Salthouse, 2009).

As we noted earlier, one particular advantage of the dataset
is that it contains information about changes in users’ in per-
formance over the course of many training sessions. While users
showed improvements in all four tasks with training, the effect
was largest for the 2-back working memory task, and smallest for
spatial memory span (Figure 4B), perhaps indicating differences
in the difficulty and novelty of these tasks. The working mem-
ory task also showed the largest negative age-related difference
in training improvement, while improvements in verbal fluency
remained relatively constant across ages. We also observed that
when taken together, training improvements on working mem-
ory tasks were less affected by a user’s age than performance on
the verbal fluency and arithmetic tasks. This provides prelimi-
nary evidence that the ability to improve at a task changes with
age in the same way that baseline ability changes with age—
with an earlier and more rapid effect of age on learning for
tasks that rely on fluid intelligence and a more gradual influ-
ence of age for tasks that rely more on crystallized knowledge.
This finding also runs counter to the theory that individuals
who have more initial difficulty with a particular type of task
should show greater improvement with training at that task com-
pared to ones that they find easier, based on the idea they have
more room for improvement. We found instead that older indi-
viduals, who start with lower performance on fluid intelligence

tasks, also show slower rates of improvement with training com-
pared to those that rely to a greater degree on crystallized
knowledge.

GENERAL DISCUSSION
While this initial glimpse at this dataset hints at the poten-
tial for very large datasets to provide unique insights to our
understanding of human cognition, there are also challenges and
potential limitations to the approach taken here. For one, since
users are free to train in a variety of more or less controlled ways
on the website, our ability to control the training experiences of
our samples is reduced when compared to controlled laboratory-
based experiments. As with any self-selected online population,
the demographics of the Lumosity user base may not perfectly
mirror the population, and it isn’t currently possible to fully verify
users’ self-reported health and demographic information.

In the future it will be important complement the “big data”
approach taken here with more controlled studies that can further
validate these findings. The ability to deliver training and testing
online, and the large existing user base offers promise for con-
ducting large-scale controlled experiments that would not be pos-
sible in traditional laboratory research. Lumos Labs researchers
and external research collaborators are currently designing and
running several such studies in different settings, including in
schools and in specific patient populations. Making it possible
to run controlled experiments on subsets of this user population
who have opted in to experimental training will also be crucial to
determining the factors underlying peak cognitive performance.

We have only scratched the surface of what the further study
of this dataset might uncover, and we would like to invite other
researchers interested in questions related to health and cognition
to partner with us in exploring our growing dataset in order to
make new breakthroughs.
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