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Neural mind-reading studies are booming and providing excit-
ing new paradigms that map BOLD signals into stimuli features,
and vice versa [see (Naselaris et al., 2011; Haxby, 2012; Serences
and Saproo, 2012; Tong and Pratte, 2012); Mur et al. (2009)
for recent reviews]. The breakthrough for neural mind-reading
studies has been the development of multivariate pattern analy-
sis (MVPA) tools applied to BOLD data. Researchers have used
this set of tools with two main strategies: decoding and encod-
ing. The decoding strategy attempts to correlate brain activity
with co-occurring stimuli, behavior or cognitive activity. By con-
trast, the encoding strategy attempts to do exactly the opposite,
namely, to predict activity in the brain evoked by co-occurring
stimuli, behavior or cognitive activity. Both strategies can be pic-
tured as a three space model: the stimuli input, the feature space,
and the ROI’s BOLD activity [see Figure 1, extracted from ref-
erence Naselaris et al. (2011)]. A visual stimulus, for instance, is
characterized along axes that correspond to the luminance of each
pixel, and a natural scene is represented by a single point in the
input space. In such a feature space, each axis corresponds to a
single feature, and each stimulus is represented by one point in
that feature space. In general, the feature space provides labels
that reflect different interpretations of the stimuli (e.g., inani-
mate versus animate), but they can also consist of a continuous
representation, such as phase-invariant Gabor wavelets (Naselaris
et al.,, 2009). Finally, the activity space represents the activation of
all the voxels within an ROI: the axes correspond to the individ-
ual voxels, and ROD’s activation pattern is identified by a unique
point in the activity space. In general, the transformation from
the input space into the feature space is a nonlinear mapping,
whereas the transformation from the feature space to the partic-
ular BOLD activity, or vice versa, is a linear mapping. In this later
case, the mapping involves training a linear classifier that allows
mapping multi-voxel activation patterns onto specific stimulus
labels.

The MVPA approach has already yielded original and ambi-
tious studies, including the prediction of neural signatures
induced by visual stimuli (Mitchell et al., 2008), the quantification
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of the neural activity that can be attentionally biased (Reddy and
Kanwisher, 2007), and the reconstruction of the image associ-
ated with a perceptual experience (Nishimoto et al., 2011). In
this sense, the expectations about neural mind-reading paradigms
are growing, and even reach visionary stances: “This [the study
in question] is a critical step toward the creation of brain read-
ing devices that can reconstruct dynamic perceptual experiences”
(Nishimoto et al., 2011, p. 1645).

I will here assess two claims that underlie such expectations:
(1) the claim that neural mind-reading paradigms can identify
the neural pattern of neural representations; and (2) the claim
that such paradigms can read out the contents of neural patterns.
Let us examine each in turn.

NEURAL SIGNATURE'S IDENTIFICATION

The claim that MVPA-based studies can identify the neural pat-
tern of neural representations is based on two assumptions: (a)
the assumption that the BOLD signal is a marker of neural activ-
ity, and (b) the assumption that the BOLD pattern identified by
MVPA is a neurally sound pattern.

Concerning (a), the fact is that relationships between changes
in neural activity, the BOLD signal, and the cognitive state of
the individual are still a matter of controversy. In principle, the
magnitude of the BOLD signal is associated to the magnitude
of underlying neural activation. This has led to the widespread
consideration that there is a linear association between BOLD
response and the implication of specific neural structures in
cognitive processing. However, the BOLD signal actually mea-
sures blood oxygenation, which is an indirect measure of neural
activity, and the relationship between cognitive functionality and
the BOLD signal has not yet been resolved. Many aspects of
the neural activity (e.g., synaptic activity, spiking activity, glial
metabolic activity) contribute to the BOLD signal, and the func-
tional implication of neurons underlying a BOLD signal is quite
diverse (Logothetis and Wandell, 2004; Ekstrom, 2010; Gardner,
2010). Therefore, much more precise information about the rela-
tionship between the BOLD signal, neural activity and cognitive
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FIGURE 1 | Linearizing encoding and decoding models. Top: The brain can
be viewed as a system that maps stimuli onto brain activity in a nonlinear
fashion. According to this perspective, a central task of systems and cognitive
neuroscience is to discover the nonlinear mapping between input and activity.
Middle: Linearizing encoding model. The relationship between encoding and
decoding can be described in terms of a series of abstract spaces. In
experiments using visual stimuli, the axes of the input space are the luminance
of pixels and each point in the space (here different colors in the input space)
represents a differentimage. Brain activity measured in each voxel is
represented by an activity space. The axes of the activity space correspond to
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the activity of different voxels, and each point in the space represents a unique
pattern of activity across voxels (different colors in the activity space). In
between the inputand activity spaces is a feature space. The mapping between
the input space and the feature space is nonlinear and the mapping between
the feature space and activity space is linear. Bottom: Linear classifier. Linear
classifiers are simple decoding models that can also be described in terms of
input, feature and activity spaces. However, the direction of the mapping
between activity and feature space is reversed relative to the encoding model.
Because the features are discrete all points in the feature space lie along the
axes. Reprinted from Naselaris et al. (2011), with permission from Elsevier.

processing is needed before we rely on the BOLD-data analysis to
understand the neural activity tapped with fMRI.

Assumption (b) holds that the BOLD pattern identified by
MVPA is a neurally sound pattern. There are, however, still many
questions to resolve before we can fully embrace this assumption.

To begin with, how and why MVPA seems to be able to iden-
tify basic stimulus features in neural populations is still unclear.
MVPA is thought to rely on the fact that each voxel contains dif-
ferent feature-selective neuronal populations. Univariate meth-
ods cannot discriminate the feature selectivity of such different
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populations, because they take the voxel as a whole. MVPA takes
into account the pattern of activation across multiple voxels, and
thus it seems to be able to discriminate among neuronal popula-
tions’ feature selectivity [see for a review Haynes and Rees (2006);
Mur et al. (2009)]. However, this has still to be proven (Freeman
etal., 2011).

Secondly, different MVPA classifiers use different means in
extracting information from the data (i.e., different classifiers
encode feature covariance differently), and it is not clear yet how
different types of classifiers affect MVPA performance. The vari-
ability in performance between classifiers with different learning
strategies can provide different interpretations on how neurons
are organized to encode stimuli features (Misaki et al., 2010; Yang
etal., 2012).

Thirdly, depending on the approach, MVPA can identify local
or non-local BOLD patterns. However, we still do not know
whether neural representations are local or non-local, and hence
how to interpret local or non-local patterns. Thus, patterns
identified by MVPA might be an efficient classifying strategy,
but cognitively misleading (Tong and Pratte, 2012). Note that
the concern here is not about the BOLD signal itself; rather,
it is about the fact that we lack independent evidence point-
ing to whether neural representations are local or non-local,
and thus whether what we identify through MVPA is a part
of a neural representation or a network of neural represen-
tations. In this sense, lesion studies, and other neuropsycho-
logical methods, would be independent evidence in support
for either a local or non-local neural-representation hypoth-
esis. Historically, neuropsychology has been providing strong
evidence for local neural representations. However, some neu-
ropsychological theorists have long since raised concerns about
localizationism (Shallice, 1988; Patterson and Plaut, 2009), and
recent studies on, for example, multisensory integration, also
raise concerns about local neural representations (e.g., Shams
etal., 2011).

Finally, the temporal resolution of the BOLD signal is poor. In
the window of time that a BOLD signal is characterized, many
relevant neural activities implicating many different neural rep-
resentations might have taken place without being able to be
detected by MVPA classifiers. Likewise, it is still not clear how
changes in the BOLD signal during time are to be correlated
with neural activity. Thus, even if in some cases it has been able
to decode the dynamic experience of an individual from specific
BOLD patterns (Nishimoto et al., 2011), we lack evidence to dis-
cern whether such a decoding is a classifier’s artifact, or a genuine
mapping.

In sum, there are still some neurophysiological and techni-
cal aspects of MVPA to be resolved. The challenges do not seem
nevertheless insurmountable, and one can expect that they will
eventually be met.

READING OUT NEURAL CONTENTS

The claim that neural mind reading paradigms can read out
the contents of the signature is also based on two assumptions:
(c) the assumption that MVPA’s feature space is a good mapping
of the neural representation of a stimulus, and (d) the assumption
that what MVPA identifies is a representation of a stimulus.

The challenges of neural mind-reading paradigms

Regarding (c), the extraordinary results obtained by building
ingenious and useful feature spaces should not neglect the fact
that MVPA’s linearizing feature spaces reflect a priori hypotheses
about the stimuli features that might be represented. Indeed, the
mapping is not between a set of stimuli and brain activity, but
between an interpretation of the stimuli and an interpretation
of brain activity. Hence, any feature selection must be very well
supported. Even in some domains with a robust previous back-
ground, such as primary visual processing, the studies might not
be in safe grounds. For example, classifiers may be able to distin-
guish face and furniture stimuli based on activation patterns in
V1. However, without the a-priori knowledge that this region is
known not to have category-preference, we can easily indulge in
the fallacy of inferring the engagement of specific cognitive pro-
cesses (categorization in V1) from patterns of activation (Yang
et al.,, 2012).

In other domains, in which high-level processing is implicated,
the decision about the feature space becomes much more specula-
tive. In a neurosemantic study (Just et al., 2010), the authors assert
that they identify a set of semantic features underlying the neural
representation of concrete nouns, which are then used to identify
“simple thoughts through their fMRI patterns” (Just et al., 2010,
in the abstract). In the study, a factor analysis of the data provides
a reduced number of factors that cluster the words comprising
the stimuli set. The researchers assume these factors represent
semantic dimensions and label them according to their best inter-
pretation. However, showing that the identified factors are useful
for classification and prediction only means the factors in ques-
tion are good classifiers and predictors. It does not show that
they constitute the word’s semantic contents. The factors might
reflect semantic dimensions that are not part of the neuroseman-
tic representation of the word at issue, but just activated by it, as
they could be markers of, for example, the word’s semantic field
or hypernymy. Furthermore, it is not at all clear that the factors
actually reflect semantic dimensions at all. Some of the neural
findings of the study overlap with findings from other fMRI stud-
ies in which brain areas and activations are related to other aspects
that are not specifically semantic (such as motor planning). Thus,
the factors might be simply good classifiers by the word’s non-
semantic implications, not for their semantic nature. Finally, it is
not at all clear that the task activates the semantic representation
of the word. The assumption that thinking about the properties
of the object the word refers to specifically activates the word’s
representation is a very long shot. Among other challenges that
could be advanced, the authors adopt a referential approach to
semantics, they overlook that the properties of the object should
activate the representations of the properties in themselves, and
they assume without argument that asking to think of all prop-
erties of an object at the same time has the neural counterpart
of effectively processing all the properties at the same time. Thus,
it is far from clear that the semantic dimensions underlying the
word meaning may appear in the task described in the study.

In sum, MVPA provides an inference to the best classifica-
tion, but the best classification does not necessarily assure its
relevance for a given neural pattern. Stimuli may differ in many
features, and each one can yield differences in the BOLD signal.
MVPA classifiers could pick up one feature, while the relevant
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cognitive features could be something else. MVPA can indeed
classify stimuli that differ in ways that are irrelevant for cognitive
classification, but which nevertheless create patterns in the BOLD
signal. Furthermore, MVPA can even make up irrelevant classifi-
cations. For example, Hung and collaborators (Hung et al., 2005)
were able to successfully classify the neural patterns for different
stimuli that macaques, whose neural patterns were classified, were
not able to distinguish (Anderson and Oates, 2010). As Logothetis
put it, “voxels selective to two different stimuli attributes could be
potentially detected by modern classifiers, yet the existence of two
types of patterns does not necessarily imply the existence of two
different types of neural populations” (Logothetis, 2008, p. 871).

Finally, assumption (d) states that what MVPA identifies is a
representation. This is highly speculative. For one thing, it is not
clear what is meant by “representation” in neural mind-reading
studies. There are two main interpretations of the notion “repre-
sentation.” One use can be identified with the notion of “process.”
In a great deal of neural mind-reading studies, one can substi-
tute the words “representation,” and “represented” with “process,”
“processing,” or “processed,” and the meaning will not suffer:
“Some regions of the human brain represent particular types of
visually presented information in an anatomically segregated way.
For example, the fusiform face area (FFA) is a region in the human
ventral visual stream that responds more strongly to faces than
to any other object category” (Haynes and Rees, 2006, p. 24, the
italics are mine). In such cases, represent and process can be used
interchangeably. However, there is also a strong use of the word:
a neural representation might refer to some neural state or pro-
cess containing information about what makes a thing that thing.
In other words, if we were able to extract the information from
such a state or process, we would be able to assess whether the
owner had the knowledge of the thing or not. This seems to be the
intended meaning in, for example, statements such as: “encod-
ing models provide an explicit, quantitative description of how
information is represented in the activity of individual voxels”
(Naselaris et al., 2011, p.401).

The problem is that the neural implementation of a represen-
tation in this sense is still a mystery: we still do not know what it
means for a nervous system fo represent something, in the sense
of “containing information of what makes a thing that thing.”
The fact is that we lack a clear view on what makes a pattern a
representation, and what is re-presented. The last serious discus-
sions of these issues in a neuroscientific journal date back quite a
while (Markman and Dietrich, 2000; Edelman, 2002; Wood and
Grafman, 2003).

However, even if we do not know what it means for a neu-
ral system to represent something, we still can provide evidence
supporting that something is in fact a representation. We can
do so by either providing hard or operational evidence. Hard
evidence consists of identifying the constitutive properties of a
representation. Among other things, one may prove that a cer-
tain neural pattern contains some sort of structured information
about what makes that pattern the representation of the element
in question. Another relevant line of evidence is to show that
the pattern is recruited in any inferential process whatsoever,
because it contains information about the object that is relevant
for the processing. Constitutive evidence may also be identifying

The challenges of neural mind-reading paradigms

the signature’s form, and assess whether it is reproducible in other
systems, with the same properties, and whether it is present in that
form in other systems, with the same properties.

So far, none of this evidence has been provided by neural-mind
reading paradigms. Moreover, at the moment, with the available
methods in neuroscience, it is difficult to see how such constitu-
tive properties of representations can be identified. Fortunately,
identifying operational properties is a very good second option.
Some MVPA studies already provide this sort of evidence and,
hopefully, future studies will enlarge such operationally-based
evidence.

One of such operational property requires showing that the
neural signature generalizes to all cases involving a particular stim-
ulus. Indeed, whatever counts as a neural representation, it must
be able to identify the presence of the represented object in any
of its instances, i.e., always that the object is implicated. Once we
consider that a particular neural process or state is the neural rep-
resentation of, say, “rabbit,” such a neural state should be present
in all the instances of “rabbit.” Thus, operational evidence of the
signature’s ability to generalize would be to show that the signa-
ture is active in all the inferential processes in which the object
is present, and preferably too in different cognitive modalities,
such as in language, imagination and the like. Up to the moment,
though, this is the least explored property of neural patterns in
extant MVPA studies.

More studied operational evidence of representation is show-
ing that the pattern is detached and independent from the thing
it represents. Detached implies that the representation signature
must be identified without the element it is about being present.
Independent implies that the neural representation can function
without the presence of the represented element, and has the same
role with or without the represented element’s presence. Indeed,
representations allow individuals to distance themselves from the
objects they represent (from the “here and now”) in thinking,
planning or imagining. In this sense, evidence for detachment
and independence would be showing that the signature is present,
without its represented element, in processes like recall, imagi-
nation and thinking. Furthermore, it would also be relevant to
show that the signature is induced by different cognitive modal-
ities, such as language. In contrast with the lack of evidence for
generalization, there are already promising studies in showing
detachment and independence of BOLD patterns (Manning et al.,
2012).

Finally, operational evidence for representation would be to
show that the pattern is stable in time. In principle, a rep-
resentation -the information about what makes a thing that
thing- should not change, and nor should its neural pattern
(Druckmann and Chklovskii, 2012). All things being equal, the
particular information of “what makes a thing that thing” will
always be the necessary and the sufficient information to count
as the representation of “the thing,” and as such, it should be sta-
ble. Therefore, if we can attest that the neural pattern is stable,
then we have good operational evidence that we are identifying
the neural correlate of the representation. However, it is impor-
tant to note that assuming BOLD signal stability as operational
evidence does not imply that BOLD signal stability is required to
identify a neural representation. Stability is a necessary property
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of neural representations, not of its BOLD signal correlate; it
very well could be that eventually we might discover that BOLD
signals cannot be stable for some particular reason, and thus
stability as operational evidence could be ruled out. For exam-
ple, the possibility of multiple realization in terms of different
temporal representations could imply a relevant challenge to the
stability requirement. Nonetheless, for the time being, BOLD
signal stability can still be interpreted as the correlate of rep-
resentation stability. At the moment, though, stability has not
been used by extant neural mind-reading paradigms to identify
neural representations. For one thing, there are technical factors
interfering with the reliability of reading BOLD signals, which
make it difficult to identify the same signal even for a within-
subject repeated experimental session (Bennett and Miller, 2010).
Additionally, BOLD responses change over time due to a great
number of factors, not specifically related to the experimental
context (Fliessbach et al., 2010). Therefore, studies specifically
investigating the reliability and reproducibility of the BOLD sig-
nal will be required to help in establishing the requirements to
consider BOLD patterns stable.

In sum, although providing constitutive evidence of represen-
tations is extremely difficult for extant neuroscientific method-
ology, providing evidence about operational properties of neural
representations can allow a better grounding, and a larger basis,
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