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INTRODUCTION

The relationships between the anatomical representation of semantic knowledge
in the human brain and the timing of neurophysiological mechanisms involved in
manipulating such information remain unclear. This is the case for superordinate semantic
categorization—the extraction of general features shared by broad classes of exemplars
(e.g., living vs. non-living semantic categories). We proposed that, because of the abstract
nature of this information, input from diverse input modalities (visual or auditory, lexical or
non-lexical) should converge and be processed in the same regions of the brain, at similar
time scales during superordinate categorization—specifically in a network of heteromodal
regions, and late in the course of the categorization process. In order to test this
hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP)
with functional magnetic resonance imaging (fMRI) to characterize subjects’ responses
as they made superordinate categorical decisions (living vs. non-living) about objects
presented as visual pictures or auditory words. Our results reveal that, consistent with
our hypothesis, during the course of superordinate categorization, information provided
by these diverse inputs appears to converge in both time and space: fMRI showed that
heteromodal areas of the parietal and temporal cortices are active during categorization
of both classes of stimuli. The ERP results suggest that superordinate categorization is
reflected as a late positive component (LPC) with a parietal distribution and long latencies
for both stimulus types. Within the areas and times in which modality independent
responses were identified, some differences between living and non-living categories
were observed, with a more widespread spatial extent and longer latency responses for
categorization of non-living items.

Keywords: semantic processing, modality independent, superordinate categorization, fMRI, ERP

in a unitary, modality independent fashion—in the same brain

Semantic knowledge includes information about the features,
function, and properties of objects and the categories to which
they belong (Caramazza et al., 1990; Caramazza and Mahon,
2006). Such information may be extracted from input provided
by different sensory systems that can, in turn, either be non-
lexical or coded in written or spoken language. In this study, we
ask where and when such information converges in the human
brain.

Semantic knowledge is hierarchically organized (Mervis and
Crisafi, 1982), with superordinate categories having the great-
est degree of generality, encapsulating information about more
abstract features of a stimulus (e.g., whether it is living or non-
living) (Jolicoeur et al., 1984; Rogers and Patterson, 2007). On
this basis it might be expected that when subjects are asked
to select a superordinate category to which an item belongs,
the abstract information derived from different input modalities
(e.g., auditory or visual pictures or words) will likely be processed

regions, and at similar times following stimulus presentation.
Specifically, superordinate categorical decisions should engage
regions downstream from proximal language or visual systems, in
heteromodal cortices that process more abstract information, and
should occur relatively late in the course of semantic processing.
Here we evaluate these hypotheses using two imaging modalities
that provide complementary spatial and temporal information.
To our knowledge, a single set of experiments evaluating con-
vergent responses in both time and space, while utilizing widely
divergent input modalities, has never been conducted.

The anatomical representation of semantic knowledge in the
brain has been studied using neuroimaging measures (for a
review, see Binder et al., 2009) including both hemodynamic
methods such as functional magnetic resonance imaging (fMRI)
or positron emission tomography (PET), and electrophysiolog-
ical methods such as electroencephalography (EEG) and event
related potentials (ERP). There has been some scientific debate
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about the organization, anatomical representation, and timing of
these processes, with a principal question being whether there
are separate conceptual representations associated with differ-
ent input modalities (Martin and Chao, 2001) (Paivio, 1971,
1986, 2010) or if information from different modalities converges
in a unitary, amodal semantic representation (Caramazza, 1996;
Vandenberghe et al., 1996). To address these questions, the hemo-
dynamic methods provide relatively high spatial resolution, ideal
for localization of activity in discrete brain regions that may be
associated with semantic processing, but less than ideal in pro-
viding information about the time course of these processes. On
the other hand, EEG/ERP methods allow investigators to pre-
cisely characterize the temporal sequences involved in accessing
and manipulating conceptual knowledge, but provide only coarse
resolution of the spatial origins of this process. In this study, we
use both fMRI and EEG/ERP as endpoints in a common experi-
mental paradigm, capitalizing on the advantages of each method
to characterize the temporal and spatial features of superordinate
semantic processing.

Previous neuroimaging studies have investigated semantic
processing at multiple levels and utilized a variety of differ-
ent input modalities in an attempt to dissociate modality-
independent and modality-dependent semantic representations.
However, the intended meaning of the term “modality” has not
remained constant across studies and the term has been used in
a number of ways with several operational definitions (Dilkina
and Lambon Ralph, 2012). Most often the term modality has been
used to refer to primary sensory (e.g., visual or auditory) inputs,
or to lexicality (with stimuli stratified into lexical and non-lexical
inputs, e.g., pictures and words). Defined in these ways, a fully
balanced experiment would be organized as a matrix containing
four stimulus types crossing these two dimensions: non-lexical
visual or auditory objects (pictures or environmental sounds),
and the written or spoken words that describe them.

Most neuroimaging studies have assessed the impact of input
modality have focused investigations within a single dimension,
for example differentiating lexical vs. non-lexical stimuli within
a single sensory system (e.g., visual objects vs. written words),
or using identical lexical items presented in two different sen-
sory modalities (e.g., auditory words vs. visual words). Among the
studies using PET and fMRI, those designs that have compared
lexical vs. non-lexical stimuli within the visual modality (pic-
tures vs. written words) predominate, and have examined both
basic (Sevostianov et al., 2002; Tyler et al., 2003) and superor-
dinate processing (Vandenberghe et al., 1996; Chao et al., 1999;
Moore and Price, 1999; Postler et al., 2003; Bright et al., 2004).
Other recent work has utilized both auditory and visual input to
compare basic level processing of verbal and non-verbal stimuli
(Thierry and Price, 2006; Hocking and Price, 2009). Some stud-
ies have examined the spatial and temporal features of responses
to lexical stimuli in control populations (Marinkovic et al., 2003)
and with bilingual (Leonard et al., 2011) and deaf (Leonard et al.,
2012) subjects. Others have utilized natural movies to understand
the neural basis of object and action categories (Huth et al., 2012).

To date, only a single study (Visser and Lambon Ralph,
2011) used a design that crossed multiple input modalities
(comparing spoken words, environmental sounds, and visual

pictures) to evaluate superordinate categorization, using fMRI to
address questions about spatial location—specifically the contri-
bution of different portions of the temporal lobe in this process.
Taken together, however, the findings of hemodynamic imag-
ing studies—particularly in light of the differing definitions of
input modality—have been variable. Critically, the issue of where
multimodal inputs converge, particularly in the course of super-
ordinate semantic processing, remains largely unresolved.

Several studies have used EEG/ERP methods to address this
issue. For example comparing the processing of abstract vs.
concrete words, both presented orthographically (Kounios and
Holcomb, 1994; Holcomb et al., 1999) and presenting spoken
words, pictures and written words (Von Stein et al., 1999). Others
have utilized superordinate picture naming paradigms (Schmitt
et al., 2000), priming picture naming paradigms (Chauncey et al.,
2009) and a recent review highlights one particular component,
the N400, as an important marker of semantic memory states
(Kutas and Federmeier, 2011). However, to date no study has
used a crossed design to evaluate the impact of input modality
on semantic processing using electrophysiological methods.

Here we utilize fMRI and EEG/ERP to examine the features of
superordinate semantic processing in both time and space, using a
cross-modality design that compares responses elicited by visually
presented pictures and auditory words. While these conditions
constitute only a portion of the matrix outlined above they do
not overlap with respect to either sensory input or lexicality and
therefore any responses evoked by both classes of stimuli should
be true indices of temporal and spatial convergence, independent
of input modality, assessed, in this case, by interpreting fMRI and
ERP data in tandem.

Superordinate categorization was evaluated as follows: visual
pictorial stimuli depicting either living or non-living items
[selected from the Snodgrass—Vanderwart picture set (Snodgrass
and Vanderwart, 1980)] and auditory lexical stimuli, (spoken
names of the Snodgrass—Vanderwart pictures) were presented
along with pseudo-stimuli in both visual and auditory modali-
ties. In each trial, subjects were asked to indicate whether stimuli
were devoid of meaning (i.e., represented pseudo-stimuli) or, if
real, whether the object or word represented a living or non-living
item. Pseudo-stimuli were designed to control for lower level
sensorimotor processes while minimizing semantic content (see
Methods): auditory pseudo-stimuli consisted of words manipu-
lated so that they were recognizable as human voice but lacked
any phonological or phonotactic structure that could be matched
with real entries in the mental lexicon. Pictures were scrambled
so that pseudo-stimuli contained the same spatial frequencies as
real items but lacked complex features that could be recognized
and matched with stored visual representations of real objects.
Both sets of pseudo-stimuli were normed (in a separate popula-
tion, prior to the imaging studies) to exclude items that sounded
or appeared to be real. Thus, in either modality, items should
be identified as pseudo-stimuli with little if any further semantic
activation, controlling for low-level characteristics of the stimuli.
When items are identified as real, subjects extract information
with the explicit goal of assigning that item to a superordinate
category representing its most abstract semantic features (Mervis
and Crisafi, 1982). In both modalities, we identify the regions
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and times in which these categorical decisions are made and can
therefore pinpoint the common responses that are independent
of input modality. Pictures and words (along with the respec-
tive pseudo-stimulus controls) were presented in separate runs
in both EEG/ERP and fMRI experiments. The same paradigm
(using distinct but matched sets of stimuli) was run in both
experiments. A conjunction approach was used to identify signifi-
cant, overlapping responses (real vs. pseudo, living vs. non-living)
in each.

We predicted that processing more abstract superordinate
information should elicit shared responses in higher order, het-
eromodal areas of the brain and late in course of categorical
decision making. Specifically, for fMRI, we hypothesized that
responses elicited by superordinate categorization of both pic-
tures and spoken words would be found association areas, specifi-
cally the angular, fusiform, and middle temporal gyri and anterior
temporal lobe, consistent with previous studies suggesting that
these regions are critical for modality-independent semantic pro-
cessing (Vandenberghe et al., 1996; Brownsett and Wise, 2010;
Uddin et al., 2010; Visser and Lambon Ralph, 2011; Cabeza et al.,
2012). We hypothesized that ERP components evoked by both
auditory words and visual pictures would roughly correspond
to the modality-independent temporoparietal responses identi-
fied by fMRI and have properties similar to the late positive
components (LPC) revealed in previous studies associated with
categorical decisions (Mehta et al., 2009) and complex semantic
processing (Duzel et al., 1999; Friederici, 2002; Curran and Dien,
2003; Fuggetta et al., 2009; Hajcak et al., 2009; Kissler et al., 2009;
Mehta et al., 2009). Thus we predicted modality independent
ERP responses would have latencies and morphologies similar
to LPCs. Moreover, we predicted that these late ERP responses
would bear the same temporal relationship to the button presses
indicating the time at which subjects made their categorical deci-
sions, independent of modality. Finally we expected that, when
confined to these times and regions, category specific responses
(to living and non-living items represented in pictures and words)
would retain some unique, albeit subtle features similar to cate-
gorical differences previously reported (Martin, 2007).

METHODS

SUBJECTS

Nineteen male subjects, age 23—39 years participated in the fMRI
experiment and 16 subjects (1 female), age 24-34 years partici-
pated in the ERP experiment. All subjects were native English
speakers without a history of neurological or psychiatric disor-
ders, and were not taking neuroactive medications at the time of
their participation in the study. All were right handed, as assessed
through the Edinburgh inventory (Oldfield, 1971) (LQ = 85 +
5.5), with normal or corrected vision. Additionally, all subjects
were tested prior to the experiments using a combination of stan-
dardized test batteries that evaluated language (Boston Naming
Test; Kaplan et al., 1983), working memory (Doors and People
Test; Baddeley et al.,, 1994) and general cognitive performance
[Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS™)] (Randolph et al., 1998). Subjects’ individual
results were within normal ranges on each test, thus this sample
could be considered to be a healthy population without functional

impairment. The study was conducted in accordance with the
Declaration of Helsinki, and participants granted their informed
written consent prior to participation in accordance with the
protocol approved by the NIH Institutional Review Board.

STIMULI

The experiment included presentation of visual and auditory
stimulus sets divided into separate runs. The order of these runs
was randomized across subjects to avoid order effects in the
group analyses. Two hundred and eighty visual and an equal
number of auditory stimuli were used in each of the separate
runs: 140 real stimuli for both visual and auditory conditions,
and complementing these, 140 pseudo-stimuli (visual or audi-
tory stimuli devoid of semantic meaning) for use as baseline.
Visual stimuli were selected from black and white line drawings
of well-recognized objects from the Snodgrass corpus (Snodgrass
and Vanderwart, 1980). Pseudo-objects were created directly from
the selected drawings by mixing image elements using graph-
ics painting software; real and pseudo pictures were therefore
matched with respect to spatial frequencies thus ensuring equiv-
alence in terms of the low-level characteristics of the stimuli.
Auditory stimuli consisted of the spoken words (names of objects
from the Snodgrass’ stimulus set) read by a professional actor.
Auditory pseudo-stimuli were created by dividing the real word
stimuli into 3-5 segments using natural boundaries identified in
the acoustic waveform and scrambling these into a random order
using with Soundforge software (Sony Creative Software). This
generated a stimulus set in which items were matched with real
words in frequency and amplitude but were devoid of meaning
and while recognizable as human voice, were not identified as
lexical items. This allowed for isolation of brain regions unique
to semantic processing. Both the pseudo pictures and words
were normed such that all pseudo-stimuli were not recognized
as “real.” Within both the visual and auditory stimulus sets, a
group of 70 items represented living objects (e.g., animals and
plants), and 70 represented non-living objects (e.g., tools, vehi-
cles, houseware). Images of living and non-living objects were
matched with respect to: visual complexity, degree of familiarity
and the frequency of use in the speech of the depicted object name
(Stewart et al., 1992; Sartori et al., 1993). The auditory subsets of
living or non-living objects were matched with respect to dura-
tion number of syllables familiarity and frequency of use in speech
(Paivio et al., 1968). While auditory words represented names of
visual objects from the Snodgrass’ stimulus set, the same objects
were not used in the auditory and visual condition. Two non-
overlapping visual and auditory stimulus sets, matched according
to features outlined above were utilized and randomized across
subjects.

TASK

Auditory and visual stimuli were presented in separate runs.
In each, 140 real (70 living, 70 non-living) and 140 pseudo-
stimulus trials were interleaved. In each trial, subjects were asked
to press one of 3 buttons, indicating whether stimuli were (1)
devoid of meaning (i.e., represented pseudo-stimuli) and, if not,
whether the real object or word represented (2) a living or (3)
non-living item. Subjects indicated their decision with a button
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FIGURE 1 | Timeline illustrating visual stimulus presentation and
response. Subjects indicated a choice between three alternatives (based
on whether the item was living, non-living or pseudo) by pressing one of
3 buttons contained in the box held in the right hand. Responses to
auditory word stimuli were indicated in the same way although stimulus
durations differed (see Methods).

press using the right hand, and were instructed to do so as soon
as possible after stimulus presentation (see Figure1). Prior to
study enrollment, pilot test revealed that subjects performed at
an accuracy level consistent with a healthy population (Coppens
and Frisinger, 2005). An accuracy was not assessed during the
experimental tasks.

Visual stimulus presentation was achieved via projection of the
stimulus on a matte screen using a laptop running Presentation®
software (Neurobehavioral Systems); subjects viewed the screen
through a headcoil-mounted mirror, the visual angle was 7.7°
vertically and 10.4° horizontally. All visual stimuli were dis-
played in the center of the monitor as black contours on a light
gray background at a distance of 1.5m. The duration of each
visual stimulus was 300 ms. The verbal stimuli were individually
adjusted in loudness so that the participant could clearly hear
the sounds. Auditory stimuli were delivered binaurally to the ears
by optoelectronic earphones (Resonance Technology, Northridge,
CA, USA) and passive noise protection was provided via ear plugs.
Auditory stimuli varied from 450 to 900 ms (mean = 670 ms). For
both modalities, the interstimulus interval varied from 1.5t0 2.5 s
(mean = 2.0 s from stimulus onset).

DATA ACQUISITION

Functional magnetic resonance imaging (fMRI)

Blood oxygenation level-dependent contrast (BOLD) functional
images were acquired with a 3T whole-body scanner (GE Signa,
General Electric, Milwaukee, WI) using a standard quadrature
head coil and a gradient-echo EPI sequence. The scan param-
eters were as follows: TR = 2000 ms, TE = 30 ms, flip-angle =
90°, 64 x 64 matrix, field of view 220 mm; 22 parallel axial slices
were acquired covering the whole brain, with 6 mm thickness.
Four initial dummy scans were acquired during the establish-
ment of equilibrium and discarded in the data analysis. Each
run comprised 290 volumes, two runs were scanned per sub-
ject. The subjects lay supine in the scanner, their heads secured

with a padded strap placed across the forehead and secured to
the sides of the headcoil, without further mechanical restraint. A
button-response box was placed under the subjects’ right hand,
in a comfortable position with the fingers directly touching the
corresponding buttons.

Event related potentials (ERP)

Participants were seated in an electrostatically shielded cham-
ber, facing a 34 cm LCD monitor. Visual stimuli were presented
to the participant at a 5 visual angle from a distance of 1.5 m.
Auditory stimuli were presented at 90 db through a single speaker,
located 1.5 m in front of the participant. All electrophysiological
signals were recorded using 9 mm sintered silver silver-chloride
electrodes. EEG was recorded with a 60-channel electrode cap,
conforming to the extended 10-20 electrode placement system
and referenced to the nose. Data were continuously recorded
using two 32-channel Synamp bioamplifiers, with 0.15-100 Hz
bandpass filtering and sampled at 500 Hz. Electrical impedance
between the ground and all electrodes was maintained below
5 K. Bipolar leads were placed above and lateral to the left eye,
in order to measure the electrooculogram (EOG).

DATA PROCESSING

Functional magnetic resonance imaging (fMRI)

Preprocessing and statistical analysis of the MRI data were per-
formed using Analysis of Functional NeuroImaging (AFNI) soft-
ware (Cox, 1996). Functional runs for each subject were motion
corrected by realignment using the fourth volume in each run as
a reference. Functional images were smoothed with an isotropic
Gaussian filter of 8 mm. The data were then normalized by run
mean per auditory and visual run. Following preprocessing, a
deconvolution analysis using AFNI was performed in order to
estimate the hemodynamic response corresponding to each sub-
ject for each condition. An ideal waveform time series file was
created for each stimulus condition listing the precise timing of
each stimulus type. These time series files were then convolved
with a gamma function such that an idealized Hemodynamic
Response Function (HRF) was determined for each stimulus con-
dition. Regressors included motion parameters (the 6 motion
parameters obtained from volume registration), baseline, linear
drift and the HRF from the stimulus condition. For statisti-
cal comparisons across subjects, the data were standardized into
Talairach space in order to account for variability in brain shape
and size.

The deconvolution analyses for each subject were submit-
ted to a Three-Way ANOVA, 2 (modality) x 3 (condition) x
19 (subject), over the whole-brain to generate a random effects
group analysis. Contrasts of interest included auditory real (liv-
ing and non-living) vs. pseudo, visual real (living and non-
living) vs. pseudo, auditory living vs. pseudo, auditory non-living
vs. pseudo, auditory living vs. pseudo, auditory non-living vs.
pseudo, visual living vs. pseudo, visual non-living vs. pseudo.
Monte Carlo simulations were run using AFNI’s AlphaSim pro-
gram in order to determine the number of contiguous voxels
needed to be active in order to achieve a corrected significance
level of p < 0.01. Whole-brain conjunctions were performed to
identify similar voxels activated by real visual images and real
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auditory words relative to the respective pseudo conditions (p <
0.01, corrected). Categorical (living vs. non-living) responses
were evaluated using the same conjunction approach (p < 0.05,
uncorrected). Results were displayed using MRIcron (Rorden and
Brett, 2000).

Event related potentials (ERP) waveform components

Individual EEG trials were visually inspected and those that con-
tained artifacts or exceeded 100 LV of EOG were excluded from
the analysis. EEG trials were time-locked to stimulus onset and
averaged separately for each condition. Waveform peak ampli-
tudes and latencies were derived from a 1400 ms ERP with a
200 ms baseline interval. Latency interval, from which the ERP
components peak amplitudes were derived were based on visual
inspection of the grand average ERP waveforms associated with
living, non-living, and pseudo stimuli, presented in the visual and
auditory modalities and are consistent with previously reported
LPC component latencies (Kiefer, 2005; Van Strien et al., 2007;
Daltrozzo et al., 2012; Kos et al., 2012). An auditory LPC was
defined as the maximum positive amplitude between 550 and
900ms over the left, right, and central parietal region (P1,
P2, Pz) (Olichney et al., 2000; Kayser et al., 2003; Van Strien
et al., 2007). A visual LPC was defined as the maximum posi-
tive amplitude between 400 and 800 ms over the left, right, and
central parietal region (P1, P2, Pz) (Kiefer, 2001; Danker et al.,
2008).

For both auditory and visual components, separate Two-Way
repeated measures ANOVA were conducted in order to deter-
mine the effects of stimulus type (real or pseudo) and recording
site (left, right, or central) on the amplitudes and latencies of
the auditory and visual LPC [consistent with evidence that the
morphological differences in visual and auditory waveforms may
make separate analyses of ERP latency and amplitude prefer-
able (Holcomb and Neville, 1990)]. For both auditory and visual
components, separate Two-Way repeated measures ANOVA were
conducted in order to determine the effects of stimulus type (real
or pseudo) and recording site (left, right, or central) on the ampli-
tudes and latencies of the auditory and visual LPC. LPCs selec-
tively elicited by living and non-living items were evaluated with
separate Two-Way repeated measures ANOVA in order to deter-
mine the effects of condition (living, non-living) and recording
site (left, right, or central) on the amplitudes and latencies.

Due to potential covariation between experimental conditions,
introduced by the repeated measures design, the Huynh and
Feldt Epsilon correction was applied to each calculated F-statistic.
All tests were held to a family-wise error rate of p < 0.05.
Hypotheses-specific mean comparisons were performed using
paired #-tests, with Bonferroni corrections in order to maintain
the specified experiment-wise type I error rate.

RESULTS

REACTION TIMES

Two-Way repeated measures ANOVA with modality (auditory—
visual) and category (living— non-living—pseudo) as factors
demonstrated both main effects, leaving interaction as non-
significant. The reaction times from the ERP for auditory words
and visual objects demonstrated two principal features: first,

button press responses to auditory lexical stimuli were signifi-
cantly prolonged (933 ms =+ 65) (mean + SD) when compared
to visual pictoral stimuli (707ms % 72) F(j, 14y = 288.1, p <
0.001; second, pseudo-stimuli were recognized faster in either
modality (893 & 92 and 684 £ 96 for auditory and visual stimuli,
respectively) than living items (936 & 58 and 704 £ 61), which
were themselves recognized faster than non-living (970 % 63 and
731 £ 80) words or objects F(3, 28y = 17.3, p < 0.001 (Epsilon =
0.88). (see Figure 2). Post hoc Newman-Keuls test revealed, that
all 3 categories give significantly different RTs.

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)

Convergent responses

Convergent responses during superordinate categorization of
auditory words and visual pictures were identified by performing
whole-brain conjunction analyses utilizing AFNI software as out-
lined in the methods section. Differences for real visual objects
and real auditory words and pseudo-items should reflect the
processes by which real items are assessed and assigned to super-
ordinate categories. Conjunctions—voxels in which responses
during categorization of real items were significantly greater than
pseudo baseline (p < 0.01, corrected) for both visual pictures
and auditory words—are considered indices of convergent super-
ordinate processing, independent of input modality [i.e., there
were no significant differences in the magnitude of the responses
elicited by real auditory words or visual pictures (vs. their respec-
tive pseudo baselines) in these regions]. Regions associated with
superordinate categorization per se—regardless of the category
selected—included the left posterior parietal cortex including
the inferior parietal lobule (angular and supra marginal gyri),

1.05

1.00

095

080

085

RT (sec)

080
-+ AUD

- VIS
0.75

0.70

065

060

Living Non-Living Pseudo
FIGURE 2 | Reaction time differences between responses to living,
non-living and pseudo items for visual images and auditory words.
Selection of visual stimuli was faster than auditory. Within both the visual
and auditory modalities, pseudo stimuli were detected first, followed by
living and then non-living items.
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intraparietal sulcus and superior parietal lobule, and the left
fusiform and left middle frontal gyri. (see Figure 3, Table 1).

Category specific responses

We investigated responses selectively associated with living and
non-living items within the regions defined by these conjunc-
tions (i.e., those that were activated for both visual non-lexical
and auditory lexical items). Although features categorically asso-
ciated with living and non-living items might be found outside of
this sample space, we were primarily interested in the responses
within it—i.e., those associated with superordinate categorization
that were independent of sensory modality or lexical form. The
resulting pattern indicated an overlap between living and non-
living categories in the left superior parietal lobule (x = —21,y =
—63, z = 38; Vi t-score 4.34, Au t-score 3.94), supramarginal/IPL
(x =—36, y = —39, z=34; Vi t-score 539, Au t-score 3.71)
and left fusiform gyrus (x = —45, y = —60, z = —13; Vi t-score
2.60, Au t-score 3.17). In each case, the spatial extent was greater
for non-living items: activations outside of the areas of over-
lap, that were significant for non-living but not living items in
both modalities were found in adjacent portions of the inferior
parietal lobule (x = —37, y = —48, z = 52; Vi t-score 2.83, Au
t-score 3.42) and left medial fusiform gyrus (x = —42, y = —63,
z = —14; Vi t-score 2.61, Au t-score 2.97).

EVENT RELATED POTENTIALS (ERP)

Late responses to auditory words and visual pictures

Amplitudes and latencies of evoked responses that differenti-
ated real and pseudo items were computed for auditory and
visual stimuli independently and compared using Two-Way
repeated measures ANOVA as outlined in the Methods section.

FIGURE 3 | Modality-independent responses detected with flVIRI.
Conjunctions—responses that are elicited by both auditory words and
visual pictures—are illustrated. Red indicates voxels that were significant
(real—pseudo; p < 0.01, corrected) for both modalities. Location of the
planes illustrated in the montage are depicted on the surface renderings at
the lower left; z-axis levels are indicated below each slice.

Differences that were associated with both stimulus types (simi-
lar in morphology and location and temporally associated with
the reaction times indicated by button press) were considered
modality independent.

Both visual and auditory stimuli, evoked an similar LPC peak-
ing ~150 ms prior to subjects’ categorical responses (absolute
latencies corresponding to the differences in RT). This robust
late positivity was maximal in the left parietal channels. In the
auditory domain, the LPC occurred between 550 and 900 ms and
over P1, P2, and Pz electrodes (maximal at P1), where real words
evoked responses with a significantly greater positive amplitude
then pseudo-stimuli F(; 65y = 105.55, p < 0.0001 (main effect
for condition). No interaction was observed between condition
and channel. In the visual domain, the LPC was observed between
400 and 800 ms over P1, P2, and Pz electrodes (maximal at P1).
There was a significant main effect for condition with real images
evoking responses with greater positive amplitude then pseudo-
stimuli F(;, 65y = 19.04, p < 0.0001. No interaction was observed
between condition and channel (see Figures 4, 5). There were no
responses selectively evoked by superordinate categorization of
real words or pictures other than the LPC.

Category specific responses

Differences between responses to living and non-living items were
evaluated within the sample space defined by the LPC (400 to
800 ms over Pz, for visual pictures; 550 to 900 ms over Pz, for
auditory words). No significant differences in mean amplitudes
were found between components evoked by living and non-living
items in either modality (visual: F(;, 13y = 2.59, p = 0.1318; audi-
tory, F(1, 13y = 1.35, p = 0.2656 between living and non-living
amplitude). However, latency differences between categories were
detected. In the auditory domain these were significant, with
maximal responses to words associated with living items occur-
ring significantly earlier (756 ms) than those associated with
non-living (855ms) items F(j, 13y = 17.61, p = 0.001. In the
visual domain, responses to pictures of living items (532 ms)
also occurred earlier than pictures of non-living items (569 ms),
although this difference did not reach statistical significance (see
Figure6).

DISCUSSION

Superordinate semantic processing requires access to the most
abstract conceptual information (Mervis and Crisafi, 1982), mak-
ing it possible to categorize stimuli based upon general features
shared by broad classes of exemplars. The same categorical infor-
mation may be derived from multiple input modalities (e.g.,
stimuli that are either visual or auditory, lexical or non-lexical).
We proposed that because of the abstract nature of such infor-
mation, these inputs are likely to converge and be processed in a
common set of heteromodal brain regions at similar time scales,
late in the course of superordinate categorization.

The present study tested this hypothesis by utilizing neu-
roimaging techniques sensitive to temporal and spatial features
of brain activity in an experiment designed to minimize the
degree of overlap between input modalities and control for low-
level characteristics of the stimuli, so that any common responses
should precisely identify finite areas and times of convergence.
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Table 1| Modality-independent responses detected with BOLD fMRI.

Hemi. Region Brod. No. Visual t-score Auditory t-score X y z

L Inferior parietal lobule 39/40 4.05 4.93 —-36 —46 36
(angular/supramarginal gyri)

L Intraparietal sulcus 7 4.52 4.24 -21 —66 35

L Interior temporal/fusiform gyri 37 3.57 3.26 -39 —78 —-14

L Middle frontal gyrus 6 4.24 4.04 —-25 -9 47

Significant differences between responses to real and pseudo stimuli that were common to both auditory and visual domains are tabulated by region of interest

with associated Brodmann numbers (Brod. No.), Talairach coordinates (x, y, z) and hemisphere (hemi.) are derived from the conjunction analysis,; t-scores at these

coordinates are displayed for individual Auditory and Visual contrasts.

Pseudo
Spv
Real

FIGURE 4 | Modality-independent responses detected with ERP.
Responses to real (living + non-living, red) and pseudo (black) stimuli
are illustrated for auditory words (Top) and visual pictures (Bottom).
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Waveforms depicting responses to both auditory words
and visual pictures are derived from parietal channels P1, Pz,
and P2.

Consistent with our hypothesis, fMRI and ERP results revealed
that information from different modalities converges onto a func-
tional network that is activated late, independent of modality or
stimulus type, consistent with the establishment of a superordi-
nate semantic representation.

In addition, we detected responses that were selectively asso-
ciated with presentation of visual pictures and auditory words
(see Supplementary Material for results). For fMRI these were
unsurprisingly found in regions that play a role in visual object
recognition (the inferior occipital, and fusiform gyri) (Borowsky
et al., 2007) or auditory-lexical processing (left superior and
middle temporal gyri) (Hickok and Poeppel, 2007), respec-
tively. For EEG/ERP, these responses occurred earlier in each

trial and were located in roughly same distribution (occipital
and left temporal channels) as the fMRI responses. In both
cases, these early responses occurred ~300ms prior to the late
posterior components that were evoked by both input modal-
ities. It is possible that these responses may reflect basic rather
than superordinate semantic processing in regions that are more
closely associated with auditory or visual modalities or pro-
cess lower level lexical or pictorial information (Jolicoeur et al.,
1984; Tanaka et al., 1999). However, it is difficult, given the
design of the present experiment to disambiguate the rela-
tive contributions of sensory or lexical features to these ear-
lier spatially discrete responses. In order to differentiate these,
future experiments might additionally include written words
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Auditory
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200-400 ms

450-650 ms

700-900 ms

950-1150 ms

Visual
Real-Pseudo

50-250 ms

300-500 ms

550-750 ms

800-1000 ms

FIGURE 5 | Topographical rendering of ERP responses over time. The
auditory word condition (real—pseudo) is displayed at the top of the figure,
the visual picture condition (real—pseudo) at the bottom. Each image depicts
the topographical distribution these of differences as a scalp rendering.
These maps are oriented with anterior channels at the top, posterior channels

2.75

0.00

-2.75
uv

at the bottom; the left hemisphere is represented on the left, the right
hemisphere on the right. Responses are sampled every 50 ms. Post-stimulus
times are indicated on the left of the figure, with the display adjusted for
differences in reaction times (asterisks represents the mean button press
times for real items).

and auditory objects as stimuli, making more direct com-
parisons, and unambiguous interpretations, possible. In any
case, this was not our goal here; our paradigm was instead
designed to maximize differences between input modalities in
order to provide information about the site and timing of their
convergence.

SUPERORDINATE CATEGORIZATION

Functional magnetic resonance imaging (fMRI)

Regions in which responses to visual pictures and auditory
words overlapped were strongly left-lateralized and included left
fusiform and portions of the middle frontal gyri; the strongest
responses were in the left posterior parietal cortices—angular
and supramarginal gyri, intraparietal sulcus, and superior parietal
lobule. Collectively the parietal regions are crucial for multisen-
sory integration and association of semantic information, con-
sistent with a role in modality-independent access that supports

superordinate categorization. For example, the angular gyrus is a
hetermodal region, involved in many aspects of cognition (Uddin
et al., 2010; Seghier, 2013) essential to language and semantic
processing and their intersection (Vigneau et al., 2006; Binder
et al., 2009; Brownsett and Wise, 2010). A recent review indicates
that this region acts as a cross-modal hub processing concep-
tual information that is received through input from multiple
sensory modalities (Seghier, 2013). Our results are consistent
with these attributes. The supramarginal gyrus and superior pari-
etal lobule are also heteromodal areas that receive input from
both auditory and visual unimodal association cortices (Booth
et al,, 2002), and have been implicated in the neural repre-
sentation of semantic knowledge (Binder et al., 2009; Chou
et al., 2009; Wu et al.,, 2009). In addition, the superior pari-
etal lobule/inferior parietal sulcus play a role in information
synthesis and knowledge recall that may be necessary for high
level modality-independent integration and semantic association
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FIGURE 6 | ERP responses to living and non-living categories. \Waveforms depicting responses to living items (green) and non-living items (blue) are
illustrated for auditory words (top) and visual pictures (bottom) for parietal channels P1, Pz and P2.

(Buchel et al., 1998; Bright et al., 2004; Davis et al., 2004; Binder
et al., 2009).

We also detected modality independent responses in the
fusiform gyrus, which appears to play a key role in conceptual
representations that are independent of sensory modality, and are
activated by both pictures and words (Caramazza and Mahon,
2006; Martin, 2007; Binder et al., 2009) and in the middle frontal
gyrus, a region vital to decision making and choice execution
(Heekeren et al., 2006). Thus, these regions are all essential for
categorical decisions involving multimodal processing of concep-
tual information.

The concept of a modality-independent semantic core con-
nected to regions that process modality-dependent semantic
features is in general consistent with the “distributed plus hub
model” described by Patterson and colleagues (Patterson et al.,
2007). However, our modality independent activations did not
include the anterior temporal lobe, which is the designated “hub”
in that model. Instead, in the present experiment, the posterior
parietal cortex appears to act as a central region coordinating
superordinate representations. It is possible that we may have
under-sampled the ventral portions of the anterior temporal
lobe in which these authors (Visser and Lambon Ralph, 2011)
report conjunctions in a categorization task similar to our own.
Interestingly, evidence in favor of the anterolateral temporal cor-
tex as a possible hub for semantic processing is based primarily
on neuropsychological data from semantic dementia patients who

show selective deterioration of this region and subsequently show
decline in basic level categorization (Patterson et al., 2007). But
importantly, these patients show less vulnerability when asked
to perform superordinate categorical tasks retaining general and
typical semantic knowledge. Thus, our results are consistent with
these clinical findings, supporting the notion that superordi-
nate categorization may at least in part take place elsewhere,
specifically in the posterior parietal cortex.

A recent study examining semantic aphasia suggests the
importance of these posterior regions in modality independent
access to semantic control (Gardner et al., 2012). Collectively
these regions may be part of an extended semantic network since
modality independent representations have been reported in the
supramarginal gyrus, angular gyrus and posterior superior tem-
poral gyrus area, contributing to semantic connections in the
middle temporal gyrus (Booth et al., 2003). It should be noted,
however, that the conjunctions we detected in the parietal areas
did not extend ventrally into the posterior temporal regions.
Thus, although the latter areas are considered crucial for process-
ing lexical semantic information, our results suggest that they may
not represent a site of convergence for superordinate information
derived from multiple input modalities.

Event related potentials (ERP)
The ERP results provide information about the temporal fea-
tures of semantic processing, revealing a LPC with a parietal
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distribution for both modalities: that is, the LPC is essentially
the same in amplitude and distribution whether the stimuli
are visual objects or auditory words, suggesting modality inde-
pendent responses. Importantly these responses were strongest
in channel P1, roughly corresponding to the posterior pari-
etal areas in which convergent activations were detected in
the fMRI portion of the experiment. Such a parietally dis-
tributed positivity underlying higher-order semantic process-
ing such as categorical judgment has been previously reported
(Mehta et al., 2009) and other studies have demonstrated
a similar late response with a left posterior parietal distri-
bution that reflects manipulation of complex, task relevant
semantic information (Duzel et al., 1999; Von Stein et al.,
1999; Friederici, 2002; Curran and Dien, 2003; Fuggetta et al.,
2009; Hajcak et al., 2009; Kissler et al., 2009; Mehta et al,,
2009). Taken together, the fMRI and ERP results suggest
that the posterior parietal cortex may be instrumental in the
later, convergent processes that play a role in superordinate
categorization.

Since basic level semantic information appears to have a priv-
ileged position in the semantic hierarchy, i.e., basic semantic
features are processed first (Markmen, 1991; Tanaka et al., 1999),
it is possible that the components unique to visual pictures or
auditory words (discussed in the previous section) may reflect
these processes (although see the caveats outlined in that sec-
tion). Nevertheless, the hallmark of the LPC is that it occurs
late and is evoked by both classes of stimuli, consistent with
it being a marker for the convergence and manipulation of
more abstract semantic information. Our results indicate that
the auditory LPC occurs later (between 550 and 900 ms) than
the visual LPC (which occurs between 400 and 800 ms). The
latency differences between visual and auditory modalities are
consistent with notion that pictures may have more rapid access
to semantic networks while the auditory words must first be
processed through the mental lexicon (Caramazza and Hillis,
1990; Amrhein et al., 2002; Sevostianov et al., 2002). In addi-
tion, physical features of the stimuli may contribute to the longer
latencies associated with auditory word stimuli (mean dura-
tion 670 ms) compared to the visual pictures (duration 300 ms.)
Crucially, however, in both visual and auditory modalities, the
LPC precedes the button press response (which reflects execu-
tion of the subject’s superordinate categorical decision) by the
same period of time ~150 ms. These consistent temporal rela-
tionships suggest that if the parietal LPC reflects the processing
abstract information required to assign stimuli to superordi-
nate semantic categories, that this processing is completed about
150 ms prior to the motor response indexing the categorical
decision.

CATEGORY SPECIFIC RESPONSES

Functional magnetic resonance imaging (fMRI)

We also evaluated the responses to living and non-living items
independent of sensory modality or lexical form, looking for
evidence of cortical representations that may be unique to each
category. Confining our search to the regions in which convergent
responses were detected in the earlier conjunction analysis, our
results suggest that while superordinate categorization recruits

a common network, there are only minor differences between
the representation of living and non-living categories within it.
Specifically, selective responses (essentially a more wide spread
extent of activation) were detected for non-living items in the
inferior parietal lobule and the medial fusiform gyrus. These
results are consistent with previous reports demonstrating that
non-living items (e.g., tools) elicit enhanced activity in left infe-
rior parietal cortex, relative to animals or faces (Chao and Martin,
2000), and that recognition of non-living objects is selectively
associated with activation of the medial fusiform gyrus (Martin,
2007).

Event related potentials (ERP)

While the LPCs identified by ERP were similar in amplitude
and morphology for both living and non-living words or pic-
tures, there were systematic, category-specific differences in their
latencies. Responses to living items occurred significantly earlier
than responses to non-living items when these were presented
as auditory words. Such a difference was not found with visual
pictures since the peak of the LPC for living items was not sig-
nificantly earlier than that detected for than non-living items.
However, these results are consistent with our own reaction time
data which demonstrate that living items are selected earlier than
non-living items and with the results of other studies in which
living items were identified prior to non-living items in both
modalities in a picture-word matching task e.g., (Fuggetta et al.,
2009) when familiarity, manipulability and level of identification
are controlled for (Filliter et al., 2005).

SUMMARY

It should be noted that one limitation of the present study is that
fMRI and EEG data were obtained separately, in different groups
of subjects and the sample was primarily male. Future studies
would benefit from simultaneous monitoring of fMRI and EEG
and by including more female participants. Nevertheless, these
data suggest that superordinate categorization recruits a com-
mon anatomical network in which there exists a high degree of
overlap during processing of individual superordinate categories.
The fMRI results suggest that, consistent with previous reports
(Chao and Martin, 2000; Martin, 2007) there are areas in the basal
temporal and posterior parietal cortices responses that are signif-
icantly modulated by semantic category. The ERP results suggest
that while although regional specialization may be limited, there
are differences in the speed of processing of discrete superordinate
(at least living and non-living) categories.

In summary our results support a model for superordi-
nate semantic processing in which information from multi-
ple input modalities converges and is processed in a network
of heteromodal regions that is strongly lateralized to the left
hemisphere, late in the course of superordinate categoriza-
tion. The fMRI data provide spatial information that localizes
these responses to parietal, basal temporal and frontal cor-
tices. EEG/ERP data provide temporal information roughly con-
firming the parietal location of the strongest responses seen
with fMRI. Crucially, the electrophysiological data indicate that
these responses occur relatively late and have the same tempo-
ral relationship, for both auditory words and visual pictures,
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to the button press reflecting execution of the categorical deci-
sion. fMRI results suggest that while the posterior parietal areas
appear to be specialized for processing superordinate informa-
tion, responses are only modestly modulated by the categories
themselves, while ERP results suggest that categorical differences
in these regions may be more prominently reflected in the speed

of processing.
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