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Gamma oscillations have previously been linked to pain perception and it has been
hypothesized that they may have a potential role in encoding pain intensity. Stimulus
response experiments have reported an increase in activity in the primary somatosensory
cortex (SI) with increasing stimulus intensity, but the specific role of oscillatory dynamics
in this change in activation remains unclear. In this study, Magnetoencephalography (MEG)
was used to investigate the changes in cortical oscillations during four different intensities
of a train of electrical stimuli to the right index finger, ranging from low sensation to strong
pain. In those participants showing changes in evoked oscillatory gamma in S| during
stimulation, the strength of the gamma power was found to increase with increasing
stimulus intensity at both pain and sub-pain thresholds. These results suggest that
evoked gamma oscillations in S| are not specific to pain but may have a role in encoding
somatosensory stimulus intensity.
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INTRODUCTION

Primary somatosensory cortex (SI) is implicated in the process-
ing of sensory-discriminative aspects of pain, such as stimulus
intensity, location, and duration (Treede et al., 1999). In pain
experiments, SI activation is generally observed in the hemisphere
contralateral to the delivered stimulus (Ploner et al., 1999, 2000;
Timmermann et al., 2001; Bornhovd et al., 2002). The strength of
activation in SI has been found to increase correspondingly with
increasing stimulus intensity in positron emission tomography
(PET), functional magnetic resonance imaging (fMRI), and mag-
netoencephalography (MEG) (Coghill et al., 1999; Timmermann
et al., 2001; Bornhovd et al., 2002; Della Penna et al., 2004).
Bornhovd et al. (2002) used fMRI to examine the effects of
laser stimuli at various intensities and observed that the ampli-
tude of SI blood oxygen level dependent (BOLD) activation
discriminated between non-painful trials, implicating its role in
stimulus intensity encoding. Timmermann et al. (2001) found
an increase in the amplitude of SI somatosensory evoked poten-
tial (SEP) responses using MEG, which exhibited an exponential
relationship with stimulus intensity and the participant’s pain
ratings.

While PET and fMRI benefit from high spatial resolution,
capable of resolving the source of neural activity with great
accuracy, the temporal resolution of these techniques is unable
to resolve the time course of activity at these loci. Conversely,
electroencephalography (EEG) is able to distinguish changes in
activity on a millisecond timescale, but is limited in its ability to
provide accurate spatial localization of the source of these activi-
ties. However, advances in source level analysis approaches, such
as beamforming methods like synthetic aperture magnetometry
(SAM) (Van Veen et al., 1997; Vrba and Robinson, 2001), enable

MEG to achieve higher spatial resolution (Hillebrand et al., 2005).
The advantage of this approach is the ability to resolve the loca-
tion of the neural generators and reconstruct the time course of
power changes on a millisecond timescale. In particular, MEG
affords the ability to determine the focal changes in neuronal net-
work oscillatory activity in response to sensory stimuli in different
regions of the cortex.

Neuronal network oscillations in the cortex, as measured with
MEG, are emergent properties of phase synchronization between
pyramidal cells. A number of cortical areas, including somatosen-
sory cortex, exhibit spontaneously occurring oscillations in the
mu frequency (~10 Hz), beta frequency (15-30 Hz), and gamma
frequency (30-100 Hz) (Pfurtscheller and Lopes Da Silva, 1999;
Roopun et al., 2006; Hall et al., 2010). Modulation of power in dif-
ferent frequency bands has been linked to particular states or tasks
(Hari and Salmelin, 1997). Of particular interest is the gamma
frequency, which has been proposed as a mechanism of tempo-
ral integration or “binding” of salient stimulus features across
different sensory cortices (Engel and Singer, 2001). It has been
observed that changes in gamma are more spatially discrete and
somatotopically specific than lower frequency oscillations (Crone
et al., 1998). A distinction must be made as to whether these
oscillations are time-locked (evoked) to stimulus onset or not
(induced) as this may reflect different physiological mechanisms
(Tallon-Baudry and Bertrand, 1999). In the motor cortex, gamma
oscillations are shown to be associated with the magnitude of out-
put generated (Muthukumaraswamy, 2010). In the visual cortex,
gamma shows a correspondence with the stimulus features such
as spatial frequency, stimulus size and contrast, and this has been
seen with evoked (Busch et al., 2004; Frund et al., 2007; Schadow
et al.,, 2007) and induced (Adjamian et al., 2004b; Hall et al.,
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2005) gamma oscillations. Across the cortex, gamma has a pro-
posed involvement in a number of cognitive tasks (Ward, 2003)
and has been implicated as an attentional correlate in the pro-
cessing of somatosensory stimuli in SI (Bauer et al., 2006; Hauck
et al., 2007).

In studies exploring the processing of pain, an increase in
gamma has been seen in SI in response to both painful electrical
(Chen and Herrmann, 2001; De Pascalis et al., 2004; De Pascalis
and Cacace, 2005; Hauck et al., 2007, 2008) and painful laser
stimuli (Gross et al., 2007) as well as prefrontal regions (Croft
et al., 2002). De Pascalis et al. (2004; De Pascalis and Cacace,
2005) observed “phase-ordered” (evoked) 40 Hz gamma oscilla-
tions, in central EEG electrodes in response to painful electrical
stimuli. The amplitude of these gamma oscillations, which were
attributed to SI, corresponded to the subjective pain ratings of
the participants. These oscillations were diminished during hyp-
notic analgesia, suggesting that these gamma oscillations may be
involved in higher-order top-down processing of pain. Previous
studies have highlighted the importance of oscillatory dynam-
ics in pain processing in somatosensory cortex (Worthen et al.,
2011).

Hauck et al. (2007) observed induced gamma oscillations in
response to painful intracutaneous electrical stimulation over
the somatosensory cortices. An increase in oscillatory power was
observed at two separate gamma frequencies, the higher oscilla-
tion being linked to attention to the stimulus. Importantly, some
studies have attributed the increase in gamma power in SI to pain
perception (Gross et al., 2007; Schulz et al., 2012; Zhang et al.,
2012). Gross et al. (2007) reported that for stimuli of the same
intensity, around pain threshold, the induced gamma amplitude
was greater when participants rated the stimulus as painful com-
pared to when they rated it as non-painful. Zhang et al. (2012)
found that induced gamma oscillations predicted subjective pain
intensity regardless of the saliency of the stimulus.

Other studies however, have observed increases in gamma
power in SI following the delivery of non-painful somatosensory
stimuli (Tecchio et al., 2003, 2008; Fukuda et al., 2008) Fukuda
et al. (2008) found that the gamma oscillations seen in their
study were initially phase-locked (evoked) but became non-phase
locked (induced) with time. These studies would suggest that
increases in gamma power in SI are not simply a signature of the
delivery and processing of painful stimuli.

Previous studies, exploring the role of gamma in SI, have
examined responses to either painful stimuli or non-painful stim-
uli, but few have explored both in the same experiment. This
study aimed to investigate whether gamma oscillations in SI are a
phenomenon specific to the perception and processing of painful
stimuli. A source-level MEG approach was used, to examine
the oscillatory signatures in SI using a train of somatosensory
electrical stimuli at a range of non-painful and painful intensities.

MATERIALS AND METHODS

PARTICIPANTS

Twelve healthy participants (4 males; age range 24-43 years; 2
left-handed) took part in this study. All were free of any neu-
rological or pain disorders and none were taking medication
at the time of the study. Informed consent was obtained from

Gamma encodes stimulus intensity

all participants and the local ethics committee approved the
experimental protocol.

STIMULI

Electrical pulses generated by a constant current stimulator
(Model: Digitimer Ltd, Welwyn Garden City, DS7A) were deliv-
ered to the right index finger of each participant via two pad
electrodes positioned approximately 1cm apart on the lateral
surface of the digitus secundus, at the middle and proximal
phalanx.

STIMULUS CALIBRATION

The experiment consisted of the delivery of four different stim-
ulus intensities. These are referred to as: “low sensation,” “high
sensation,” “low pain,” and “high pain” throughout. These stim-
ulus intensities were determined immediately prior to the exper-
iment using a staircasing procedure, by administering trains of
electrical pulses at 7 Hz and increasing the current incrementally
from O mA at a rate of ~0.5mA/s. In our staircasing method,
the participants were asked to verbally report when they could
first feel the stimulus as the stimulus intensity was increased from
0mA. Upon reported detection, the intensity was then reduced
until the stimulus was no longer felt and then increased again
until participants once again reported its presence. This was done
twice to ensure accurate thresholds. The same method was used
to assess pain threshold and pain tolerance. Participants used a
visual analog scale (VAS) to report these thresholds ranging from
0 (no sensation) to 10 (worst pain imaginable). These points were:
initial sensation (VAS = 1), pain threshold (VAS = 4), and pain
tolerance (VAS = 7). Using these measurements, the four inten-
sities were determined as: low sensation (25% between initial
sensation and initial pain), high sensation (75% between initial
sensation and initial pain), low pain (25% between initial pain
and pain tolerance), and high pain (75% between initial and pain
tolerance) using a similar method to that previously described by
Hobson et al. (1998).

STIMULUS DELIVERY

During the experiment, stimuli were delivered as trains of 200 s
pulses, at a frequency of 7 Hz, with each train lasting for 2s (14
stimuli per train). The experiment was arranged into four sepa-
rate blocks, one for each stimulus intensity, lasting approximately
5min in total. Each block consisted of 60 trials of 5s. Each trial
consisted of a 2 s train of stimulation, separated by 3 s of rest. The
order in which the stimulus intensities were given was pseudo-
randomized across participants. Participants were instructed to
keep their eyes open and to focus on a central point, to minimize
eye movement. In order to provide details of their subjective per-
ception of the sensation and pain they received, each participant
was instructed to fill out a McGill Pain Questionnaire (Melzack,
1975, 1987, 2005) after each block, the scores from the pain and
sensory descriptors were summed and used as a rating for each
stimulus intensity (Figure 1B).

MEG RECORDINGS
Participants were seated in a magnetically shielded room for each
of the 5min recordings. Neural activity was recorded using a
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FIGURE 1| Gamma source localization, stimulation and pain intensities.
(A) Average map of change in gamma across participants, located in
post-central gyrus (Talairach coordinate = —33.1, —24.1, 45.0) (B) Graph
showing actual stimulus intensity used at each level in mA. Significant
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differences between observations are shown on the graphs (**p < 0.001,

*p < 0.05). (C) Graph showing McGill score across the four different stimulus
intensities, significant difference in scores between high sensation and low
pain and also between low pain and high pain.

275-channel CTF MEG system (CTF Systems Inc., Vancouver,
Canada) at a sampling rate of 1200 Hz, with 3™ order gradi-
ent noise reduction and DC-offset removal, based on the whole
trial. The data were processed using a 50 Hz notch filter with a
width of 0.6 Hz and a band-pass filter of 1-300 Hz. Each trial
was manually examined to identify blink and muscle artifacts
and the trial was removed if necessary. A 3-dimensional digitizer
(Polhemus Isotrak, Kaiser Aerospace Inc., Colchester, Vermont,
USA) was used to digitize the surface of the participants head and
this information was then co-registered with the individual par-
ticipant’s anatomical MRI (Magnetom Trio, Siemens, Erlangen),
using a comparable approach to that described previously, which
gives a spatial accuracy <5mm (Singh, 1995; Adjamian et al.,
2004a).

DATA ANALYSIS

The SAM beamformer algorithm (Van Veen et al., 1997; Vrba and
Robinson, 2001) was used to spatially localize the change in oscil-
latory power between active and passive periods. The oscillatory
power difference between conditions is visualized as a t-statistic
on the participants co-registered MRI; the details of this tech-
nique are described in detail by Barnes and Hillebrand (2003)
and it has been successfully applied previously in sensory stud-
ies (Fawcett et al., 2004; Furlong et al., 2004; Hall et al., 2005).
Here, SAM analyses were performed in the mu (6-9 Hz), beta
(15-30 Hz), and gamma range (30-80 Hz) between the 2 s stimu-
lation phase (active) and the 2 s pre-stimulation phase (passive) in
the four different intensity blocks. The gamma band was further

analysed around each electrical stimulation from 0-140 ms and
the same window from the rest phase.

Coordinates from the anatomical MRI were determined from
the peak changes in gamma power which were located in SI,
from which “virtual electrodes” (VEs) were computed. In brief,
these are a spatially discrete reconstruction of the neural activ-
ity at the location of interest, with the temporal resolution of
the original recording (Barnes and Hillebrand, 2003). Using the
VE from the high pain localization, time-frequency analysis of
the envelope of stimulation was then performed for each stimu-
lation intensity. Specifically, a bootstrapping approach was used
to determine the percentage change in power across the fre-
quency range (0-100Hz) between each 2s stimulation period
and the 2s pre-stimulation baseline (Graimann et al., 2002)
and a Morlet-wavelet transform was used to create a time-
frequency spectrogram of each stimulation intensity. Normalized
group spectrograms for each stimulation intensity were then cre-
ated from the combined data of those participants who showed
changes in the gamma band, to visualize the oscillatory activity
across the group.

In order to differentiate the evoked and induced compo-
nents of the response, three sets of spectrograms were computed.
The average of spectrograms for each epoch within a condition
showed both induced and evoked changes in spectral power for
that condition. Evoked activity alone was estimated using a spec-
trogram of the averaged time series for each condition, excluding
any induced power changes not time-locked to the stimulus.
Finally, to estimate the activity which was solely induced, the
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average time series for a given condition was subtracted from
each epoch within that condition, and the spectrograms of the
resulting time series were averaged (Hauck et al., 2007).

The dependence of the change in the power of the broad
gamma band upon stimulus intensity was tested using a one-way
repeated measures ANOVA to calculate the interaction between
the averaged gamma power increase (30-80Hz) over the 2s
stimulation period and the stimulation intensity.

RESULTS

SAM LOCALISATION OF GAMMA

The SAM analysis revealed a significant change in gamma fre-
quency (30-80 Hz) in left SI, contralateral to the stimulated right
index finger, in the 12 participants when analysing around each
electrical pulse (Figure 1A). Based upon the presence of a reli-
able gamma peak in SI, the data were then further analysed to
determine the relationship between stimulation intensity, pain
rating and gamma power in the virtual electrode at the peak of
the gamma power.

STIMULATION INTENSITY AND PAIN RATINGS

The stimulation intensities determined at the calibration stage,
were significantly different (+ = 3.81, p = 0.013) between the
low sensation (mean = 2.70, SD = 0.85mA) and high sensa-
tion (mean = 4.93, SD = 2.23 mA) and a significant difference
(t = 2.65, p = 0.045) between the high sensation and low pain
(mean = 7.65, SD = 4.33 mA). However, as a consequence of the
variance across participants, there was no significant difference
(t =1.94, p=0.11) between low pain and high pain (mean =
14.6, SD = 10.99 mA) (Figure 1B).

Gamma encodes stimulus intensity

Conversely, the McGill scores for each stimulus intensity
rating, revealed no significant difference (+ = 0.97, p = 0.38)
between the low sensation (mean = 0.67, SD = 1.2) and high
sensation (mean = 2.0, SD = 3.5). However, it confirmed a sig-
nificant difference (+ = 4.11, p = 0.009) between high sensation
and low pain (mean = 6.0, SD = 6.5) and a significant difference
(t = 4.25, p = 0.008) between low pain and high pain (mean =
13.3, 5.42) (Figure 1C).

Changes in mu and beta frequency bands were also seen in a
number of participants. A decrease in beta power was seen across
the 2's stimulus train in 9 out of 12 participants. An increase in
mu power was clear in 4 participants although this was around
the same frequency as that of the electrical stimulation. A one-
way repeated measures ANOVA of both mu and beta power did
not show a significant relationship with stimulus intensity [mu:
F(3) = 0.88, p = 0.48, beta: F(g) = 1.58, p = 0.21].

GAMMA POWER AND STIMULATION INTENSITY

The area under the curve of the power spectra in the gamma
range was calculated over the 2s stimulus period and then the
log of this value was taken to provide a measure of gamma
power. Analysis of the increase in gamma (30-100 Hz) power dur-
ing each of the stimulation intensities, using a one-way repeated
measures ANOVA of gamma power x stimulation intensity,
confirmed a general dependence of gamma amplitude on stimu-
lation intensity [F(11) = 6.07, p = 0.002]. Time-frequency spec-
trograms (Figure 2) demonstrated a clear increase in the >30 Hz
gamma power range during stimulation, in the high sensation,
low pain and high pain intensities, which was not apparent in
low sensation. The gamma power increase appeared to follow

High pain
100 2l 35
. 80 &
N [ =
L 2
g 60 ‘ o
2 4 N 2
g
* 20 9
‘ . ———
0 &
-2 -1 0 2 35
Time (s)
High sensation
100 5
_. 80 &
= g
< 60 S
(@] (V)
c (V)
S 40 2
B .
5 2
20 Qo
— "l B
—
8 a4 0 1 2
Time (s)
FIGURE 2 | Time-frequency representation of Sl during stimulation.
Normalized group average bootstrap spectrograms showing changes in
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Each of the four stimulus intensities are shown, with the color scale
representing percentage change from baseline (2 s preceding stimulus
onset).
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the periodicity of the stimulation train at 7 Hz, consistent with
the observation of a 7 Hz increase in the spectrogram. In addi-
tion, decreases were observed in the mu (~10Hz) and beta
(15-30Hz) frequency ranges, consistent with effects observed
in previous stimulation studies (Cheyne et al., 2003; Gaetz and
Cheyne, 2006; Ploner et al., 2006). Analysis of the mean gamma
power (30-100 Hz) confirms an increase with stimulus intensity
(Figure 3). Furthermore, analysis performed in order to explore
phase-locking revealed that the gamma oscillations seen in this
study were evoked.

DISCUSSION
The results of this study suggest that the amplitude of the evoked
gamma response in SI shows a direct relationship with the inten-
sity of the stimulus, rather than showing a specific dependence
upon pain. An increase in evoked gamma oscillatory power was
observed in response to both painful and non-painful stimulus
trains and there was no obvious change in the temporal pat-
tern between painful and non-painful stimulation, with both
appearing to follow the time-course of the stimulus train. The
appearance of this evoked gamma increase and temporal struc-
ture, suggests that the SI response in the gamma frequency range
is encoding the arrival of somatosensory stimuli rather than a
pain stimulus per se. Importantly, the results here demonstrate a
relationship between the change in the individual stimulus inten-
sity and the change in gamma amplitude response. Indeed, there
was no clear difference in the increase in the gamma amplitude in
response to high sensation and low pain stimuli. This implies that
the perceptual difference between these two conditions, specifi-
cally the presence of pain, was not accompanied by a difference in
the gamma amplitude.

These results are consistent with previous human studies
on SI function, which suggest that it plays a central role in
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Stimulus intensity
FIGURE 3 | Gamma amplitude vs. stimulation intensity. Gamma
(30-80Hz) power increase (log of area under curve of gamma power
spectra) with each symbol representing one participant, at each of the
stimulation intensities.
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the sensory-discriminative properties of somatic stimuli (Coghill
et al., 1999; Treede et al.,, 1999; Timmermann et al., 2001;
Bornhovd et al., 2002; Della Penna et al., 2004; Worthen et al.,
2011). This is further consistent with primate experiments, in
which the discharge frequency of SI neurons was shown to
increase in response to increasing noxious thermal stimulation
(Kenshalo et al., 2000).

The gamma oscillations observed in this study were in a simi-
lar frequency range to those seen by Hauck et al. (2007) and Gross
et al. (2007), although these gamma oscillations were reported to
be induced rather than evoked. It is possible that while evoked
gamma oscillations appear to play a role in sensory-discriminative
aspects of somatic stimuli, induced gamma oscillations may have
a more high-level cognitive role in sensory and pain processing
involving attention and perception (Tallon-Baudry and Bertrand,
1999). Fukuda et al. (2008) saw gamma oscillations in response to
sensory stimuli that were evoked to begin with but then became
induced over time, perhaps in our study as we have a train of
pulses we are only capturing the evoked component of these
gamma oscillations.

The question of specificity of the amplitude of both the
gamma power and evoked potential amplitude, has been explored
using EEG to record cortical responses to repetitive laser stim-
uli (Tannetti et al., 2008; Mouraux and Iannetti, 2009; Iannetti
and Mouraux, 2010). Iannetti et al. (2008) demonstrated that
evoked potential amplitude is dependent upon stimulus saliency
and attention. A recent study by Zhang et al. (2012) demon-
strated that the amplitude of induced gamma-band oscillations
in response to painful stimuli is predicted by the subjective pain
intensity, irrespective of the saliency of the stimulus. The find-
ings in our study are consistent with these observations, in so
far as they demonstrate greater amplitude in the high pain com-
pared to low pain conditions. However, we suggest that the
evoked gamma oscillations found in our study are not pred-
icated upon the perception of pain and that the increase in
gamma power between intensities of painful stimuli was not
separable from an increase that was dependent upon stimulus
intensity. Importantly, our observation of an increase in evoked
gamma with non-painful stimuli, is consistent with observa-
tions in other studies using non-painful vibrotactile and touch
pulse stimuli (Ross et al., 2013). Furthermore, the observation
of increases in gamma activity from non-painful somatosensory
stimuli are consistent with the observation of increased SI gamma
power (25-70Hz) following stimulation of the forepaw in an
anaesthetized rat (Sumiyoshi et al., 2012). This is of particu-
lar interest, as the same study showed that the neurovascular
coupling of the fMRI signal in SI was mainly driven by the
gamma response (Sumiyoshi et al., 2012). It was not clear from
these studies whether the gamma oscillations seen were evoked
or induced. Our results are further consistent with stimula-
tion studies that show that the stimulation of SI cortex using
transcranial alternating current stimulation (tACS) at gamma
frequency (52-70 Hz) generates a tactile sensation in the con-
tralateral hand (Feurra et al., 2011). The generation of sensation
rather than pain in the associated area, implies that the gamma
signal in this range encodes stimulus intensity rather than pain
perception.
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The findings in the gamma frequency range are supported by
the observation of amplitude changes in the mu and beta fre-
quency ranges, which show a change in power in response to
somatosensory stimuli. An increase in mu was seen in 4 of the
12 participants around 6-9 Hz, however this could reflect the
frequency of the electrical stimulation which was 7 Hz. In keep-
ing with previous reports, the changes in these frequency ranges
were independent of pain perception and occurred in response
to non-painful stimulation (Cheyne et al., 2003; Ploner et al.,

2006).

Gamma oscillations have been linked to attentional processing
in response to both tactile (Bauer et al., 2006) and painful (Hauck
et al., 2007; Tiemann et al.,, 2010) stimuli. In our study we are
unable to separate out attentional effects, though an increase in
attention with higher pain intensity would be predicted.
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