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The complex task of assessing the veracity of a statement is thought to activate uniquely
distributed brain regions based on whether a subject believes or disbelieves a given
assertion. In the current work, we present parallel machine learning methods for predicting
a subject’s decision response to a given propositional statement based on independent
component (IC) features derived from EEG and fMRI data. Our results demonstrate
that IC features outperformed features derived from event related spectral perturbations
derived from any single spectral band, yet were similar to accuracy across all spectral
bands combined. We compared our diagnostic IC spatial maps with our conventional
general linear model (GLM) results, and found that informative ICs had significant spatial
overlap with our GLM results, yet also revealed unique regions like amygdala that were
not statistically significant in GLM analyses. Overall, these results suggest that ICs may
yield a parsimonious feature set that can be used along with a decision tree structure for
interpretation of features used in classifying complex cognitive processes such as belief
and disbelief across both fMRI and EEG neuroimaging modalities.
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INTRODUCTION
The complex process of decision-making appears to engage dis-
tinct cortical regions whose spatio-temporal evolution occurs
over multiple stages of directed processing. While this process-
ing likely varies according to the specific task and its difficulty,
its framework is thought proceed by internal representation of
variables, valuation of these internal states, and eventual action
selection (Rangel et al., 2008). EEG and fMRI have each been
used according to their individual strengths in temporal and spa-
tial precision to measure both serial and parallel aspects of neural
computation involved in decision-making in humans (Heekeren
et al., 2008).

Neuroimaging studies using fMRI have demonstrated that
decision tasks involving perceptual stimuli discrimination con-
sistently activate fronto-parietal networks (White et al., 2012)
including the dorsolateral prefrontal cortex (dlPFC). Similar
functional activation patterns also emerge in humans during the
process of consciously assessing the truth content of a state-
ment, as revealed by fMRI (Harris et al., 2008). Nonetheless,
the specific brain loci and patterns of activation appear to
vary uniquely according to both the eventual decision out-
come, and the categorical decision being made (Heekeren et al.,
2003).

Machine learning (ML) methods are now commonly applied
to neuroimaging data and have been used predicatively to decode
decision responses based on blood oxygenation level dependent
(BOLD) signals in selected brain regions (Calvert and Brammer,

2012). However, the volume of data in fMRI is vast—far beyond
what can be interpreted readily from a simple localization per-
spective, and a more parsimonious representation of the data
can ease the interpretation process. When applied in a “trans-
parent” fashion, ML methods can also be leveraged for their
explanatory power to gain insight into the underpinnings of neu-
ral circuitry (O’Toole et al., 2007; Ecker et al., 2010; Hanke et al.,
2010).

On the one hand, whole brain voxel data has been used
effectively for fMRI decoding (e.g., LaConte et al., 2007), par-
ticularly when a classifier such as a support vector machine
(SVM) is well tuned on these data (Chu et al., 2012). However,
with too many inputs, a classifier may begin to fit the noise,
and this overfitting may lead to poor generalization capabil-
ity (Yamashita et al., 2008). Physiologically-driven approaches
such as selecting functional regions of interest (ROIs) dimin-
ish input size substantially (Cox and Savoy, 2003; Chu et al.,
2012), but require a priori knowledge of brain morphology
associated with a given task (Mourão-Miranda et al., 2006).
While tools like multivoxel pattern analysis (Norman et al.,
2006) provide methods for determining voxel subsets with high
signal-to-noise ratio, these subsets may differ across individ-
ual scans, and spatially adjacent voxels may provide redundant
information.

The challenge or extracting class specific signal features from
EEG data is similarly challenging. EEG are inherently noisy and
non-stationary, varying significantly from trial-to-trial (Müller
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et al., 2008). Nonetheless, decoding brain states at the single trial
level has been made possible by developing analysis tools that
explain the high dimensional data with a well-defined underlying
structure. While event related potential features derived from the
EEG signal itself (e.g., P300) have been used to drive ML based
brain computer interfaces (Krusienski et al., 2008), it is often
useful to apply a dimension reduction technique first. Common
spatial patterns (e.g., Dornhege et al., 2006) that seek to find
filters that maximize variance in one condition, principle compo-
nent analysis (Subasi and Ismail Gursoy, 2010) and analytic signal
reconstruction of event related spectral perturbations (D’Zmura
et al., 2009) have all been useful for feature extraction in decoding
EEG signals. Ideally, the dimension reduction step is both inter-
pretable and capable of being used in the absence of a class specific
signature hypothesis (Lal et al., 2004), particularly if the goal is
identification of novel EEG components related to a cognitive
process.

Using a method such as independent component analysis
(ICA) allows basis images to cover the entire brain, and is an unsu-
pervised blind source separation technique (Bell and Sejnowski,
1995; Calhoun and Adali, 2006) that does not require a pri-
ori physiologic knowledge about a certain brain process. ICA
has found numerous applications in fMRI and EEG (Lan et al.,
2005) to include: data exploration (Beckmann et al., 2006), noise
component elimination (Tohka et al., 2008), and as a basis for
decoding analysis (De Martino et al., 2007; Anderson et al., 2009;
Douglas et al., 2011). A key advantage is that ICs are nominated by
the data themselves. Furthermore, IC spatio-temporal signatures
across individuals appear both stable and consistent within func-
tional neural subsystems (Damoiseaux et al., 2006; Smith et al.,
2012).

In the present paper, we describe an ICA based ML approach
to classify fMRI and EEG data of persons engaged in a bivariate
task, asserting their belief or disbelief of a variety of propo-
sitional statements. We extend previous work (Douglas et al.,
2011) by developing a quantitative metric for comparing IC
features with traditional general linear model (GLM) analysis
results for interpretation purposes. We then create a parallel ML
approach for single trial classification of belief versus disbelief
using high-density electrode EEG data, and compare the classifi-
cation accuracy achieved using ICs derived from each functional
modality.

METHODS
OVERVIEW
Our method involved application of parallel IC processing to both
EEG and fMRI data for the purpose of classification of belief
decision making. In brief, we collected EEG and fMRI from sub-
jects who were prompted to decide whether they believed or
disbelieved a particular statement presented to them on a screen.
Decision responses were recorded and used for training and test-
ing a ML classifier. ICA was run on training sets for both fMRI
and EEG data. ICs were sampled at time points that were deter-
mined to be informative for discrimination. We then projected
our ICs forward onto test data and applied our ML classifier to
test data. We then calculated accuracy by comparing the sub-
ject’s keypad response to our ML predicted response. A schematic

illustrating the parallel ICA ML processing pipelines for fMRI and
EEG is shown in Figure 1.

SUBJECTS
A total of 37 healthy participants volunteered for this experiment.
Written informed consent was obtained from each participant
prior to the experiment, which was approved by the UCLA
Institutional Review Board. Fourteen subjects participated in the
fMRI portion of the study, while 23 participants participated in
the EEG portion of the experiment. All subjects were healthy vol-
unteers aged 18–45 years old, with 15 of the participants being
female.

EXPERIMENTAL DESIGN
During the experiment, subjects were asked to evaluate truth con-
tent from a given statement, and indicate their assessment with
a keypad response. Statements were chosen at random from the
following categories: mathematical, geographical, semantic fac-
tual, autobiographical, religious, and ethical. For the fMRI task,
statements were presented via MR-compatible goggles. For addi-
tional details about the fMRI stimulus paradigm, and categorical
statements see (Harris et al., 2008). For the purposes of our ML
analysis here, we collapse all belief and disbelief events across
statement category.

The stimuli task paradigm was implemented in MATLAB
(Mathworks, Inc.) using the Psychophysics Toolbox, Version 3.0
(Brainard, 1997). Each subject trial began with a brief instruc-
tional statement following by a crosshair fixation. Statements
were presented in random order as black text against a gray back-
ground. For the subjects who participated in the EEG portion of
the experiment, a subset of subjects (n = 10) viewed each state-
ment using a rapid serial visual presentation (RSVP) protocol
with inter-word and inter-stimulus intervals of 500 ms. However,
in the present work, we focus on EEG data from subjects that
viewed the statements using the same protocol as for the fMRI
portion of the experiment. In this design, the entire statement
was presented on the screen at once. Each statement was cen-
tered on the screen with new lines beginning after each set of four
words to minimize saccade artifact. Progression to the following
statement was self-paced, and a central crosshair was presented
on the screen during the interval between successive statements.
Presentation of each new stimulus occurred 500 ms after subject
key press response.

The correspondence of the keyboard keys to belief or dis-
belief was also randomized and the statements themselves were
excluded from the MATLAB report to protect subject privacy
and as a double-blind measure. The statements were also coun-
terbalanced across each category with the goal of approximately
half of the statements yielding a “belief” response. For exam-
ple, the total number of mathematical statements that were true
such as, “2 + 2 = 4,” was equal to the number of mathematical
statements that were false. The aim of this is to derive acti-
vation related to belief and disbelief in a content-independent
manner, with approximately equal numbers of data exemplars
in each response category. Each session consisted of ∼180 trials,
which were subsequently used for training and testing of machine
learning classifiers.
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FIGURE 1 | Parallel Method for Independent Component Analysis (ICA)

based discrimination of belief and disbelief using machine learning

techniques. Following ICA decomposition on data exemplars randomly
parsed into the training set, FMRI ICs (top, red arrows) are thresholded
and binarized. These spatial masks are then multiplied by testing data.

Mean activation values are then extracted for each IC, and sampled
timecourses are used as features for decoding. EEG IC activations (bottom,
blue arrows) are projected onto testing data, and IC activation timecourses
are sampled at time points determined by wavelet data, and used as
inputs for classification.

DATA ACQUISITION AND PREPROCESSING
fMRI
All structural and functional MRI scans were acquired using
a Siemens Allegra 3T scanner (Siemens, Milwaukee, WI).
High-resolution structural images were acquired using
a magnetization-prepared rapid gradient-echo sequence.
Additional scanning parameter details can be found in Harris
et al. (2008). Standard preprocessing of data including brain
extraction, slice timing correction, motion correction, spatial
smoothing using a 5 mm kernel, high-pass filtering, and regis-
tration were carried using tools available in FSL (FMRIB Image
Analysis Group, http://www.fmrib.ox.ac.uk/fsl) (Woolrich et al.,
2001; Jenkinson et al., 2002)

EEG
EEG data were recorded using a high density 256-channel GES
300 Geodesic Sensor Net (Electrical Geodesics Inc.) with a sam-
pling rate of 250 Hz in a copper shielded room that was dimly lit.
Initial data preprocessing steps were carried out using NetStation

4.4.2 software. These steps included: bandpass filtering from 0.1
to 100 Hz, and a 60 Hz notch filter with a passband gain of –0.1 dB
(99%) and stopband gain –40dB (1.0%). We then segmented data
500 ms before and 2500 ms after the stimulus presentation for
each event.

Artifact detection for removal of eye movement was accom-
plished using a moving average of 80 samples with a window size
160 samples to correct for eye movement. Channels that con-
tained >20% error and segments with >10 bad channels were
excluded from analysis. Ocular artifact removal was then per-
formed to exclude eye blinks from the analysis, using a blink
threshold of 10 μV/ms for eyeblink detection. Identification and
subsequent removal of these artifacts from all channels was
accomplished using methods described here (Gratton et al., 1983;
Miller et al., 1988). Segments were then averaged across each
stimuli condition, and baseline corrected using a 100 ms baseline
prior to the stimulus onset for correction.

For our analysis of ERSPs, we bandpass filtered the EEG data
into each of the following respective subands: delta (0.1–4 Hz),
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theta (4–8 Hz), alpha (8–12 Hz), beta (12–20 Hz), and gamma
(20–45 Hz). Following preprocessing, the power envelope of each
characteristic frequency band was calculated using software devel-
oped for this purpose in Matlab (Mathworks, Inc.), and sampled
at time points as described below.

INDEPENDENT COMPONENT ANALYSIS AND FEATURE EXTRACTION
fMRI
We performed a global ICA computation on each subject’s data
set. ICA is a powerful tool for finding hidden factors that under-
lie multivariate data. Known input data, D, is decomposed into
a linear combination of statistically independent latent variables,
or components, in an unknown mixing system, M. Classic ICA
proceeds by the following decomposition:

D = MA. (1)

The matrix A is optimized to obtain statistically independent
spatial maps that correspond to various regions of the brain
with corresponding temporal aspects. Probabilistic ICA was per-
formed here, using the methodology described above, which
forms the basis for the computational program FSL MELODIC,
(Beckmann and Smith, 2004).

IC timecourses calculated on training data were sampled
at time points corresponding to the maximum predicted
BOLD response value. Due to the rapid, self-paced experimen-
tal paradigm, multiple belief and disbelief events sometimes
occurred within a single repetition time (TR). To avoid overlap
in these cases, we included only those data instances whose class
label was identical for two or more consecutive trials, effectively
reducing the number of exemplars by approximately one third.

In order to extract corresponding IC timecourses from data
parsed into the test set for ML purposes, IC spatial masks were
binarized and multiplied by the fMRI test data over time. In our
previous work, we found that approximately six ICs were effective
for classification and describing the data (Anderson et al., 2011).
We therefore extracted mean values from each of these IC spa-
tial masks multiplied by the test data, and sampled at time points
corresponding to the maximal BOLD activity for each keypad
response for subsequent predictive labeling.

EEG
Following preprocessing, ICA decomposition was performed on
each set of training data for all subjects using the Infomax
algorithm (Bell and Sejnowski, 1995) as implemented in the logis-
tic infomax algorithm “binICA” call within EEGLab (Delorme
and Makeig, 2004). ICA decomposition of EEG channel data is
decomposed into a mixing matrix of weights and IC activations,
analogous to equation 1. Segmented data epochs were randomly
parsed into ten approximately equal bins. As explained further
in the machine learning section, nine of the ten bins were used
for training on each cross validation fold. In order to project ICs
derived from the training data onto the test data, we calculate the
inverse of the mixing matrix and multiply it by the new data as
follows:

ATest = DTrainingM−1
Training (2)

In each case, our mixing matrix was square and invertible, where
the number of ICs was equal to the number of channels. IC
data was demeaned for each channel prior to ML analysis. We
compared classification of ICs to accuracy using data from each
spectral band. In order to accomplish this, we similarly demeaned
and squared each spectral time course, and sampled each spectral
band along with ICs at time points described below.

Wavelet Informed EEG IC Sampling. In order to determine time
points for feature extraction, we utilized time-frequency informa-
tion contained in the wavelet spectrogram, whose transform is
described by equation 3 (Sanei, 2007):

W(s, t) =
∫

x(t)
1

s
y∗

(
t − t

s

)
dt (3)

where, ψ is the equation of the mother wavelet, σ is the scal-
ing factor used to dilate and contract the mother wavelet and
achieve different pseudofrequencies, τ is the position parameter,
and x(t) is the signal being analyzed. Wavelet decomposition was
performed on all electrode channels, using the wavelet toolbox
within NetStation (v 4.4.2). We used a Morlet wavelet which has
a Gaussian shape in both time and frequency domains, with a
width of 6 (Tallon-Baudry et al., 1996) and a frequency step of
1 Hz. Power spectrograms in the training data were then averaged
across conditions, as has been done by many (e.g., Tallon-Baudry
et al., 1997). We baseline corrected and calculated the power
by squaring the magnitude of the complex wavelet coefficient
and dividing the mean power across the entire segment for each
frequency step.

A between-condition difference was then calculated for each
channel by averaging the power for each condition at all time
points and subtracting the mean power from the opposite con-
dition. The time point that maximized the sum of the power
across frequency bands in these differences across all channels was
selected for feature extraction as follows:

argmax
[
fB, {t, n}] fB = ∑

jw

(
E2

B − E2
DB

)
argmax

[
fDB, {t, n}] fDB = ∑

jw

(
E2

DB − E2
B

) (4)

where, EB is the power for belief at time point t in channel n aver-
aged across the frequencies contained within the band jω, and
EDB is the corresponding measure for disbelief. Feature extraction
time points were averaged across all subjects using a leave one out
cross validation approach, so wavelet information from the cur-
rent subject undergoing classification was not used to inform the
time point selection. Feature extraction proceeded by sampling
power envelopes of either IC time courses or spectral band signa-
tures for each electrode channel at these key discriminatory time
points.

MACHINE LEARNING CLASSIFICATION
Within subject classification of EEG and fMRI data was accom-
plished using a nested 10-fold cross validation procedure. Events
are first parsed randomly into ten bins. Nine bins are then
used for training and parameter tuning via an inner cross
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validation procedure, and the tenth held out data is used as
the test set. We tested four machine learning classifiers over a
range of complexity: Bayes Net, Support vector machine (SVM)
(Burges, 1998; Vapnik, 2000), Adaboost (Viola and Jones, 2001),
and J48 decision tree based on the C4.5 decision tree algo-
rithm (Quinlan, 1993). Classification accuracy for each algo-
rithm was assessed via 10-fold cross validation. Hyperparameters
were optimized using a 10-fold nested cross validation proce-
dure and ranked features were sequentially added to the train-
ing set using a forward feature subset approach, as described
in Douglas et al. (2011). For the J48 decision tree, we set
the minimum number of instances per leaf to 40. We used
implementations of each ML algorithm available in the open
source Weka (Waikato Environment for Knowledge Analysis)
software.

Interpretation of classification
In order to visualize the classification structure for interpretation
purposes, we used the WEKA Knowledge Flow tool to illustrate
the underlying classifier structure for the J48 decision tree. FMRI
IC features that were assigned to either the root node or a decision
node further along in the partitioning structure were compared to
the GLM data quantitatively by thresholding (z ≥ 2.3) and then
binarizing each spatial map.

RESULTS
EEG BELIEF DECISION DATA
We averaged the number of responses in each category across
subjects to compare the number of data exemplars in each cat-
egory. Overall, we found that subjects responded “belief” to

45.6% of questions, thus making “disbelief” a slightly more fre-
quent response. The feature extraction time averaged across the
group was 578 ± 19 ms earlier than the average time for disbelief.
Wavelet spectrograms from an illustrative individual are shown in
Figure 2 for channels that mutually maximized belief and disbe-
lief contrasts, along with selected channels location with respect
to the electrode channel configuration.

CLASSIFICATION ACCURACY INTERPRETING CLASSIFIER STRUCTURE
Comparing IC spatial maps with GLM results
Mean 10-fold cross validation accuracy for IC based classifica-
tion of FMRI was 80.8, 91, 84, and 80% for support vector
machine, naïve Bayes, J48 decision tree and k-star classifiers.
We generated decision trees for each cross validation fold using
reduced error pruning. Based on our nested cross validation, we
selected a minimum number of 10 data instances per leaf. The
structure of an IC based decision tree classifier using fMRI data
from a representative subject’s data is shown in Figure 3, with
final labels of belief (B) and (DB) indicating the final predicted
response.

The root IC and subsequent nodal ICs used in partitioning the
data are shown in the inset. IC voxels that also survived thresh-
old in GLM contrasts for belief-disbelief, and disbelief-belief are
shown in left and right columns respectively. The root node, IC 5,
and ICs 15 and 19 colocalized with belief GLM areas in left middle
frontal gyrus and precuneus. ICs 13, 19 and GLM disbelief-belief
contrast revealed significant voxels in lateral occipital cortex,
whereas paracingulate gyrus was unique to IC 13. Areas that were
unique to IC maps included right medial frontal gyrus, right
precentral gyrus, right amygdala, and bilateral cingulate cortex.

FIGURE 2 | Wavelet informed sampling of EEG data. Stimulus-locked
wavelet data are shown for a specific individual for illustrative purposes.
(Left) Electrode array configuration. (Right) In the top panel, wavelet power
data are shown for each category for a particular frontal channel that was

used to determine the belief extraction time point. The lower panel
similarly shows data from the channel used to determine the disbelief
extraction time. Power increases occurred earlier for belief events than for
disbelief events.
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FIGURE 3 | (Inset) J48 Decision tree structure using independent

component (IC) features derived from fMRI data. The green box at top
is the root node, pink boxes are used for subsequent nodes for splitting of
the data, and blue boxes indicate terminal decisions or leaf nodes. These
IC spatial maps along with general linear model (GLM) contrasts are

shown at right. (Left Column) Belief (Green) thresholded z-stat masks
generated from a GLM analysis with the contrast of belief-disbelief are
overlaid with IC masks (blue) and the voxels that are common to both
(pink). (Right Column) Disbelief (red) shown similarly with blue for IC and
coregistered voxels in yellow.

EEG classification accuracy
Similar to our fMRI analysis, we calculated classification accuracy
with respect to the four classifiers tested. IC and power envelopes
from spectral timecourses were sampled at points determined
from wavelets, as described previously. Figure 4 shows the pruned
J48 decision tree hierarchical structure for a specific subject’s EEG
data. Average classification across all four algorithms was 78.8,
77.1, 73.5, 72.2, and 66.1% for gamma, theta, beta, alpha, and
delta, respectively. We also stacked all of the spectral features
into a “combined” classifier. Mean accuracy for the combined
spectral classifier was 82.3%. Overall, the mean of each of these
spectral bans as well as the combined spectral classifier were less
than 88.6%, the average accuracy achieved using ICs across the
four algorithms. Accuracy obtained from using IC features was
85.9, 87.7, 92.6, 88.7%, for support vector machine, BayesNet,
AdaBoost, and the J48 Decision tree. Classification accuracy
using power envelopes from spectral bands and ICs as features
is summarized in Figure 4.

DISCUSSION
In the current study, we described a method for bivariate clas-
sification of belief and disbelief brain states using ICA for both
dimension reduction and subsequent feature extraction. We pre-
viously developed a method for training a ML classifier on
mean time courses extracted from thresholded IC spatial maps

(Douglas et al., 2011). In this analysis, we tested the perfor-
mance of six different ML classifiers in their utility for shatter-
ing belief and disbelief data. In this previous analysis, our goal
was to develop a classifier that was interpretable by trading off
model complexity with error. In this analysis we modeled our
classifier output using a sum of exponentials and terminated
the addition of more features to the model using the Akaike
Information Criterion. While the addition of more features would
often diminish the error on the training set marginally, we argued
that the sparse classifier would be easier to interpret from a neu-
roscientific point of view. In the current work, we extended this
analysis in two ways. First, we interpreted the classifiers that
resulted from our initial analysis by visualizing the extent to which
our sparse remaining IC features correlated spatially with the
voxel set of significant BOLD activations that resulted from a con-
ventional GLM analysis. Second, we collected EEG data on the
same belief decision making paradigm, and applied an analogous
ML approach to determine how well IC timecourses could be used
to classify EEG belief data.

We first presented the structure of example decision trees clas-
sifiers based on fMRI ICs. We found that the spatial patterns of
certain IC decision tree nodes were quite similar to conventional
GLM results. However, certain IC nodes mapped to regions with
unknown relevance to belief decision making. Given the spar-
sity with which these classifiers were operating, it is possible that
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FIGURE 4 | (Top) Mean classification accuracy achieved using

features derived from power envelopes for each spectral band

for four classifier algorithms shown in left panel, and IC

accuracy with compared with accuracy achieved when

combining all spectral features into a single classifier for the

same four machine learning algorithms. (Bottom) Structure of
an individual subject example J48 decision tree used in IC based
classification.

these additional areas are involved in some stage of the complex
directed processing that occurs in decision making. These regions
may only be involved in certain categorical decisions or for cer-
tain individuals, and therefore did not survive thresholding in
conventional analyses. It is possible that this process may be one
mechanism for using IC for exploratory purposes.

We also presented EEG based IC classification results on this
same task. The J48 decision tree structure for partitioning data
into classes is somewhat similar to decision flow diagrams used
for triage in the clinical setting. Decision trees may therefore rep-
resent an intuitive structure for interpreting ML features and their
output. Overall, we found that ICs proved useful as features for
discriminating between the cognitive states of “belief” and “dis-
belief” at the single trial level in both fMRI and EEG data collected
from a high density 256 electrode net. Our IC based classifica-
tion process can be easily mapped back to the data for interpretive
purposes.

INTERPRETING DIAGNOSTIC FEATURES: fMRI BOLD ACTIVATIONS
AND ICs
It is often the case in fMRI decoding studies that the ML process is
abstract and can involve thousands of features. While a large vec-
tor of features often outperforms a reduced feature set, the margin
of improved accuracy may only be slight (e.g., Brodersen et al.,

2011; Chu et al., 2012). Selecting relevant features while con-
currently minimizing extraneous and redundant features is a key
challenges in machine learning (ML) applications, as the perfor-
mance of certain classifiers degrades with abundant or extraneous
information (Kohavi and John, 1997). A parsimonious attribute
subset may not only improve the generalization capability of a
classifier (Yamashita et al., 2008), but also all for scientific gain
when the process is readily intelligible.

Depending on the objective, IC features may be advantageous
for ML, as they offer a concise functional representation of the
data, which can be easily interpreted and does not require a priori
information. It is not surprising that our analysis revealed that
certain highly discriminatory ICs coregistered to a large extent
with the group level contrasts for Belief-Disbelief and Disbelief-
Belief. It is perhaps more interesting to consider regions unique
to IC maps.

IC activity not related to the GLM spatial maps that remained
in the decision tree after pruning may be meaningful. For exam-
ple, reading phrases that contain negative emotional associations
have been shown to activate amygdala (Osaka et al., 2013), and
the amygdala also appears to play a key role in autobiographi-
cal memory encoding, consolidation, and retrieval (Markowitsch
and Staniloiu, 2011). Others have shown that basolateral amyg-
dala is part of a circuit involved in effort based decision making
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in rodents (Floresco and Ghods-Sharifi, 2007). Our observa-
tion here could therefore relate to emotional or autobiographical
memory processing or even the amount of effort required for a
particular decision. Activation that did not coregister with GLM
regions might also reflect neural activity that non-linearly dis-
criminates between disbelief and belief in a way that t-statistics
do not capture. It is also important to note that in our analysis
here as well as in (Douglas et al., 2011), we collapsed our anal-
ysis across all belief and disbelief categories. Previous work by
our group demonstrated that there were no statistically significant
differences between these categorical decisions using fMRI GLM
analysis (Harris et al., 2008). It is therefore possible that differen-
tial regions that we observed, here, reflect categorical differences
that did not survive statistical thresholding.

Given the highly complex and distributed nature of the cog-
nitive processing of belief, it is highly likely that the independent
multivariate normal assumption of the GLM is violated. However,
the nature of this activity is difficult to interpret using simple
concepts of up or down regulation of networks. It is also possi-
ble that discriminatory information revealed by ICA may not be
present in all subjects or all belief/disbelief data exemplars, and
therefore a GLM analysis may be underpowered to detect these
changes.

FEATURE SELECTION AND SPECTRAL CLASSIFICATION IN EEG
We used power envelopes derived from spectral bands as fea-
tures in classification of belief decision-making. Overall, these
results demonstrated that the gamma frequency band was most
the most discriminatory spectral band for belief/disbelief label-
ing. Compared to these results, IC features outperformed power
envelope in other spectral bands, but was overall similar to the
performance of the gamma band features across each of the four
classification algorithms discussed here.

A number of studies have found that EEG classification accu-
racy can vary across frequency subands (e.g., D’Zmura et al.,
2009). The functional significance of different neural oscillations
are thought to be reflect with different cognitive or neuronal states
(Engell et al., 2012). However, interactions across frequencies
provide the rich potential for computational encoding of higher
order representations. Gamma frequencies, for example, are often
modulated by lower frequencies (Buzsáki and Wang, 2012). In
terms of decision-making, cross frequency entrainment has been
shown to be important in rodent navigation and decision-making
(Tort et al., 2008). A number of papers have suggested cross-
frequency coupling as a potential mechanism for hierarchical
integration of network-level activity (Canolty and Knight, 2010)
for higher cognitive processing such as sensory binding. Our
wavelet informed feature selection method is consistent with the
idea that belief and disbelief would require synchronous activity
across frequency bands. However future work is needed to fully
understand cross frequency interactions and how they are related
to decision processing and whether or not ICs reflect aspects of
this coupling.

fMRI vs. EEG
Overall, IC features derived from EEG data outperformed
fMRI data. It is interesting to note that in many of the

EEG channels, there were observable event-locked changes in
spectral power for both belief and disbelief that were sep-
arated in time. Given that these categorical time-frequency
changes were separated by ∼500 ms, it is unlikely that these
temporal changes would be reflected in the BOLD signal.
Nonetheless, it is possible that signal changes measured at
different times at the same loci on the scalp were actu-
ally generated by spatially distinct brain regions, resolvable by
fMRI. Future work may involve analyzing EEG in the source
domain.

DECISION TREES AS HIERARCHICAL INTERPRETABLE CLASSIFIERS
In the present work, we used decision trees for not only classifica-
tion but also for interpretation of features used in the multistage
learning process. Decision trees, which are directed trees with
edges and nodes that provide a unique mapping from the root
node to a class label. While the overall process is indeed non-
linear, decision tree classifiers break down complexity learning
problems into the union of a series of simple decisions. Decision
trees are perhaps intuitive because provide a quantitative pro-
cess not all that unlike a decision flow diagrams used commonly
in medical triage. When decision tress are used in combination
with IC features, decision trees may allow for combining statisti-
cal knowledge of activations and deactivations in an interpretable
way.

CONCLUSIONS AND FUTURE WORK
Overall, these results suggest that ICs may yield an important
basis set for classifying complex cognitive processes such as belief
and disbelief across both fMRI and EEG neuroimaging modal-
ities. Future work may focus on studying belief and disbelief
decision making using concurrently collected EEG-fMRI data. A
joint analysis of simultaneous data using methods like joint ICA
(e.g., Franco et al., 2008; Edwards et al., 2012) may yield a more
in-depth understanding of the neural comparators involved in
belief decision-making.

There are strong motivations for understanding the mecha-
nisms underlying veracity assessment, and subsequent decision
making about truth content in particular, since a number of
potential applications exist given this understanding. When
used in combination with machine learning (ML) pattern
classification techniques, such knowledge could be used in
biomedical applications to drive brain computer interface based
communication devices or improved consumer product test-
ing (Calvert and Brammer, 2012). While the ICA computation
may be time consuming, in the present work ICs were calcu-
lated on training data, and then applied to testing data. Given
that the application of ICs to testing data is computation-
ally rapid, real-time application of this methodology may be
possible.
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