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An enduring issue with data-driven analysis and filtering methods is the interpretation of
results. To assist, we present an automatic method for identification of artifact in inde-
pendent components (ICs) derived from functional MRI (fMRI).The method was designed
with the following features: does not require temporal information about an fMRI para-
digm; does not require the user to train the algorithm; requires only the fMRI images
(additional acquisition of anatomical imaging not required); is able to identify a high propor-
tion of artifact-related ICs without removing components that are likely to be of neuronal
origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human
intervention. We applied the method to a MELODIC probabilistic ICA of resting-state func-
tional connectivity data acquired in 50 healthy control subjects, and compared the results
to a blinded expert manual classification. The method identified between 26 and 72% of
the components as artifact (mean 55%). About 0.3% of components identified as artifact
were discordant with the manual classification; retrospective examination of these ICs sug-
gested the automated method had correctly identified these as artifact.We have developed
an effective automated method which removes a substantial number of unwanted noisy
components in ICA analyses of resting-state fMRI data. Source code of our implementation
of the method is available.
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1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) is a non-invasive
technique that uses the blood oxygen level dependent (BOLD)
effect to explore neural activity (Ogawa et al., 1990). However,
BOLD fMRI suffers from numerous sources of structured noise
(Biswal et al., 1996; Friston et al., 1996; Glover et al., 2000)
which compromises the fMRI signal. These include rapid and
slow head movements, physiological activity (breathing and heart-
beat), and potential acquisition artifacts. Even after traditional
pre-processing steps, such as slice-timing correction, motion cor-
rection, high-pass filtering, and spatial smoothing, some of these
artifacts still remain (Grootoonk et al., 2000; Lund et al., 2006).
To overcome this, the use of data-driven techniques are increas-
ingly being employed to generate potentially valuable information
on the nature of signal and noise in fMRI data. In particular,
spatial Independent Component Analysis (ICA), has been pro-
posed (McKeown et al., 1998). Spatial ICA is a blind source
separation (BSS) technique, that decomposes fMRI data into com-
ponents which are maximally independent (Hyvärinen, 1999).
Each Independent Component (IC) contains a 3D spatial map
and a 1D time-course. When compared to traditional fMRI analy-
sis approaches, where a design paradigm and assumptions about
the hemodynamic processes in the brain are required to obtain
spatial activation maps (Buxton et al., 2004), ICA offers a hypoth-
esis free model to gain further insights in identifying the spatial

location of brain activity. However, such an approach, due to its
hypothesis free nature begs the question of interpretation of the
results. In particular, how does one distinguish between ICs which
are signal (i.e., components of neuronal origin) and noise (i.e.,
due to movement, cardiac pulsations etc.)? Typically, this has been
done by visually inspecting each IC and manually categorizing
them (McKeown et al., 1998; Moritz et al., 2003; Kelly Jr. et al.,
2010). This is however, a very time consuming and subjective pro-
cedure which is dependent on the experience of the researcher.
For example, Kelly Jr. et al. (2010) provide a detailed description
of the criteria to manually classify ICs via visual inspection. They
estimate approximately 37 min for classifying 100 ICs which can
be a typical yield from lengthy resting-state ICA (Rodionov et al.,
2007; LeVan et al., 2010).

Other methods have classified ICs by using paradigm informa-
tion (Thomas et al., 2002; Calhoun et al., 2005; Kochiyama et al.,
2005). Specifically, Calhoun et al. (2005) present an approach for
semi-blind ICA analysis of event-related fMRI data by imposing
regularization on certain estimated time courses using the para-
digm information. This approach, however, is limited to studies
where temporal information is available. In some applications it
may not be desirable to use temporal information in the classi-
fier. Resting-state functional connectivity is one such application.
Another, which is a particular interest of ours, is the data-driven
exploration of fMRI prior to an epileptic seizure (Federico et al.,
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2005), where we have no prior model of expected signal change or
event timing (apart from the seizure itself at which point the data
acquisition usually ends).

More recently, several automatic techniques have been devel-
oped to assist in classifying ICs into categories of noise and signal
(Perlbarg et al., 2007; Stevens et al., 2007; Calhoun et al., 2008; Sui
et al., 2009; Kundu et al., 2012). Perlbarg et al. (2007) uses both
spatial and temporal patterns to categorize ICs into noise and
signal. However, their automatic classifier, CORSICA, is limited
to identifying physiological noise. Calhoun et al. (2008) utilize a
brain atlas to aid sorting ICs. However, atlas based sorting requires
strong a priori assumptions on the spatial layout of the activation
which is not always available. Sui et al. (2009) employ spatial only
criterion to automatically classify ICs as they use contrast images
that contain no time-domain information. Their method relies on
generating cerebrospinal fluid (CSF) red and gray-matter (GM)
masks. It can be difficult to obtain an accurate GM mask with fMRI
images, especially at higher magnetic field strengths (e.g., 3 T)
where image distortions and signal dropout can result in blurred
boundaries between gray matter and white matter. Kundu et al.
(2012) differentiate BOLD-like functional network components
from non-BOLD-like components related to motion, pulsatil-
ity, and other nuisance effects based on TE-dependence. While
this was found to be a robust method compared to conventional
techniques for classifying artifacts, the technique requires a multi-
echo acquisition sequence and cannot be applied to conventional
single-echo fMRI data.

Other automatic techniques based on machine learning algo-
rithms have been applied to identify artifactual ICs (De Martino
et al., 2007; Tohka et al., 2008). De Martino et al. (2007) represents
each IC in a multidimensional space, called an IC-fingerprint.
Using these IC-fingerprints, they classify ICs into various cate-
gories of signal and noise. Tohka et al. (2008) uses a combination
of spatial and temporal criteria to aid in classifying signal and
noise via global decision trees. However, their classifier overlooks
physiological noise. Moreover these two techniques are primarily
dependent on a training data set.

We sought to overcome some of the limitations of existing
classifiers by developing an artifact identification method that:

• Does not require temporal information about the fMRI para-
digm.

• Does not require the user to train the algorithm.
• Requires only the EPI images (additional acquisition of anatom-

ical images is not required).
• Is able to identify a high proportion of artifact-related ICs with-

out removing components that are likely to be of neuronal
origin.

• Can be applied to resting-state fMRI.
• Is automated, requiring minimal or no human intervention.

We are not aware of any existing IC artifact identification
method that contains all of the above features. We have dubbed
our method the Spatially Organized Component Klassifikator
(SOCK). In the context of this paper, we mean by “Klassifika-
tor” (a German word meaning classifier) the ability to distinguish
between ICs dominated by artifact and those containing possible

neuronal signal. We note from the outset that our approach is
designed to complement rather than replace existing approaches.
A limitation in some applications can be a strength in others.
We designed SOCK for particular applications where the features
listed above are the highest priorities.

2. METHODS
2.1. METHODS OVERVIEW
The overview of the automatic IC classification process is given
below (see also Figure 1).

1. ICA was applied to the pre-processed fMRI data (see Section
2.5) using MELODIC (Beckmann and Smith, 2004), yield-
ing both thresholded (P < 0.05) and unthresholded ICs and
associated time courses and power spectra1.

2. Calculation of features (smoothness measure, edge, CSF, and
temporal frequency power) for each IC was computed via the
SOCK algorithm.

3. Based on the above features, ICs dominated by artifact are clas-
sified into an Artifact category and all other ICs (i.e., those
containing possible neuronal signal) into an Unlikely Artifact
category.

Source code of our implementation of the method is available
at http://www.brain.org.au/software.

2.2. ICA DECOMPOSITION
The idea behind ICA is to decompose the 4D fMRI time series into
a linear combination of spatially independent component maps
with an associated time-course (McKeown et al., 1998; Hyvärinen,
1999). This is expressed mathematically as follows:

X =
N∑

i=1

TiSi (1)

where X is a K ×M matrix (K = number of samples and
M = number of time courses) of the fMRI time series, S the N ×M
matrix whose rows Si (i= 1, . . ., N ) represent the ith spatial com-
ponent (K ≤T ) and T is the K ×N mixing matrix (unknown),
whose columns Ti (i= 1, . . ., N ) contain the time courses of the
N sources. Estimating the number of sources, N is done in the
pre-processing step, usually via PCA (Beckmann and Smith, 2004).

The only constraint enforced in this decomposition is that each
of the component maps, Si’s are spatially independent. This is
equivalent to saying that all Si’s, with the exception of one have to
be non-Gaussian. Structured non-Gaussian noise (head motion
and physiological noise) in the fMRI data series is not explic-
itly modeled, but is treated as an independent source in the ICA
decomposition (McKeown et al., 1998; Hyvärinen, 1999).

The ICA decomposition is done by estimating the mixing
matrix, T, by minimizing redundancy in the spatial maps of the
components, S. This can be mathematically expressed as:

S =
N∑

i=1

WiXi (2)

1Temporal information expressed in the frequency domain. This is done mathemat-
ically by taking the discrete Fourier Transform of the time course.
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FIGURE 1 | ICA was applied to pre-processed fMRI data yielding spatial
component maps with associated time courses and power spectra.
SOCK automatically distinguishes between ICs dominated by artifact (Artifact

category) and those containing possible neuronal signal (Unlikely Artifact
category) by calculating IC features (smoothness measure, edge, CSF, and
temporal frequency power).

where matrix W, called the “un-mixing” matrix, is the inverse of
T. Several freely available software packages are available to per-
form this decomposition; we used MELODIC which is part of the
FSL package (Beckmann and Smith, 2004). The output is a set of
spatial maps (Si) with associated time courses (Ti) and power spec-
tra (PSi). These then form the input for the automatic classifier,
SOCK.

2.3. CALCULATION OF IC FEATURES
SOCK automatically identifies artifact in each IC using features
likely to indicate motion, physiological noise, or machine or unde-
termined noise. To achieve this, each IC is assessed for the presence
of substantial edge-only activity, activity in the ventricles, or a
large number of isolated very small clusters or isolated voxels
(i.e., a “spotty” appearance), respectively. Specifically, we use four
measures:

1. Smoothness measure. This assesses the contributions of low
and high spatial frequency content for each IC (Section 2.3.1).

2. Edge activity measure. This assesses the extent of activity in
peripheral areas of the brain, via an edge mask (Section 2.3.2).

3. CSF activity measure. This assesses the extent of activity in
ventricular areas of the brain, via a CSF mask (Section 2.3.3).

4. Temporal Frequency Noise (TFN) measure. This assesses the
power in temporal frequency beyond 0.08 Hz (Section 2.3.4).

2.3.1. Smoothness measure
The spotty appearance of an IC, which reflects the degree of
smoothness, is identified by observing spatial frequencies via a
Fourier Transform. We assume components that are likely to be of

neuronal origin will be relatively smooth and that by observing
contributions in spatial frequency, we can distinguish between
ICs that are smooth and unsmooth. The framework for the
smoothness criterion is as follows.

Let F i(Kx , Ky , Kz ) be the 3D Discrete Fourier Transform of IC,
i. That is,

F i (Kx , Ky , Kz
)
=

∑
X

∑
Y

∑
Z

Si

(X , Y , Z ) e−2πj(Kx ·X ·X0+Ky ·Y ·Y0+KZ ·Z ·Z0) (3)

where j is an imaginary unit, X, Y, and Z are vectors correspond-
ing to the fMRI image dimensions and X 0, Y 0, and Z 0 are the step
sizes between consecutive samples in the X, Y, and Z directions
respectively. Kx, Ky, and Kz are vectors in the Fourier space and
S is the intensity in the image space. A typical Fourier Transform
for a single slice is illustrated in 2A. While a 3D Discrete Fourier
Transform is implemented in SOCK, we show a 2D illustration for
simplicity. Data in the center of this figure contains low spatial fre-
quency information about the image,while data near the periphery
represents high spatial frequencies. We apply the above Discrete
Fourier Transform to unthresholded ICs, thus capturing all spa-
tial frequency modes to assess whether or not an IC is smooth.
To classify the extent of spatial smoothness of a particular IC, we
calculate a ratio of low to high frequency information.

Let Li be the low frequency information contained within
volume, V 1 (see Figure 2A) for IC, i. That is,

Li
=

∑
V 1x

∑
V 1y

∑
V 1z

F i (Kx , Ky , Kz
)

(4)
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FIGURE 2 | An overview of identifying “spotty” artifact. The example
data is taken from an ICA of a control that underwent a 10 min
resting-state fMRI study (see Section 2.5). (A) Discrete Fourier Transform
of a single slice of an IC. While a 3D Discrete Fourier Transform is
implemented in SOCK, we show a 2D illustration for simplicity. Data in
the center of figure contains low spatial frequency information about the
image, while data near the periphery represents high spatial frequencies.
The sphere with volume V 1 is an arbitrary region which contains low

spatial frequency information. (B) A plot of the ratio of low to high
frequency information [equation (6)] vs. the radius of sphere V 1 for all ICs.
(C) A spatial map of the top and bottom curves corresponding to the
smoothest and least smooth IC respectively. (D) Applying k-means
clustering to split the ICs into a set of “smooth” (red curves),
“subsmooth” (green curves), and “unsmooth” (blue curves) ICs. Each line
in (B,D) represents the ratio for a particular IC calculated over all slices,
not just the slice shown in (A).

where V 1x, V 1y, and V 1z are vectors corresponding to the dimen-

sions in Fourier space of volume, V 1. Let Hi be the high fre-
quency information contained outside of volume, V 1 for IC, i.
That is,

H i
=

∑
Kx−V 1x

∑
Ky−V 1y

∑
Kz−V 1z

F i (Kx , Ky , Kz
)

(5)

We then define, Ri as the ratio of low to high frequency
information for IC, i. That is,

Ri
=

Li

H i
(6)

This ratio is a function of the radius of the volume, V 1. As we
increase the radius of V 1, we increase the volume of low intensity
frequencies contributing to the ratio. Plotting equation (6) as a
function of different radius values, we obtain curves such as the
example shown in Figure 2B. Each curve represents a different IC.
These are referred to as ratio curves from here on in. These ratio
curves naturally organize themselves from top to bottom repre-
senting the smoothest IC at the top to the least smooth IC at the
bottom (Figure 2C).

To distinguish between smooth and unsmooth ICs, we apply
a k-means clustering in a 2D feature space (Euclidean distance
metric) implemented in MATLAB R2010b (The MathWorks Inc.,

Natick, MA, USA) to the ratio curves. Firstly, we split the ratio
curves into two clusters:

(ClusterA, ClusterD) = kmeans
(

Ri , 2
)

(7)

We further split the lower cluster into two clusters:

(ClusterB, ClusterC) = kmeans (ClusterD, 2) (8)

This yields three sets of vectors (ClusterA, ClusterB, ClusterC),
which contain ratio curves. We label these clusters (Smooth, Sub-
smooth, Unsmooth). An example of the clustering is shown in
Figure 2D.

2.3.2. Edge activity measure
It has been demonstrated that in ICA of fMRI data, gross subject
motion can result in artifactual activity at the edge of the brain
(McKeown et al., 1998). We therefore assess the amount of activity
within an edge mask, an example of which is shown in Figure 3A
(single slice shown). For this we utilize the sub-routine, “New
Segment” from the SPM8 software package (The Wellcome Trust
Centre for Neuroimaging2), applied to the mean functional image.
“New Segment” generates two edge masks covering the inner and

2www.fil.ion.ucl.ac.uk/spm
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FIGURE 3 | An overview of identifying motion artifact. The example data is
taken from an ICA of a control that underwent a 10 min resting-state fMRI
study (see Section 2.5). (A) An edge mask (in green) automatically created by
an SPM sub-routine, “New Segment” (single slice shown). This is overlaid
onto a mean functional image. In red are an illustration of contiguous clusters
which overlap the edge mask. (B) A plot of the edge activity for all ICs. (C) A

spatial map of the top and bottom points corresponding to the highest and
lowest edge activity ICs respectively. (D) Using k-means clustering, the ICs
are automatically divided into a set of “High Edge Activity” components
(points colored red in the scatter-plot) and “Low Edge Activity” components
(points colored blue in the scatter-plot). Each point in the scatter-plot
represents the edge activity for a particular IC summed over all slices.

outer brain boundary; we amalgamate these masks to produce a
single edge mask. To identify ICs characterized by gross motion
artifact, we define a variable, edge activity, which is a measure of the
extent of activation overlapping the edge mask. The edge activity,
EAi for each IC, i is defined as follows:

EAi
=

∑
k OEk

Ev
(9)

where Ev is the volume of the edge mask and OEk, ∀k = 1, 2, . . .,
n is the volume of those contiguous clusters which overlaps the
edge mask with there being n of these clusters. An illustration of
these clusters is shown in Figure 3A for a single slice. We used
the “locmax.m” function within the FMRISTAT software (Worsley
et al., 2002) to extract these contiguous clusters.

Plotting equation (9) for each IC, i produces a plot such as
that shown in Figure 3B. Each point represents a different IC
with the highest and lowest points corresponding to the ICs with
the highest edge activity and lowest edge activity respectively
(Figure 3C). Similar to the technique used in clustering the smooth
and unsmooth ICs, we employ k-means clustering in a 2D feature
space (Euclidean distance metric) to group edge activity into two
clusters:

(ClusterA, ClusterB) = kmeans
(

EAi , 2
)

(10)

where (ClusterA, ClusterB) are two vectors which contain edge
activities. We label these clusters (Low Edge Activity, High Edge
Activity). An example of the clustering is shown in Figure 3D. In

addition to the adaptive clustering we employ a fixed threshold
rejecting ICs independent of any other criteria when they have a
50% or greater volume of activity overlapping the edge mask. This
threshold was identified by testing combinations of thresholds on
data independent from the data presented here (see Appendix B).

2.3.3. CSF activity measure
Physiological noise, due to breathing and heart-beat, is often most
evident in or at the borders of CSF regions such as the ventri-
cles (Weisskoff et al., 1993; Windischberger et al., 2002). To detect
such noise we create a CSF mask, isolating the lateral ventricles.
An example is shown in Figure 4 (single slice shown). For this we
utilize the sub-routine, “New Segment” from the SPM8 software
package [The Wellcome Trust Centre for Neuroimaging (see text
footnote 2)], applied to the mean functional image. To isolate the
lateral ventricles, we manually defined this region on the Mon-
treal Neurological Institute (MNI) templates included in SPM 8.
To identify ICs characterized by CSF artifact, we define a variable,
CSF activity, which is a measure of the extent of activation overlap-
ping the CSF mask. The CSF activity, CAi for each IC, i is defined
as follows:

CAi
=

∑
k

OCk

CSFv
(11)

where OCk, ∀k = 1, 2, . . ., m is the volume of the contiguous clus-
ters which overlaps the CSF mask with there being m of these
clusters. An illustration of these clusters is shown in Figure 4 for a
single slice. CSFv is the volume of the CSF mask.
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FIGURE 4 | An overview of identifying CSF artifact. A CSF mask
automatically created by an SPM sub-routine, “New Segment” is shown in
green (single slice shown). This is overlaid onto a mean functional image. In
red are an illustration of contiguous clusters which overlap the CSF mask. If
the volume of activity overlapping the CSF mask is 10% or greater, the IC is
labeled High CSF Activity (Low CSF Activity otherwise). The CSF activity
for a particular IC calculated over all slices, not just the slice shown above.

Unlike the smoothness and motion artifact measures, we do
not employ a clustering technique to identify ICs characterized
by CSF artifact. Instead, we employ a fixed threshold. If the vol-
ume of activity overlapping the CSF mask is 10% or greater, the
IC is labeled High CSF Activity (Low CSF Activity otherwise). In
addition, we reject ICs independent of any other criteria when
they have a 30% or greater volume of activity overlapping the CSF
mask. This threshold was identified by testing combinations of
thresholds on data independent from the data presented here (see
Appendix B).

2.3.4. Temporal frequency noise measure
The dominant period of the hemodynamic Response Function
(HRF) is approximately 12 s (from onset to return to baseline,
ignoring the post-stimulus undershoot) (Chapter 10, Huettel et al.,
2009). Therefore we expect the dominant frequency for com-
ponents which exhibit BOLD neuronal signal to be about 1/12
or 0.08 Hz. Hence to identify activity that is unlikely to come
from the BOLD HRF, we quantify the temporal power beyond
0.08 Hz.

To identify ICs characterized by high frequency noise in the
time series, we define a variable, Temporal Frequency Noise (TFN),
which is a measure of the extent of temporal power beyond
0.08 Hz. The TFN, TFNi for each IC, i, is defined as follows:

TFN i
=

fNyquist∑
0.08

PSi (12)

where PSi, are the power spectrum values for each IC, i, which are
provided by the MELODIC ICA (Beckmann and Smith, 2004) and
fNyquist is Nyquist frequency. This formula in essence calculates the
sum of all power spectrum values from 0.08 Hz to the Nyquist
frequency. Plotting equation (12) for each IC, i produces a plot,
such as the example shown in Figure 5A. Each point represents
a different IC. K-means clustering in a 2D feature space (Euclid-
ean distance metric) is employed to cluster TFN values into two
clusters:

(ClusterA, ClusterB) = kmeans
(

TFN i , 2
)

(13)

where (ClusterA, ClusterB) are two vectors which contain TFN
values. We label these clusters (High TFN, Low TFN ) which cor-
respond to ICs with high and low TFN values respectively. An
example of the clustering is shown in Figure 5B, with the spatial
maps for the highest and lowest points shown in Figure 5C. The
associated power spectra for these ICs are shown in Figure 5D with
the blue and red curves representing the low and high TFN ICs
respectively. This is a zoomed in view showing only frequencies
beyond 0.08 Hz which is the region of interest.

2.4. CLASSIFICATION OF ICs
Based on the above features, ICs dominated by artifact are identi-
fied using the conditions given in Table 1. These were established
by the authors based on their experience in visually classifying
components from independent data (5 subjects scanned on the
same scanner as data sets 1 and 2 in Section 2.5).

2.5. fMRI DATA
We validate SOCK for individual ICA analyses in 50 subjects, from
three separate data sets. All were resting-state studies. See Table 2
for a summary.

2.5.1. Data sets 1 and 2
The first two data sets consisted of resting-state data from thirty
healthy control subjects that had participated in studies at our
institute (Waites et al., 2005, 2006; Lillywhite et al., 2009; Abbott
et al., 2010). Ethics approval was obtained from the Austin Health
Human Research Ethics Committee or the Howard Florey Insti-
tute of Experimental Physiology and Medicine Human Research
Ethics Committee and each subject gave informed consent.

Participants were instructed to close their eyes and relax with-
out falling asleep and without focusing on anything in particular.
A single run of fMRI data was collected for each of the partici-
pants; each run was 60 min in 9 of the participants and 10 min in
21 of the participants.

The fMRI studies were carried out with a 3 T GE Signa
LX whole body scanner (General Electric, Milwaukee, WI,
USA), using a standard birdcage quadrature head coil. Func-
tional images were acquired as a series of gradient-recalled
echo planar imaging (GR-EPI) volumes (TR/TE= 3,000/40 ms
in 9 of the participants and TR/TE= 3,600/40 ms in 21 of the
participants, 25 oblique slices 4 mm thick+ 1-mm gap, voxel
size= 1.875 mm× 1.875 mm× 5 mm, 24-cm field of view (FOV),
128× 128 matrix). The first 14 volumes were discarded (to allow
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FIGURE 5 | An overview of identifying ICs withTemporal Frequency
Noise (TFN). The example data is taken from an ICA of a control that
underwent a 10 min resting-state fMRI study (see Section 2.5). (A) A plot of
the TFN activity (sum of power spectrum values from 0.08 Hz to Nyquist
frequency) for all ICs. (B) Applying k-means clustering to split the ICs into a

set of Low and High TFN ICs. (C) A spatial map of the top and bottom points
corresponding to the highest and lowest TFN activity ICs respectively. (D) The
associated power spectra for these ICs with the blue and red curves
representing the low and high TFN ICs respectively. This is a zoomed in view
showing only frequencies beyond 0.08 Hz which is the region of interest.

Table 1 |The conditions used to automatically identify ICs dominated

by artifact.

Smoothness Edge activity CSF activity Temporal

frequency noise

Unsmooth – – –

Subsmooth – – High

Smooth High High –

– High (above 50%) – –

– – High (above 30%) –

Each row indicates a combination of conditions for which the IC is classified as

artifact. For example an IC is classified as artifact if it is subsmooth and has high

TFN activity.

Table 2 | A summary of the three different data sets used to verify

SOCK.

Data set No. of subjects Length of

study (min)

TR (s) Pre-processed

1 9 60 3.0 Yes

2 21 10 3.6 Yes

3 20 9 2.0 No

In total, fMRI data of 50 healthy control subjects were used which had different:

study lengths, TR’s, and pre-processing pipelines.

the scanner time to reach steady-state and the subject to become
settled to the procedure).

fMRI data were processed using SPM8 software (Wellcome
Department of Imaging Neuroscience, London, UK3) with the
aid of iBrainTM (Abbott and Jackson, 2001) and the iBrainTM

Analysis Toolbox for SPM (Abbott et al., 2011)4. In brief, pre-
processing included slice-timing correction, motion correction
(realignment), and non-linear warping to a custom local template
approximating that of the standard Montreal Neurological Insti-
tute (MNI) template supplied with SPM8. The spatially normal-
ized image data were smoothed with an 8 mm isotropic Gaussian
kernel and were written at a voxel size of 2 mm× 2 mm× 2 mm.
No further pre-processing was carried out in FSL prior to ICA
being performed using the MELODIC tool (Beckmann and Smith,
2004).

2.5.2. Data set 3 (functional connectomes data)
The third set of data consisted of resting-state fMRI data with a
relatively short TR from twenty healthy controls obtained from
the 1000 Functional Connectomes Project website (Biswal et al.,
2010, data set 2 from Table S1 with TR= 2,000 ms, 34 slices and
voxel size= 3 mm× 3 mm× 3 mm). Participants were instructed
to open their eyes without focusing on anything in particular. fMRI
data was collected for each of the participants in a 9 min study. The
fMRI studies were carried out with a 3 T scanner (make of scanner
not specified). Functional images were acquired using a sequential

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4www.brain.org.au/software
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ascending sequence, discarding the first 5 time points of each time
series.

No pre-processing [slice-timing correction, motion correction
(realignment), normalization, or smoothing] was carried out on
this data set.

Preforming ICA using the MELODIC tool, yielded both thresh-
olded and unthresholded ICs and associated time courses and
power spectra which were then inputs for SOCK (Figure 1).

In order to evaluate the performance of our algorithm, we
assessed SOCK’s classification against manual classification. An
expert manual classification of components as either artifact or
unlikely artifact was performed blinded to the SOCK classifi-
cation. The manual classification used visual inspection criteria
similar to that outlined in Kelly Jr. et al. (2010) and had previously
been applied by consensus of all the authors on data indepen-
dent from that presented here. In the present study, author KB
manually classified all components, and author DA additionally
manually classified all ICs in the 1000 Functional Connectomes
Project dataset. For all 50 data sets, the number of discordant
components [those which were identified as artifact by SOCK but
as unlikely artifact by an expert (KB or DA)] were examined in an
effort to understand the reason for discordance.

3. RESULTS
3.1. ICA ANALYSIS AND SOCK CLASSIFICATION
MELODIC ICA was applied to resting-state fMRI data acquired in
50 healthy control subjects across three data sets:

1. Data set 1: 7 male, 2 female; age range 7–11 years, mean= 8.8,
SD= 1.6

2. Data set 2: 14 male, 7 female; age range 17–40 years,
mean= 24.4, SD= 5.9

3. Data set 3: 20 male; age range 19–38 years, mean= 23.4,
SD= 5.3

A total of 2,722 components (average of 54 components per
subject) were obtained. SOCK classified between 26 and 72% of
each subject’s components as artifact (mean 55%). See Table 3 for
a summary. A comprehensive list of the ICA decomposition and
the SOCK classification for all 50 subjects is also provided in the
Appendix (see Tables A1–A3 in Appendix A).

The time required for SOCK to run, including the automatic
generation of the edge and CSF masks, was approximately 2 min
per subject on a PC equipped with an Intel Quad-Core i7-2,600
3.4 GHz CPU.

We show below a case example of each of the SOCK criteria
for ICs from a MELODIC ICA on one of the 50 subjects (Table 4;
Figure 6). ICA yielded 87 components for this particular subject,
out of which 44 (51%) ICs were classified as artifact. No discordant
ICs were identified for this particular subject.

Figure 6 illustrates the spatial maps and the SOCK classifica-
tion of a selected set of components from an ICA for this subject.
The numbering of the ICs is based on the order of extraction in
the ICA decomposition. For example, IC16 has been classified by
SOCK as unlikely artifact as it has been clustered into the smooth
category and has low edge and CSF activity and low TFN.

3.2. CLASSIFICATION PERFORMANCE
We assess the performance of SOCK by calculating the sensitivity,
that is, the proportion of components SOCK classifies in the arti-
fact category and the specificity, how many of these components
are actually artifact. Table 3 indicates that on average, 55% of ICs
were classified in the artifact category. That is, SOCK was able to
approximately halve the number of ICs we would otherwise need
to look at.

We assessed the specificity by comparing SOCK’s classifica-
tion against manual classification done by an expert (KB or DA)
blinded to the SOCK classification. An expert manually classified
each IC into either an artifact or unlikely artifact category. All the
ICs which SOCK classified as artifact were compared to ICs which
the experts classified. Only 0.3% (7) of components identified as
artifact by SOCK were discordant with the manual classification
(last column of Table 3); retrospective examination of these ICs
suggested SOCK had correctly identified these as artifact. All seven
discordant components with their spatial maps and SOCK features
are provided in Figures 7 and 8.

3.2.1. IC27 (subject 1)
IC27 in subject 1 (Figure 7A) was accepted by an expert because it
contained smooth activity in regions of gray matter and was free
from CSF artifact and high TFN. However, SOCK classified this
IC as artifact as it contains greater than 50% of volume of activity
overlapping the edge mask (see Table 1).

Table 3 | A summary of the SOCK classification for 50 subjects.

Data set Number of

subjects

SOCK classification % of rejected

ICs

Number of

discordant ICs

Total number of

ICA components

Artifact Unlikely

artifact

1 9 758 399 359 53 (39–71) 5

2 21 410 193 217 47 (26–61) 0

3 20 1,554 902 652 58 (42–72) 2

Total 50 2,722 1,494 1,228 55 (26–72) 7

The last column indicates the components which disagree with an experts classification (see Section 3.2).
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3.2.2. IC7, IC23, and IC96 (subject 5)
IC7, IC23, and IC96 in subject 8 (Figure 7B) were accepted by an
expert as they all appeared smooth and did not have gross edge
or CSF activity. However, a closer look at the thresholded spatial
maps of each IC overlaid on the edge mask (in green) reveals that a
significant proportion of activation is overlapping the edge mask.
Both axial and coronal views are shown to clearly indicate this.
Hence, SOCK classified these ICs as artifact as they contain greater
than 50% of volume of activity overlapping the edge mask (see
Table 1).

3.2.3. IC90 (subject 5)
IC90 in subject 5 (Figure 7C) was accepted by an expert as it was
smooth and did not have gross edge or CSF activity. However, a
closer look at the unthresholded spatial map of IC90 (shown on
the right of the thresholded map) reveals that the IC is not as
smooth as it appears compared to viewing the thresholded spatial

Table 4 | A summary of the SOCK classification for one (Subject 4) of

the 30 subjects.

Total number of

ICA components

SOCK classification % of rejected

ICs

Number of

discordant ICs

Artifact Unlikely

artifact

87 44 43 51 0

ICA yielded 87 components for this particular subject, out of which 44 (51%) ICs

were classified as artifact. No discordant ICs were identified.

map. Hence, SOCK clustered it in the unsmooth category and
subsequently classified it as artifact (see Table 1).

3.2.4. IC70 and IC75 (subject 41)
IC70 and IC75 in subject 41 (Figure 8) were not rejected by an
expert as they appeared to contain some possible neuronal activ-
ity. However these components were rejected by SOCK. SOCK
determined IC70 was not sufficiently spatially smooth. Retrospec-
tive examination of the ICA decomposition revealed another IC
(IC24, not rejected by SOCK) that had overlapping spatial regions
(Figure 8A). Examination of the unthresholded component maps
(not considered during manual classification) revealed the rejected
component did indeed have a less smooth spatial pattern than the
accepted component (Figure 8A). IC 75 was rejected by SOCK due
to substantial temporal frequency noise. In this case, retrospective
examination revealed two ICs (26 and 29) with spatial maps over-
lapping the apparent neuronal activity in the rejected component.
These other components had less temporal frequency noise (as
can seen in the shaded area of the power spectrum, Figure 8B)
and were not rejected by SOCK.

4. DISCUSSION
We have illustrated a general approach for the identification of
artifact in independent components derived from fMRI primar-
ily using spatial criteria. The motivation for our algorithm was
to automatically remove artifact without removing signal likely
to be of neuronal origin from an ICA of resting-state fMRI. The
algorithm assesses four types of artifacts; CSF, sparsely distributed
noise, movement-related artifact, and high temporal frequency
noise. The temporal feature of the IC is considered only after the
initial clustering of ICs using spatial features because temporal

FIGURE 6 | A selected set of spatial maps from an ICA and corresponding SOCK classification for Subject 4. The numbering of the ICs is based on the
order of extraction in the ICA decomposition.
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frequency ranges of artifactual and neural activity sometimes over-
lap (Beckmann et al., 2005; Birn et al., 2006). Such overlap in
frequencies complicates the determination of how much of com-
ponent variance is due to artifacts vs. signal likely to be of neuronal
origin.

We chose to use generic properties of the IC to categorize
artifact, specifically limiting them to spatial features as we have
particular interest in the application of SOCK to resting-state func-
tional connectivity and to fMRI data collected prior to an epileptic
seizure (Federico et al., 2005). In this case, we have no prior model
of expected signal change or event timing (apart from the seizure
itself at which point the data acquisition usually ends).

Despite the limited a priori information, SOCK was able to
reduce the solution space by over 50% without rejecting any com-
ponents that are likely to be of neuronal origin in our test group
of 50 healthy controls. Only 0.3% (7) of components identified
as artifact by SOCK were discordant with the manual classifica-
tion and retrospective examination of these ICs suggested SOCK
had correctly identified these as artifact. Thus, our method leads
to a substantial reduction of the number of components to be
inspected and interpreted.

There are other automatic classifier methods which like SOCK
use a combination of spatial and temporal characteristics to inform
IC classification (Thomas et al., 2002; Kochiyama et al., 2005; De
Martino et al., 2007; Perlbarg et al., 2007; Tohka et al., 2008; Sui
et al., 2009; Kundu et al., 2012), however, an important difference
is that these methods either rely on training data (De Martino
et al., 2007; Tohka et al., 2008) or task-related temporal or spatial
information (Thomas et al., 2002; Kochiyama et al., 2005; Sui et al.,
2009) or set thresholds (Perlbarg et al., 2007) or multi-echo acqui-
sition sequences (Kundu et al., 2012). For example De Martino
et al. (2007) used IC-fingerprints for characterizing independent
components and in a support vector machines framework to clas-
sify them into six classes including activation and noise classes.
However, the accuracy of their classifier was dependent on the
training data. They found that automatic classification was less
accurate in detecting residual motion signal effects due to small
number of samples employed in the training. Other methods, such
as Sui et al. (2009) classify ICs using contrast images that contain
no time-domain information. Their method works on utilizing
information concerning the proportion of active voxels overlap-
ping ventricular CSF and gray-matter masks. From our experience,
it is often difficult to obtain accurate gray-matter masks with EPI
images at 3 T, as the boarders between GM and WM are often indis-
tinct. Edge and CSF masks such as those used in SOCK can be more
reliably extracted from EPI images than GM masks. The method
of Sui et al. (2009) also requires a user-selected parameter (Z -score
threshold) whereas SOCK uses the threshold automatically deter-
mined by the Gaussian mixture modeling approach implemented
in MELODIC (Beckmann and Smith, 2004) when determining the
edge and CSF activity and unthresholded maps when determining
the degree of smoothness. Finally, the work of Kundu et al. (2012)
offers a robust means for classifying components of interest vs.
artifact based on TE-dependence. However, the applicability of
this method is dependent on functional images being acquired
with a multi-echo EPI sequence, which precludes it from use with
data from studies not acquired in this fashion.

4.1. LIMITATIONS
The use of k-means clustering equips SOCK with objective and
adaptive criteria, however it does require that at least some
components are dominated by noise and others by signal of
interest so that a meaningful clustering is achieved. This applies
to clustering based upon degree of smoothness, edge activ-
ity, and temporal frequency noise. Even in the cases contain-
ing the fewest components in our study (subjects 25 and 27
in Table A2 in Appendix), SOCK was still effective at cor-
rectly removing a substantial proportion artifactual components:
ICA yielded 14 components out of which SOCK classified 43
and 50% as artifact respectively. Nevertheless we advise cau-
tion in applying SOCK as presently implemented to varia-
tions of ICA that are already effective in producing very few,
if any, components that are dominated by noise. For exam-
ple event-related ICA (eICA) typically yields very few compo-
nents due to it only dealing with short time epochs time-locked
to events of interest (Masterton et al., 2013a,b). When only a
handful of components are generated there is less need for an
automatic classifier as it is relatively easy to manually inspect
the ICs.

The performance of the SOCK classification is dependent on
the accuracy of the edge and CSF masks which are generated using
SPM’s New Segment tool. We found this tool robust in generating
edge and CSF masks for the mean functional images used in this
study. However, we did not test accuracy in cases where there exists
gross pathology in subjects’ brains or where insufficient contrast
between CSF and gray-matter regions exists in the EPI images.
In these situations where the automated edge or CSF segmenta-
tion fails, the user could either generate custom masks, or elect
to ignore these criteria (in which case SOCK would be unable to
reject as artifact components exhibiting these features).

We tested the SOCK algorithm successfully on data from
two different 3 T MRI scanners. These data had TR’s of
2.0, 3.0, and 3.6 s, voxel sizes of 2 mm× 2 mm× 2 mm and
3 mm× 3 mm× 3 mm and smoothing of 0 and 8 mm. The per-
formance of SOCK was similar across all data sets. However, we
only tested SOCK in conjunction with MELODIC (a popular ICA
package). Other good ICA software exists [for example Egolf et al.
(2004) and Himberg et al. (2004)] and we would therefore rec-
ommend a validation study if one were contemplating the use of
SOCK with these or other packages.

A potential limitation of SOCK is that it may reject some
neuronal activity if it is mixed with substantial noise in a sin-
gle component. In the data we tested this may have occurred
in two of the components we examined, as shown in Figure 8.
In cases such as these it is not clear whether one should reject
the component. One might argue that a conservative approach
is rejection, because the potential activity of interest has the
same time-course as noise. On the other hand, in clinical appli-
cations it may be considered conservative to retain the IC if
any portion might be neuronal, even in the presence of noise.
In the case of the two discordant components in this study,
rejection would have had a minor impact on the possible neu-
ronal activity, as there were other accepted components that
contained substantially more activity in the same locations (see
Figure 8).
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In conclusion we have demonstrated a novel method for the
automatic identification of artifactual ICs from resting-state fMRI
data. SOCK proved to be effective in separating noise from sig-
nal in each of 50 healthy controls by identifying a high pro-
portion of artifact-related ICs without removing components
that are likely to be of neuronal origin. We tested the method
with resting-state fMRI, however the method may also be effec-
tive for other study types and we therefore encourage validation
studies in other contexts. SOCK does not require the user to
train the algorithm and is able to adaptively determine variable
threshold settings via use of k-means clustering. It does not

require any temporal information about the fMRI paradigm or
high-resolution anatomical scans. SOCK software is available at
http://brain.org.au/software.
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APPENDIX A

Table A1 | ICA decomposition and the SOCK classification for 9 healthy controls who underwent a 60 min resting-state fMRI withTR of 3.0 s.

Length of study (min) TR (s) Subject Number of ICA components SOCK classification % of rejected ICs No. of discordant ICs

Artifact Unlikely artifact

60 3.0 1 34 17 17 50 1

60 3.0 2 34 19 15 56 0

60 3.0 3 127 60 67 47 0

60 3.0 4 87 44 43 51 0

60 3.0 5 97 54 43 56 1

60 3.0 6 84 33 51 39 0

60 3.0 7 108 55 53 51 0

60 3.0 8 129 76 53 59 3

60 3.0 9 58 41 17 71 0

SOCK classified between 39 and 71% of each subject’s components as artifact (mean 53%). Only 5 of the components identified as artifact by SOCK were discordant

with the manual classification (last column); retrospective examination of these ICs suggested SOCK had correctly identified these as artifact.

Table A2 | ICA decomposition and the SOCK classification for 21 healthy controls who underwent a 10 min resting-state fMRI withTR of 3.6 s.

Length of study (min) TR (s) Subject Number of ICA components SOCK classification % of rejected ICs No. of discordant ICs

Artifact Unlikely artifact

10 3.6 10 22 9 13 41 0

10 3.6 11 22 12 10 55 0

10 3.6 12 24 11 13 46 0

10 3.6 13 21 12 9 57 0

10 3.6 14 21 10 11 48 0

10 3.6 15 26 15 11 58 0

10 3.6 16 19 6 13 32 0

10 3.6 17 21 8 13 38 0

10 3.6 18 22 11 11 50 0

10 3.6 19 22 12 10 55 0

10 3.6 20 18 8 10 44 0

10 3.6 21 17 6 11 35 0

10 3.6 22 19 5 14 26 0

10 3.6 23 16 9 7 56 0

10 3.6 24 19 11 8 58 0

10 3.6 25 14 6 8 43 0

10 3.6 26 18 7 11 39 0

10 3.6 27 14 7 7 50 0

10 3.6 28 18 11 7 61 0

10 3.6 29 16 6 10 38 0

10 3.6 30 21 11 10 52 0

SOCK classified between 26 and 61% of each subject’s components as artifact (mean 47%). None of components identified as artifact by SOCK were discordant

with the manual classification (last column).
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Table A3 | ICA decomposition and the SOCK classification for 20 healthy controls who underwent a 9 min resting-state fMRI withTR of 2.0 s.

Length of study (min) TR (s) Subject Number of ICA components SOCK classification % of rejected ICs No. of discordant ICs

Artifact Unlikely artifact

9 2.0 31 79 50 29 63 0

9 2.0 32 100 49 51 49 0

9 2.0 33 78 41 37 53 0

9 2.0 34 74 45 29 61 0

9 2.0 35 72 40 32 56 0

9 2.0 36 109 54 55 50 0

9 2.0 37 82 59 23 72 0

9 2.0 38 63 41 22 65 0

9 2.0 39 78 45 33 58 0

9 2.0 40 58 33 25 57 0

9 2.0 41 79 50 29 63 2

9 2.0 42 98 57 41 58 0

9 2.0 43 90 56 34 62 0

9 2.0 44 57 26 31 46 0

9 2.0 45 83 51 32 61 0

9 2.0 46 79 51 28 65 0

9 2.0 47 78 54 24 69 0

9 2.0 48 63 32 31 51 0

9 2.0 49 74 43 31 58 0

9 2.0 50 60 25 35 42 0

Data was obtained from the 1000 Functional Connectomes Project website. SOCK classified between 42 and 72% of each subject’s components as artifact (mean

58%). Only 2 of the components identified as artifact by SOCK were discordant with the manual classification (last column); retrospective examination of these ICs

suggested SOCK had correctly identified these as artifact.
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APPENDIX B
This appendix describes how we arrived at the hard thresholds
used to determine when a component could be safely classified as
artifact solely on edge or solely on CSF criteria. Our subsequent
validation of the algorithm on data substantially different from
that used here indicates that this procedure does not need to be
re-done by an end user of the SOCK algorithm.

SOCK uses a combination of measures with adaptively deter-
mined thresholds to assist classification. However when there is
a very large amount of edge or CSF activity, this alone can be
enough to definitively classify the component as artifact. There-
fore we use additional fixed thresholds to classify components as
artifact when extremes occur in the edge and CSF measures. We
tested a combination of fixed edge and CSF thresholds from 5 sub-
jects scanned on the same scanner as data sets 1 and 2 in Section
2.5, where a manual classification was known. This was done via
a Receiver Operating Characteristic (ROC) (Figure A1), which
illustrates the performance of SOCK on these subjects for a total
of 525 combinations of edge and CSF thresholds ranging from
0 to 70%. Each combination represents an edge and CSF thresh-
old, with combination 0 representing 0% edge and CSF threshold
and combination 525 representing 70% edge and CSF threshold
(Figure A2). We found the classification in the 5 subjects did not
change significantly (within 10%) in the range of 40–50% for edge
threshold and 20–30% for the CSF threshold (points in light gray).
Lower values resulted in at least one neuronal component being
misclassified as artifact (i.e., having a sensitivity of less than one
which we regard as failure), whilst higher values resulted in fewer
artifacts being identified (which we regard as a decrease in perfor-
mance or smaller specificity). To minimize the chance of failure
we chose the highest thresholds before a decrease in performance
occurs (i.e., well away from the failure condition); 50 and 30% for
the edge and CSF thresholds respectively.

FIGURE A1 | Receiver Operating Characteristic (ROC) curve for edge
and CSF thresholds for 5 test subjects. A total of 525 combinations of
edge and CSF thresholds (ranging from 0 to 70%) were tested. Shown in
light gray are combinations where the classification in the 5 subjects did
not change significantly (within 10%). These represent the ranges, 40–50%
for the edge threshold and 20–30% for the CSF threshold. Lower values
resulted in at least one neuronal component being misclassified as artifact
(i.e., having a sensitivity of less than one which we regard as failure), whilst
higher values resulted in fewer artifacts being identified (which we regard
as a decrease in performance or smaller specificity). To minimize the chance
of failure we chose the highest thresholds before a decrease in
performance occurs (i.e., well away from the failure condition); 50 and 30%
for the edge and CSF thresholds respectively.

FIGURE A2 | A total of 525 combinations for edge and CSF thresholds
ranging from 0 to 70% were tested. Each combination represents an
edge and CSF threshold, with combination 0 representing 0% edge and
CSF threshold and combination 525 representing 70% edge and CSF
threshold. Shown on the graph is combination 367, which corresponds to
50% edge threshold and 30% CSF threshold.
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