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The neuronal underpinnings of blood oxygen level dependent (BOLD) functional magnetic
resonance imaging (fMRI) resting state networks (RSNs) are still unclear. To investigate
the underlying mechanisms, specifically the relation to the electrophysiological signal, we
used simultaneous recordings of electroencephalography (EEG) and fMRI during eyes open
resting state (RS). Earlier studies using the EEG signal as independent variable show incon-
clusive results, possibly due to variability in the temporal correlations between RSNs and
power in the low EEG frequency bands, as recently reported (Goncalves et al., 2006, 2008;
Meyer et al., 2013). In this study we use three different methods including one that uses
RSN timelines as independent variable to explore the temporal relationship of RSNs and
EEG frequency power in eyes open RS in detail.The results of these three distinct analysis
approaches support the hypothesis that the correlation between low EEG frequency power
and BOLD RSNs is instable over time, at least in eyes open RS.
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INTRODUCTION
Blood oxygen level dependent (BOLD) functional magnetic reso-
nance imaging (fMRI) resting state networks (RSNs) have increas-
ingly generated interest in the neuroscientific community, but
the neuronal underpinnings remain unclear so far. Early studies,
which examine correlations between the electroencephalography
(EEG) theta, alpha, or beta band power and BOLD signal fluctu-
ations using EEG derived regressors (Goldman et al., 2002; Laufs
et al., 2003a,b, 2006; Moosmann et al., 2003; Feige et al., 2005;
Goncalves et al., 2006; Scheeringa et al., 2008), report rather mixed
and inconclusive BOLD correlation maps. The discovery and fur-
ther analysis of RSNs (Biswal et al., 1995; Lowe et al., 2000; Cordes
et al., 2001; Greicius et al., 2003; Fox et al., 2005; Damoiseaux
et al., 2006; De Luca et al., 2006; Smith et al., 2009), together
with the above mentioned early combined EEG-fMRI studies gave
rise to the assumption that several frequency bands might be
involved in distinct functional networks (Laufs et al., 2006; Man-
tini et al., 2007). The replication of this finding on subject level
would fundamentally improve our understanding of the link with
electrophysiology.

Simultaneous recordings of EEG and fMRI during resting state
(RS), enables the investigation of the electrophysiological cor-
relates of BOLD RSNs. Using simultaneous recordings, Mantini
et al. (2007) reported a specific EEG frequency band power signa-
ture for RSNs on group level in eyes closed RS. However, further
studies show large inter-subject variations of distinct brain areas
correlated with EEG alpha band power (Goncalves et al., 2006,
2008) in RS. In a recent study by Meyer et al. (2013) electrophys-
iological correlation patterns (ECPs) between RSN BOLD time
courses and EEG frequency band power showed large inter-subject

and within subject variability. While RSNs by themselves exhibit
a high reproducibility of their spatial characteristics across sub-
jects, these studies point to less stable temporal correlations
between RSNs seen in BOLD fMRI and EEG frequency band
power.

Based on this evidence we hypothesize that the relationship
between EEG frequency band power and RSN BOLD time courses
is not stable over time. In order to assess this temporal variance
in the correlation of the EEG signal and RSNs within a subject in
this study, a dataset with a long RS of 34 min was split up into 15
segments and each was analyzed using the following three analysis
approaches:

(1) Global frequency power correlation (GFPC) (Meyer et al.,
2013) resulting in ECPs an approach that is similar to the one
used by Mantini et al. (2007) who found stable correlation
patterns on group level.

(2) An extended version of this method, including an anatom-
ically informed analysis (Dale et al., 2000; Ou et al., 2010;
Janssen et al., 2012) to separate the EEG based on RSN Z -maps
within a subject, to obtain source frequency power correlation
(SFPC), which should reduce the effect of volume conduction
in the EEG.

(3) A channel wise frequency power fit (CFPF) with minimal
assumptions, using the BOLD RSN time courses as the inde-
pendent variable, which further reduces methodological bias.

We then calculated the temporal variance over the 15 segments
for each of the three methods to estimate the temporal stability of
the correlation between the two modalities.
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MATERIALS AND METHODS
DATA ACQUISITION AND PRE-PROCESSING
In this study we performed a new analysis of the data sets acquired
in Meyer et al. (2013). We briefly summarize the acquisition pro-
tocol and the pre-processing steps (for details, see Meyer et al.,
2013): 34 min of eyes open RS were recorded from 12 healthy
subjects, using combined EEG-fMRI, with approval of the local
ethical committee. MR data were acquired on a 3 T Magne-
tom TIM Trio system (Siemens Healthcare, Erlangen, Germany)
using the product 32 channel head coil. Functional data were
recorded using a multi echo EPI sequence (Poser et al., 2006) (1030
Vol., TR = 2000 ms, 3.5 mm isotropic voxel size). A T1-weighted
structural scan (MPRAGE) at 1 mm isotropic voxel size was also
obtained (with EEG cap), to register the functional data to Mon-
treal neurological institute (MNI) space. Five of the subjects (sub-
jects 1, 2, 4, 10, and 11) were invited back to acquire a second
T1-weighted structural scan without the EEG cap to enable the
head model based analysis.

Simultaneous EEG data were recorded with a 32 channel cap
(ANT WaveGuard MRI), using a BrainAmp MR plus ampli-
fier (250 Hz low-pass analog hardware filter, 10 s time con-
stant, 5 kHz sampling rate, 0.5 µV resolution, reference elec-
trode: FCz) and BrainVision Recorder (BrainVision, Gilching,
Germany). Two of the subjects were recorded with a 64 chan-
nel cap (BrainVision) using two BrainAmp MR plus amplifier;
the same 30 channels (10–20 system) were used for all subjects
in the analysis. The subjects were asked to relax, keep their eyes
open, stay awake, and not think of anything specific. The room
was darkened during the scan and an infrared eye tracker was
used to confirm that the subject did not fall asleep. All sub-
jects managed to stay awake for the complete duration of the
experiment.

Functional magnetic resonance imaging pre-processing was
performed using functions from the SPM5 software package
(Welcome Department of Imaging Neuroscience, University Col-
lege London, UK). The five echoes acquired at every time point
were combined after SPM5 motion correction (Poser et al.,
2006).

Electroencephalography pre-processing: MR related artifacts in
the EEG signal were removed using Analyzer 2 (BrainVision). Trig-
ger based average subtraction (Allen et al., 2000), as implemented
in Analyzer 2, was applied to correct for gradient artifacts. The data
were filtered using a Butterworth zero phase filter, 48 dB/oct, with a
low cutoff at 0.8 Hz, to remove slow fluctuations from respiration,
and a high cutoff at 50 Hz. Additionally, a notch filter at 50 Hz was
used to remove residual mains frequency noise. Cardiac related
MR artifacts were removed using the adaptive average subtraction
(AAS) method of Analyzer 2 in semiautomatic mode (Allen et al.,
1998). Further, eye blink related artifacts were removed using ICA
and the EEG data were re-referenced to a common average.

ANALYSIS
As motivated in the introduction, three distinct methods (see
Figure 1) were used to infer whether the relationship between
EEG frequency band power and RSN BOLD time courses is tem-
porally instable. For all these methods, the preprocessed fMRI
data were spatially smoothed by 5 mm and transformed to MNI

space using FMRIB’s Software Library’s (FSL) Feat (version 4.11;
Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).
Group independent component analysis (ICA, as implemented in
the FSL tool Melodic version 3.1) was performed on the fMRI data
to obtain 30 ICs and 12 task related RSNs were selected according
to Smith et al. (2009), see Figure 2 for a depiction of the RSNs. A
dual regression approach was used to derive subject specific RSN
maps and time courses (Filippini et al., 2009). The further analysis
is described for each method separately below.

GLOBAL FREQUENCY POWER CORRELATION
The datasets were split into 15 sections of equal length, each
still longer than 2 min. For every section the EEG signal was
split into 2 s segments corresponding to the TR used in the MR-
acquisition. Within each section, for every segment, the mean
frequency power over all channels for four frequency bands, i.e.,
delta: (2–4) Hz, theta: (4–8) Hz, alpha: (8–12) Hz, and beta: (12–
30) Hz, was calculated, using a fast Fourier transformation (FFT),
resulting in one time series for each frequency band. Motion
related artifacts in the frequency power time courses were cor-
rected. The frequency power time series were convolved with
the standard SPM5 hemodynamic response function (HRF) and
correlated with the RSN time courses taking into account com-
mon variance (partial correlation) between frequency bands. The
correlation values were Z -transformed, using the mean over all
correlation values across subjects as global mean, which resulted
in time series of 15 Z -scores for every frequency band (see
Figure 3). The temporal variance for each RSN and frequency
band over the 15 time points was calculated and averaged over
subjects (see Table 1). To estimate the temporal stability of
ECPs within and across subjects, for each RSN and frequency
band the Z -scores of the 15 sections were ranked from high
to low, and averaged over subjects to visualize inter-subject
variance.

SOURCE FREQUENCY POWER CORRELATION
In order to get an indication for the effect of volume conduction
and obtain more specific correlation patterns, in five subjects an
in-house developed fMRI-informed source model was applied. In
combination with a four layer realistic head model it enables to
separate the EEG according to the fMRI-RSNs. This new method
was tested in a separate study that employs a simple visual stimu-
lation and is further referred to as Integrative Head Model (IHM).
It merges FSL analysis, Freesurfer mesh generation (Freesurfer
image analysis suite2), and a Neuroelectromagnetic Forward Head
Modeling Toolbox (NFT) based head model (VER 2.03; Acar and
Makeig, 2010), to combine fMRI and EEG in an integrative way
(see Figure 1). Tissue surface meshes (TSMs) from the individual
T1 images are derived using Freesurfer and NFT. The scalp, inner
and outer skull as well as brain TSMs are used in the Boundary
Element Method (BEM) based forward model as implemented
in NFT (Brain/scalp conductivity = 0.33 S/m, Skull conductiv-
ity = 0.0132 S/m, CSF conductivity = 1.79 S/m). The source space

1www.fmrib.ox.ac.uk/fsl
2http://surfer.nmr.mgh.harvard.edu/
3http://sccn.ucsd.edu/nft/
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FIGURE 1 | Overview of the three analysis methods used in this study. The highlighted regions and arrows are labeled accordingly.
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FIGURE 2 | RSNs on group level as maximum intensity projection on the central slices and their classification according to Smith et al. (2009).

is constructed by seeding the cortical sheet with dipoles, the loca-
tion, and orientation of which is derived from the pial and white
matter TSMs. Sources are defined by selecting dipoles accord-
ing to fMRI RSNs, mapped to the cortical sheet. A source is
defined as the weighted vector sum of its active dipoles, where
the weights are equal to the Z values of the fMRI activation
map at dipole location, and normalized subsequently so that the
sum of all weights within one source equals one. These fMRI
derived sources are fed into the forward model (in NFT) to cal-
culate the specific lead field matrix (LFM) using an electrode
template, which was manually transformed to each subjects head.
This specific LFM has a low dimensionality given by the num-
ber of sources times number of channel. It is inverted using a
Moore–Penrose pseudo inverse and the inverted LFM is used
to transform the EEG data to source specific time courses. This
results in an EEG time course for each RSN. Furthermore, the
same analysis steps as described in Method 1 were applied to the
transformed EEG signal. For each of the 15 sections and each
frequency band the fMRI derived source frequency power time
courses were convolved with the standard SPM5 HRF, partial
correlated with their associated RSN time course, and the cor-
relation values were Z -transformed. The variance over the 15
sections was calculated and the Z -scores of the sections were
ranked from high to low, to obtain an estimate of the temporal
stability.

CHANNEL WISE FREQUENCY POWER FIT
After pre-processing, each channel of the EEG data was band
pass filtered in four frequency bands [delta: (2–4) Hz, theta: (4–
8) Hz, alpha: (8–12) Hz, and beta: (12–30) Hz] using an FFT-filter

(EEGlab). Power time courses were obtained from the filtered data
by applying a Hilbert transform and taking the squared magni-
tude of the resulting signal. To correct for movement, time points
where the power estimate exceeded a threshold (seven times the
mean of the time course) were set to the average of the time
points immediately before and after. Power time courses were seg-
mented in to 2 s segments, according to the TR used in the fMRI
acquisition; subsequently each segment was averaged over time
and the resulting frequency power time course for each channel
were convolved with an HRF (SPM 5). Finally the HRF convolved
frequency power time course and the RSN time courses were nor-
malized to have zero mean and a standard deviation of one. Time
courses of all ICs (including noise related components) were fit-
ted to each frequency power time course in a separate GLM for
every channel. This resulted in an estimate of signal contribu-
tion for each RSN to each electrode and EEG frequency band.
Plotting these contribution estimates on a scalp plot, here termed
independent component expression pattern (ICEP), gives a visual
representation of the electrophysiological expression of the RSN
for each frequency band. Applying this approach to each of the
15 sections resulted in 15 subsequent ICEPs representing their
evolution over time.

In order to obtain a comparable estimate for this method,
which gives a spatial distribution as opposed to a point esti-
mate of the other two methods, the temporal stability of the
ICEPs was assessed by calculating the spatial correlation between
subsequent sections within one subject, RSN and EEG fre-
quency band. For each of those, the correlation values were
Z -transformed using bootstrap statistics and the Z -scores were
averaged to obtain the mean over all combinations of sections.

Frontiers in Human Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 315 | 4

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Meyer et al. EEG-power correlation with fMRI-RSNs

FIGURE 3 | Exemplary representation of data for the three methods
used, depicting the results for RSN3 (lateral visual component) of
subject 1. On the upper left hand side the subject specific map of RSN3 is
plotted as maximum intensity projection on the central slices. The two graphs
in the middle show the ECP time courses for each frequency band for GSPC
and SFPC, illustrating the temporal variance. In the rank graph below the two

methods are plotted on top of each other, depicting the similar variance of
SFPC (solid line) and GFPC (dot-dashed line); for both methods alpha shows
more negative correlation with BOLD in this visual component. On the upper
right hand side the temporal sequence of ICEPs as calculated by CFPF for the
four frequency bands is shown. Below the results of the spatial correlation of
the subsequent ICEPs are depicted, showing no stable temporal signature.

For the bootstrapped Z -transformation a distribution was gen-
erated by repeatedly (n = 10,000) selecting 15 ICEPs at ran-
dom from the entire set of ICEPs for that subject applying the
same spatial correlation analysis. For each RSN and frequency
band the Z -scores of the 15 sections were ranked from high
to low, and for group analysis averaged over subjects. Addition-
ally the variance over the 15 sections as well as the average
variance over subjects for each RSN and frequency band was
calculated.

RESULTS
As reported in Meyer et al. (2013) we found reproducible fMRI
RSNs across subjects (see Figure 2 for a depiction of the RSNs). In
this study we observed very large inter-subject and intra-subject
variability in the EEG frequency power correlations across all

applied analysis methods. Figure 3 depicts the output of the
different methods for one network (RSN3) of subject 1. It is
clearly visible that GFPC and SFPC are not stable in time regard-
ing their EEG frequency power correlation with the RSN time
courses for all frequency bands. Figure 4 shows the results of the
group analysis for GFPC and Figure 5 the results for the five sub-
jects analyzed with SFPC. In both figures the group rank plots
for four different RSNs show a large temporal variance within a
subject – as reflected in the variance of the ranked Z -scores –
in the depicted RSNs for all frequency bands. The error bars,
indicating the standard deviation across subjects, show the con-
siderable inter-subject variability. The error bars in Figure 5 are
larger compared to those in Figure 4 which cannot be explained
by the smaller number of analyzed subjects as controlled by per-
forming GFPC on the same five subjects as for SFPC. Also note
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Table 1 | Group mean temporal variance values (variance across the 15 sections) for GFPC and CFPF, as well as the mean temporal variance

values of the same five subjects analyzed with SFPC and GFPC, for each RSN and frequency band.

Freq band RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN6b RSN7 RSN8 RSN9 RSN10 RSN11 Average

GFPC MEAN VARIANCE ACROSS ALL SUBJECTS

delta 1.029 1.080 0.985 1.036 0.857 1.081 1.050 0.805 1.031 0.882 1.091 0.936 0.989

theta 0.953 0.913 0.906 0.988 0.871 0.973 0.983 0.825 1.031 0.791 0.877 0.828 0.912

alpha 1.186 1.124 1.171 1.121 0.980 1.063 1.148 1.248 1.031 0.995 1.116 1.172 1.113

beta 1.193 1.219 0.981 0.961 0.855 1.060 1.124 0.994 1.031 0.943 1.102 1.136 1.050

Average 1.090 1.084 1.011 1.026 0.891 1.044 1.076 0.968 1.031 0.903 1.046 1.018

CFPF MEAN VARIANCE ACROSS ALL SUBJECTS

delta 0.620 0.501 0.695 0.566 0.667 0.658 0.590 0.731 0.685 0.650 0.635 0.669 0.639

theta 0.690 0.751 0.737 0.799 0.660 0.643 0.749 0.717 0.685 0.809 0.693 0.666 0.717

alpha 0.897 0.876 0.833 0.819 0.780 0.702 0.702 0.864 0.685 0.698 0.756 0.677 0.774

beta 0.798 0.842 0.856 0.759 0.767 0.763 0.808 0.827 0.685 0.743 0.839 0.755 0.787

Average 0.751 0.742 0.780 0.736 0.719 0.691 0.712 0.785 0.685 0.725 0.731 0.692

SFPC VARIANCE FOR FIVE SUBJECTS

delta 1.077 0.763 1.306 0.884 1.327 1.230 1.140 1.097 0.708 1.067 1.125 0.698 1.035

theta 0.587 0.829 1.004 0.791 1.241 1.330 1.018 0.840 0.708 0.889 0.882 0.965 0.924

alpha 1.658 1.582 1.366 1.550 0.671 1.508 1.511 1.763 0.708 1.081 1.491 1.095 1.332

beta 1.534 1.994 1.933 1.909 0.678 1.331 0.919 1.759 0.708 2.228 2.225 1.493 1.559

Mean variance five subjects 0.902

GFPC VARIANCE FOR FIVE SUBJECTS

delta 1.152 1.124 1.219 1.189 0.972 1.342 1.513 0.849 1.161 0.917 1.242 0.959 0.987

theta 0.812 0.944 0.923 1.121 0.923 1.190 1.135 0.867 1.161 0.734 0.949 0.860 0.838

alpha 1.448 1.315 1.325 1.253 0.885 1.323 1.503 1.317 1.161 0.990 1.336 1.109 1.056

beta 1.209 1.168 1.091 1.137 0.843 1.071 1.049 1.109 1.161 1.064 1.483 1.149 0.994

Mean variance five subjects 0.968

The variance values of GFPC and SFPC are comparable since both show the temporal variance of ECPs which represents the direct correlation between frequency

power and RSNs. For CFPF the variance values represent the variance of the subsequent spatial correlation of the ICEPs, which is an indirect measure and not directly

comparable to the other methods. However the overall huge temporal variance across all methods depicts the temporal instable relation between both modalities.

that, using SFPC the overall observed Z -scores are lower com-
pared to GFPC. Strikingly, one can see in the ranking plots that
for the visual components (see RSN2 and RSN3 in Figures 4
and 5) alpha power shows a more negative correlation with the
BOLD signal whereas delta power shows a more positive corre-
lation. This is also the case for the third visual component (not
shown).

On the right hand side of Figure 3 the temporal sequence of
ICEPs as calculated by CFPF for the four frequency bands as well
as the results of the spatial correlation of the subsequent ICEPs
is depicted. Clearly there is no temporally stable signature in the
scalp maps for different sections of the dataset. This can be also
observed in the group rank plot in Figure 6. The data shown in
Figure 3 as well as the rank plots in Figures 4, 5, and 6 are typical
examples for all analyzed subjects, all RSNs, and the four frequency
bands examined, respectively. Table 1 summarizes the results con-
taining the group mean temporal variance across the 15 sections,
for each RSN and frequency band for GFPC and CFPF, respec-
tively, as well as for the same five subjects analyzed with SFPC and
GFPC.

DISCUSSION
The three methods used in this study were chosen to examine
the temporal variability of ECPs from different perspectives with

the aim to minimize methodological bias. GFPC is a very con-
servative approach with fairly little assumptions, taking the global
EEG frequency power as independent parameter. However, due to
the mixed nature of the EEG signal, volume conduction cannot
be excluded, which might cause several sources contributing to a
certain correlation and might explain temporally unstable ECPs.
SFPC addresses this shortcoming by separating the EEG signal
according to the fMRI-RSNs to correlate with, but this also did
not result in temporally stable ECPs.

To test for possible methodological bias of GFPC and SFPC as
source for the observed variance, we analyzed the data sets using a
third approach. CFPF uses the RSN timelines as independent para-
meters and only uses the HRF to model the relation between the
two modalities. Also this approach did not result in temporally sta-
ble correlation patterns. While the human HRF itself shows quite
complex spatial dependencies (de Munck et al., 2007, 2009), in
our correlation analysis it mainly causes a constant time shift and
temporal smoothing, therefore it cannot be the reason for tempo-
rally instable correlation. Together with the findings of GFPC and
SFPC, this leads to the suggestion that the analyzed low dimen-
sional RSNs do not have a temporally stable relationship with EEG
frequency band power fluctuations. However, the observed nega-
tive correlation of alpha power with the BOLD time courses for
the visual components reaches statistical significance within three
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FIGURE 4 | Exemplary group results of RSN2 (occipital visual
component), RSN3 (lateral visual component), RSN4 (DMN), and RSN6
(sensory motor component) for GFPC as rank graph showing large
temporal variance within a subject. The error bars (standard deviation

across subjects) show the considerable inter-subject variability. Clearly alpha
power shows a more negative correlation with the BOLD signal whereas
delta power shows a more positive correlation for the visual components.
Note that the connecting lines are only for visualization purposes.

FIGURE 5 | Exemplary results of RSN2 (occipital visual component),
RSN3 (lateral visual component), RSN4 (DMN), and RSN6 (sensory
motor component) for the five analyzed subjects using SFPC
comparable to Figure 4. The error bars (standard deviation across subjects)
show the considerable inter-subject variability, which is higher compared to

GFPC; note that the Z -scores are smaller compared to GFPC. Despite these
differences, also when using SFPC, alpha power shows a more negative
correlation with the BOLD signal whereas delta power shows a more positive
correlation for the visual components. The connecting lines are only for
visualization purposes.
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FIGURE 6 | Exemplary group results of RSN2 (occipital visual
component) and RSN4 (DMN) for CFPF as rank graph showing no
stable temporal signature. The connecting lines are only for visualization
purposes.

subjects for GFPC in agreement with previous literature (Gold-
man et al., 2002; Laufs et al., 2003a, 2006; Goncalves et al., 2006,
2008; Meyer et al., 2013), but does not reach statistical significance
for either method on the group level.

One possible explanation for our observation of temporally
instable ECPs might be given by Smith et al. (2012), who applied
temporal ICA on high dimensional (200 spatial IC components)
fMRI-RSNs and reported vast temporal dynamics within the lower
dimensional (20–30 spatial IC components) RSNs. As such, there
still might be a direct relation between RSNs and EEG frequency
band power, but on a smaller spatial scale. However, one would
expect a certain temporal stability in the results of SFPC and CFPF
even if just a subcomponent of the low dimensional RSN expresses
itself in a given EEG frequency band, which was not observed in
our study.

An alternative explanation of our results would be, that dur-
ing RS, frequency-specific power in the lower frequency bands of
the EEG is not linked to changes in neuronal activity, reflected
in changed oxygen consumption as measured by BOLD fMRI.
This would also be supported by recent animal studies, e.g.,
Schölvinck et al. (2010), that show no stable correlation for the
lower frequency bands in EEG with BOLD fMRI particularly in
eyes open RS.

The observation that using SFPC reduced the overall observed
Z -scores compared to GFPC gives rise to the assumption that the
studied RSN characteristics are not related. However, one has to
consider the potential limitation of the head model as used in our
study; (a) the spatial resolution of the head model is limited by
the relatively low number of electrodes and (b) its reduced spatial
specificity in the context of spatially extended sources like RSNs,
as we assume a concurrent temporal behavior within the whole
source.

We therefore conclude that the correlation between lower fre-
quency band power in EEG and BOLD RSNs time courses is at
least temporally instable or even absent in eyes open RS.
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