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Abnormalities in frontostriatal circuitry potentially underlie the two core deficits in Autism
Spectrum Disorder (ASD); social interaction and communication difficulties and restricted
interests and repetitive behaviors. Whilst a few studies have examined connectivity within
this circuitry in ASD, no previous study has examined both functional and structural
connectivity within the same population. The present study provides the first exploration of
both functional and structural frontostriatal connectivity in ASD. Twenty-eight right-handed
Caucasian male ASD (17.28 ± 3.57 years) and 27 right-handed male, age and IQ matched
controls (17.15 ± 3.64 years) took part in the study. Resting state functional connectivity
was carried out on 21 ASD and control participants, and tractography was carried out
on 22 ASD and 24 control participants, after excluding subjects for excessive motion
and poor data quality. Functional connectivity analysis was carried out between the
frontal cortex and striatum after which tractography was performed between regions that
showed significant group differences in functional connectivity. The ASD group showed
increased functional connectivity between regions in the frontal cortex [anterior cingulate
cortex (ACC), middle frontal gyrus (MFG), paracingulate gyrus (Pcg) and orbitofrontal
cortex (OFC)], and striatum [nucleus accumbens (NAcc) and caudate]. Increased functional
connectivity between ACC and caudate was associated with deactivation to social rewards
in the caudate, as previously reported in the same participants. Greater connectivity
between the right MFG and caudate was associated with higher restricted interests
and repetitive behaviors and connectivity between the bilateral Pcg and NAcc, and
the right OFC and NAcc, was negatively associated with social and communicative
deficits. Although tracts were reliably constructed for each subject, there were no group
differences in structural connectivity. Results are in keeping with previously reported
increased corticostriatal functional connectivity in ASD.
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INTRODUCTION
Frontostriatal circuitry plays an important role in social moti-
vation, which is postulated to underlie deficits in social interac-
tion and communication in Autism Spectrum Disorder (ASD)
(Dawson et al., 2005, 2012; Chevallier et al., 2012). Aberrant
BOLD responses to social rewards have been reported in a num-
ber of studies of social reward processing in ASD, providing sup-
port for this hypothesis (Scott-Van Zeeland et al., 2010; Dichter
et al., 2011; Delmonte et al., 2012; Kohls et al., 2012a,b). Studies
of reward and executive function also implicate frontostriatal cir-
cuitry in repetitive behavior symptoms (Langen et al., 2011a,b;
Dichter et al., 2012). Additionally, functional abnormalities in
frontostriatal circuitry have been reported during higher-order
cognitive and sensorimotor tasks (Schmitz et al., 2006; Takarae
et al., 2007; Scott-Van Zeeland et al., 2010). Therefore, abnormal-
ities in frontostriatal circuitry may underlie the two core deficits
in ASD; social interaction and communication, and restricted
interests and repetitive behaviors (Langen et al., 2011a,b;

Chevallier et al., 2012; Dichter et al., 2012), as well as other
cognitive and motor impairments that are associated with ASD.

Frontostriatal circuitry plays a key role in a number of different
processes such as emotion, motivation, cognition, and the con-
trol of movement, which work in tandem to execute goal directed
behaviors (Haber, 2003). The functional variety of frontostriatal
circuits can be explained to some extent by examining its cortical
inputs. Frontostriatal circuits have a looped structure with cor-
tical inputs feeding information to the striatum which in turn
projects back to the cortex via the thalamus (Alexander et al.,
1986, 1990). Primate studies have shown that frontostriatal pro-
jections are arranged into a number of parallel, integrative loops,
with each loop comprising discrete regions of striatum, cortex,
globus pallidus, substantia nigra and thalamus, and subserv-
ing specific motor, cognitive, or affective function (Groenewegen
et al., 1999, 2003; Haber and Knutson, 2009). Information
is primarily channelled from ventral limbic, to more dorsal
cognitive and motor loops such that action decision-making is
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influenced by motivation and cognition (Middleton and Strick,
2000; Haber, 2003). Diffusion tensor imaging (DTI) studies indi-
cate that corticostriatal circuitry is similarly organized into segre-
gated and converging loops in humans (Lehéricy et al., 2004; Leh
et al., 2007; Draganski et al., 2008; Verstynen et al., 2012) and rest-
ing state functional connectivity analysis of the human striatum
has shown functional organization of corticostriatal loops into
affective, cognitive, and motor components (Di Martino et al.,
2008; Choi et al., 2012).

ASD is characterized by abnormal functional and structural
connectivity (Just et al., 2004; Cherkassky et al., 2006; Alexander
et al., 2007; Keller et al., 2007; Kleinhans et al., 2008; Di Martino
et al., 2010; Weng et al., 2010; Langen et al., 2011a,b; Müller
et al., 2011; Sato et al., 2012; Von dem Hagen et al., 2012).
Despite the growing evidence implicating frontostriatal circuitry
in ASD pathology, few studies have specifically examined connec-
tivity within this circuit. In a resting state study of corticostriatal
connectivity, children with ASD showed increased connectivity
between the caudate and putamen and a number of cortical and
subcortical regions (Di Martino et al., 2010). Only one previous
DTI tractography study has examined frontostriatal structural
connectivity in ASD. The ASD group showed lower fractional
anisotropy (FA) in tracts connecting the putamen to the frontal
cortex, and increased mean diffusivity (MD) in tracts connecting
the NAcc to the frontal cortex (Langen et al., 2011a,b).

To date, no previous study has combined functional and
structural MRI data from the same participants to examine the
connectivity of frontostriatal circuitry in ASD. In the present
study, we investigated functional connectivity between frontos-
triatal regions and potential white matter differences underlying
group differences in functional connectivity. Group differences
in connectivity were examined in relation to behavioral impair-
ments and striatal deactivation to social rewards as previously
reported in the same particpants (Delmonte et al., 2012).

METHODS
PARTICIPANTS
Twenty-eight right-handed Caucasian male ASD [mean age
(SD) = 17.28 (3.57) years] and 27 right-handed male, age and IQ
matched controls [mean age (SD) = 17.15 (3.64) years] took part
in the MRI study. Twenty-one ASD and control participants were
retained for the fMRI analysis and 22 ASD and 24 control partic-
ipants were included in the DTI analysis after excluding subjects
for excessive motion (movements >3 mm) or poor data quality.
ASD participants were recruited through an associated genet-
ics research programme, clinical services, schools and advocacy
groups. Controls were recruited through schools, the university
and volunteer websites. Ethical approval was obtained from the
St. James’s Hospital/AMNCH (ref: 2010/09/07) and the Linn Dara
CAMHS Ethics Committees (ref: 2010/12/07). Written informed
consents/assents were obtained from all participants and their
parents (where under 18 years of age).

Exclusion criteria included a Full Scale IQ (FSIQ) <70,
known psychiatric, neurological, or genetic disorders, a history
of a loss of consciousness for more than 5 min and those cur-
rently taking psychoactive medication. Four subjects in the ASD
group had a secondary diagnosis of Attention Deficit Disorder

(ADD) or Attention Deficit Hyperactivity Disorder (ADHD).
Controls were excluded if they had a first degree relative with
ASD or scored above 50 on the Social Responsiveness Scale
(SRS) (Constantino et al., 2003) or above 10 on the Social
Communication Questionnaire (SCQ) (Rutter et al., 2003). The
Adult prepublication version of the SRS was used with per-
mission in cases 18 years or older (Constantino and Todd,
2005). All participants had normal, or corrected to normal,
vision.

DIAGNOSTIC ASSESSMENTS AND COGNITIVE MEASURES
ASD diagnosis was confirmed using the Autism Diagnostic
Observation Schedule (ADOS) (Lord et al., 1994) and the Autism
Diagnostic Interview Revised (ADI-R; Lord et al., 2000). Clinical
consensus diagnosis was established using DSM-IV-TR criteria
and expert clinician (Louise Gallagher). FSIQ was measured using
the four subtest version of the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 1999) or the Wechsler Intelligence
scale for Children-Fourth Edition (WISC-IV; Wechsler, 2003).
Performance IQ (PIQ) score was based on the Matrix Reasoning
and Block Design subtests and Verbal IQ (VIQ) score on the
Vocabulary and Similarities subtests.

MRI DATA ACQUISITION
A high-resolution 3D T1-weighted MPRAGE image was acquired
for each participant (FOV = 256 × 256 × 160 mm; TR = 8.5 ms;
TE = 3.9 ms; acquisition time = 7.3 min; voxel size = 1 × 1 ×
1 mm). One hundred and fifty resting state (eyes shut) functional
scans were acquired using a using a T∗

2 weighted gradient echo
sequence to visualize changes in the BOLD signal (TR = 2000 ms,
TE = 28 ms; flip angle = 90◦; FOV = 240 × 240 mm; voxel size:
3 × 3 × 3.5 mm, slice gap 0.35 mm; 38 slices; acquisition time
= 5.06 min). Diffusion weighted data were encoded along 32
independent directions, with one non-diffusion weighted image,
using a single-shot echo-planar imaging (EPI) sequence with
SENSE parallel imaging scheme (SENSivitiy Encoding; TR =
12052 ms; TE = 55 ms; B-value 1000; slice thickness/gap FOV;
slice number = 70; voxel dimensions 2 × 2 × 2 mm; acquisition
time 8.08 min).

STATISTICAL ANALYSIS OF BEHAVIORAL DATA
Behavioral data were analysed using SPSSv16. Two sample t-tests
were used to examine group differences in age and IQ measures.
Correlations were performed to examine relationships between
structural and functional connectivity, between connectivity val-
ues and ADI-R scores and between connectivity values and striatal
activation to social rewards. For correlations with the ADI-R,
the DSM-5 model, which classifies ASD symptoms into social
and communicative deficits (SCD) and restricted and repetitive
behaviors (RRB), was used. The two factor model has been sup-
ported by a number of factor analytic studies (Boomsma et al.,
2008; Frazier et al., 2008; Georgiades et al., 2012; Mandy et al.,
2012). Item level data were classified into SCD or RRB symp-
tom domains according to the two factor model reported by
Georgiades et al. (2012) to create a quantitative score on each fac-
tor. Pearsons’s and Spearman’s rank-order correlations were used
where appropriate.
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FUNCTIONAL CONNECTIVITY ANALYSIS
fMRI preprocessing was carried out in SPM8 (www.fil.ion.ucl.ac.
uk/spm) in Matlab, 2009a (MathWorks Inc., United Kingdom).
Before preprocessing, the origin was set to the anterior com-
misure for both T1-weighted and EPI Images. The images
were slice-time corrected, realigned to correct for motion
artifacts and co-registered to the skull stripped T1-weighted
image. Normalization to standard stereotaxic space (Montreal
Neurological Institute; MNI) was performed using the ICBM EPI
template and the unified segmentation approach (Ashburner and
Friston, 2005). The data were then re-sliced to a voxel size of
2 × 2 × 2 mm3. Finally, the images were smoothed using a 5 mm
full-width-half-maximum (FWHM) Gaussian kernel to conform
to assumptions of statistical inference using Gaussian Random
Field Theory (Friston et al., 1995a,b). Given recent evidence that
resting-state networks are particularly susceptible to head motion
(Power et al., 2012; Van Dijk et al., 2012) independent sam-
ples t-tests were performed to ensure that groups did not differ
on rotation or translation parameters [translation: mean ASD
= 0.0401 (SD = 0.016), mean control = 0.0331 (SD = 0.0157)
p = 0.136; rotation: mean ASD = 0.0006 (SD = 0.00002), mean
control = 0.0005 (SD = 0.00002) p = 0.122] and average frame-
wise displacements (see Figure 1) were included as covariates of
no interest in the analyses as findings from a recent resting-state
study indicate that this yields similar results to removing high-
movement time-points (scrubbing) (Fair et al., 2012; Di Martino
et al., 2013; Satterthwaite et al., 2013; Yan et al., 2013).

Functional connectivity analysis was carried out using
the CONN toolbox (http://www.nitrc.org/projects/conn/)
(Whitfield-Gabrieli and Nieto-Castanon, 2012). Normalized bias
corrected T1 images were generated in SPM (http://www.fil.ion.

ucl.ac.uk/spm/) and segmented into gray matter, white matter,
and CSF. The principle eigenvariate of the BOLD time-courses

FIGURE 1 | Scatterplot showing individual mean framewise

displacement. Individual subjects are shown on the x-axis and framewise
displacement (mm) on the y-axis. ASD subjects are shown as gray
diamonds and controls as white squares. The dashed vertical line divides
the two groups. Solid horizontal lines across the ASD and Control values
show the group mean.

from white matter and CSF, as well as the 6 motion correction
parameters were included as regressors in the analysis to remove
signals associated with these factors. The data were then band
pass filtered between 0.008 and 0.2 Hz as recommended by
Baria et al. (2011). A hanning window was used to weight down
the initial and end scans within the resting state period. Seed
regions were defined within the left and right frontal cortex
[including the frontal medial and orbital cortices, inferior
frontal gyrus, pars opercularis and pars triangularis, frontal
pole, middle, superior frontal gyrus, subcallosal cortex, cingulate
gyrus-anterior division, the paracingulate gyrus, precentral
gyrus, and juxtapositional lobule cortex/supplementary motor
area (see Figure 2)]. As the amygdala provides important inputs
to the striatum (Haber, 2003; Groenewegen et al., 2003; Haber
and Knutson, 2009) and has been implicated in functional
and structural MRI studies of ASD (Baron-Cohen et al., 2000;
Schultz, 2005; Verhoeven et al., 2009; Groen et al., 2010; Greimel
et al., 2012a,b; Sato et al., 2012), it was also included as a seed
region in this analysis (see Figure 3). Target regions included the
left and right caudate, putamen, and NAcc (see Figure 3). Masks
for these regions were generated using the Harvard-Oxford
probabilistic atlas in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
and thresholded at 20%. The ROI time series were defined as the
principle eigenvariate of the time series within the ROI voxels
using principle component decomposition. ROI-to-ROI correla-
tional analyses were performed between each of the seed regions
in the frontal cortex and amygdala and the target regions in the
striatum. Second level random effects analyses were computed
to examine group differences in connectivity using a t-test with
age, IQ, and frame-wise displacements included as covariates to
control for the effects of these factors. Results were corrected for
multiple comparisons for the target regions at the FDR threshold
(p < 0.05).

DIFFUSION TENSOR TRACTOGRAPHY
Preprocessing of diffusion weighted data was carried out using
Explore DTI (Leemans et al., 2009). The data were first screened
by looping through each subjects’ image to ensure that there were
no gross artifacts such as signal dropout. Data were then corrected
for eddy current distortions and subject motion with b-matrix
rotation to preserve orientational information (Leemans and
Jones, 2009). First, the diffusion-weighted images were realigned
to the non-diffusion weighed (B0) image using a full affine trans-
formation and cubic interpolation. Motion tensor values were
estimated using robust estimation of tensors by outlier rejection
(RESTORE; Chang et al., 2005). The RESTORE method improves
tensor estimation compared to the linear and non-linear least
squares methods, correcting for distortions due to fat suppres-
sion and cardiac pulsation. The final preprocessing step involved
correcting for physically implausible signals. The data were then
visually inspected to ensure that the gradient components were
in the correct orientation. Finally, participants were excluded
for excessive motion (>3 mm), with 22 ASD and 24 control
participants retained for further analysis.

Tractography analyses were confined to intra-hemispheric
tracts between regions that showed significant group differences
in functional connectivity. Whole brain tractography was carried
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FIGURE 2 | Masks for the frontal cortex (only the left hemisphere is

shown). ACC is shown in red, the OFC in blue, the MPFC in green, frontal
pole in violet, IFG opercularis in yellow, IFG triangularis in cyan,
juxapositional lobe in green, MFG in yellow, paracingulate in blue,
precentral gyrus in light blue, SFG in grayscale and the subcallosal gyrus in
yellow, displayed on the left hemisphere of a standard brain in neurological
convention (left is left and right is right).

FIGURE 3 | Masks for the striatum and amygdala. The NAcc is shown in
yellow, the caudate in green, the putamen in red and the amydgala in blue
displayed on the right hemisphere of a standard brain in neurological
convention (left is left).

out using the deterministic streamline algorithm (Basser et al.,
2000) as implemented in Explore DTI (Leemans et al., 2009).
Tractography was carried out in each subjects’ native space using
a 2 mm seed point resolution, a 1 mm step size, an angle threshold
of 30◦ and an FA tract termination threshold of 0.2. Specific tracts
of interest were then isolated using regions of interest (ROIs)
with inclusive Boolean logical “AND” operators used to include
tracts passing through a specific regions and exclusion “NOT”

FIGURE 4 | Caudate and NAcc tracts for the template subject. Tracts are
shown in the axial (left) and sagittal (right) planes in neurological convention
(left is left). The caudate-prefrontal tracts are shown in yellow and
NAcc-prefrontal tracts are shown in red.

operators used to exclude tracts passing through other regions.
The atlas based segmentation approach was used to define ROIs
in a template subject’s native space (Lebel et al., 2008). These
ROIs were then transformed to each subjects’ native space for
tractography analysis. A template subject was chosen at random
as in Lebel et al. (2008). Masks of the caudate and NAcc from
the Harvard-Oxford atlas, and a mask of the frontal cortex from
the MNI atlas were created in FSL and thresholded at 20% in
SPM8. These masks were then transformed to the template sub-
jects native space by (i) co-registering the subjects T1 image to the
subject’s motion distortion corrected FA map (ii) multiplying the
masks by the inverse transform parameters (MNI->Native space)
generated using the segmentation option in SPM, (iii) re-slicing
the masks to the same dimensions as the FA map and binaris-
ing them using the “imcalc” option in SPM. These masks were
then visually inspected to ensure that they provided a good fit to
the anatomical structure. Tractography analysis was carried out in
the template subject using these inclusion masks (see Figure 4).
“AND” gates were then placed at the caudate and NAcc to include
only the regions from which tracts projected to the PFC. NOT
gates were drawn in the planes across the midline and the pos-
terior commisure, and to exclude motor tracts, cortico-spinal
tracts, tracts from the corpus callosum and tracts to the tempo-
ral lobe. The atlas based segmentation tool was used to carry out
tractography analysis in each subject’s native space using the ROIs
transformed into the subject specific space for each tract as this
method has been successfully applied to improve tract delineation
(Verhoeven et al., 2010). An upper limit of 100 mm was placed on
the tract length. Outliers were excluded for each group separately
for FA, MD, RD and AD values that were greater than 1.5 box
lengths from the inter-quartile range. Multivariate analyses were
computed to compare groups in terms of FA, MD, RD, and AD.

RESULTS
Groups did not differ in terms of age or IQ (see Table 1).

STRIATAL FUNCTIONAL CONNECTIVITY
Group-wise comparisons
Regions showing significantly increased functional connectivity
between the frontal cortex and the striatum in the ASD group
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are listed in Table 2. There were no regions that showed signif-
icantly reduced connectivity between the frontal cortex and the
striatum and there were no significant group differences in con-
nectivity between the amygdala and striatum. Bar charts showing
z-transformed r-values, adjusted for age, IQ and frame-wise dis-
placements, for connectivity between each of the regions for
which there was a significant group difference can be seen in
Figure 5. The ASD group showed significant positive connectiv-
ity between regions for which there were significant connectivity
differences between groups, whereas controls showed negative
connectivity between these regions at rest, when adjusting for age,
IQ and frame-wise displacements. With the exception of right
MFG to NAcc connectivity, negative connectivity was no longer
apparent between frontostriatal regions in controls when covari-
ates were not included in the analysis. Within group values for
regions showing significant group differences in connectivity can
be seen in Table 3.

Correlations with social reward processing
The same participants previously completed an fMRI study of
social and monetary reward processing (Delmonte et al., 2012),
the results of which indicated that the ASD group showed deacti-
vation to social rewards in the left caudate. We therefore explored
whether increased connectivity between the right ACC and the

Table 1 | Mean age and IQ scores.

Autism Controls P

Age 17.28 (3.57) 17.15 (3.64) 0.545

WASI

Full Scale IQ
Verbal IQ
Performance IQ

109.25 (15.04)

108.54 (14.22)

107.52 (14.68)

111.85 (12.32)

110.52 (13.59)

110.81 (11.11)

0.889
0.967
0.660

Standard deviations are shown in parenthesis.

Table 2 | T-scores and p-values for regions showing significantly

increased connectivity in the ASD group, controlling for age, IQ and

frame-wise displacements.

Source Target T -Value P-Unc P-FDR

Right cingulate gyrus,
anterior division

Right accumbens
Right caudate
Left caudate

2.52
2.72
2.98

0.016
0.009
0.005

0.032
0.029
0.029

Right middle frontal
gyrus

Right accumbens
Right caudate

2.68
2.56

0.011
0.015

0.044
0.044

Right paracingulate
gyrus

Right accumbens
Right caudate

3.24
3.01

0.003
0.005

0.014
0.014

Right frontal orbital
gyrus

Right accumbens
Left accumbens

2.67
2.53

0.011
0.016

0.048
0.048

Left paracingulate
gyrus

Right accumbens
Right caudate
Left caudate

2.92
3.04
2.38

0.006
0.004
0.023

0.018
0.018
0.045

left caudate in ASD was associated with deactivation to social
rewards. There was a negative correlation between connectivity
and SID activation in ASD but not controls (ASD: r = −0.576,
p = 0.006; CON: r = 0.234; p = 0.307), see Figure 6. In the ASD
group, deactivation to social rewards in the left caudate was asso-
ciated with increased connectivity between the left caudate and
the anterior cingulate.

Correlations with behavior
There was a positive correlation between connectivity in the
right MFG and the right caudate and RRB in the ASD group
(r = 0.573, p = 0.008); greater connectivity was associated with
greater impairment. Connectivity between the right and left
Pcg and the right NAcc was negatively correlated with SCD
in the ASD group (r = −0.511, p = 0.012; r = −0.572; p =
0.008); greater connectivity was associated with less impairment.
Similarly, there was a negative correlation between connectivity
between the right OFC and right NAcc and SCD score in the
ASD group (r = −0.519; p = 0.019). Associations between con-
nectivity values and behavioral measures can be seen in Figure 7.
These correlations did not withstand correction for multiple
comparisons at the bonferroni level [p(0.05/24) = 0.002]. Twenty-
four correlations were performed as there were twelve regions
showing significant group differences in functional connectivity
and 2 behavioral measures. Figure 7 shows plots of the correla-
tions between connectivity values and behavioral measures in the
ASD group.

STRIATAL STRUCTURAL CONNECTIVITY
Multivariate analyses with age, I.Q. and TIV entered as covariates
indicated that there were no significant between group differences
in FA, MD, RD, or AD in the tracts of interest.

CORRELATIONS BETWEEN STRUCTURAL AND FUNCTIONAL
CONNECTIVITY
There was a significant positive correlation between AD in the
right caudate to prefrontal tract and functional connectivity (raw
z-scores) between the right MFG and the right caudate across
the group as a whole (r = 0.414, p = 0.010), however, a within
group analysis showed only a trend in the ASD group (r = 0.445,
p = 0.056) and no relationship with control participants (r =
0.214, p = 0.380) indicating that the significant correlation was
largely driven by variance in the ASD group. There were no
other significant correlations between functional and structural
connectivity.

DISCUSSION
The ASD group showed increased functional connectivity
between the ACC, Pcg, OFC, and the MFG in the prefrontal
cortex and the caudate and NAcc in the striatum, with group dif-
ferences primarily in the right hemisphere. Increased functional
connectivity between frontostriatal regions in ASD was associ-
ated BOLD deactivation to social rewards (Delmonte et al., 2012)
and behavioral measures of SCD and RRB. There were no sig-
nificant group differences in the structure of frontostriatal tracts.
This suggests that group differences in functional connectivity,
reported in the present study, may not be due to alterations in
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FIGURE 5 | Group differences in functional connectivity between the

frontal cortex and the striatum. Bar charts show Z-transformed R-Values for
connectivity between each of the regions for which there was a significant
group difference, adjusting for age, IQ and frame-wise displacements. The

ASD group is shown in gray and the controls in white with standard error of
the mean displayed. R, Right; L, Left; ACC, Anterior Cingulate Cortex; MFG,
Middle Frontal Gyrus; Pcg, Paracingulate Gyrus; NAcc, Nucleus Accumbens;
Caud, Caudate.

frontostriatal structural connectivity in ASD, though these find-
ings could also reflect methodological issues associated with DTI
tractography.

GROUP DIFFERENCES IN FUNCTIONAL CONNECTIVITY
Hyperconnectivity between the anterior cingulate cortex (ACC) and
striatum in ASD
Neuranatomical connections between the ACC and the striatum
are organized in functionally distinct loops. The ventral ACC is
connected to the ventral and dorsal striatum (VS and DS) and
the dorsal ACC to the DS (Beckmann et al., 2009). ACC regions
connected to the VS are involved in emotion, reward and pain
whereas regions connected to the DS are mostly involved in motor
functions, conflict/error detection and reward (Beckmann et al.,

2009). The dorsal cognitive division of the ACC is connected
to other regions involved in attention including the dorsolat-
eral prefrontal cortex (dlPFC) and parietal attention regions. The
rostral-ventral affective division is connected to limbic regions
including the OFC, amygdala, and periaqueductal gray (PAG)
(Bush et al., 2000).

Previous findings, together with the present results, suggest
that hyperconnectivity between the ACC and caudate may be
specific to adolescents/adults with ASD. Increased bilateral con-
nectivity between the ACC and caudate has been reported during
visuomotor performance among adults with ASD (Turner et al.,
2006) but not resting state among children with ASD (Di Martino
et al., 2010). ACC pathology has also been implicated more gen-
erally in functional and structural neuroimaging studies of ASD.
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Table 3 | Within-groups t-scores and p-values for regions showing

group differences in functional connectivity controlling for age, IQ

and frame-wise displacements.

Source Target T -value P-FDR

Right cingulate
gyrus, anterior
division

Right accumbens

Left caudate

Right caudate

ASD = 2.53
Control = −2.35
ASD = 2.98
Control = −2.76
ASD = 2.67
Control = −2.36

ASD = 0.0314
Control = −0.0486
ASD = 0.0299
Control = 0.0486
ASD = 0.0314
Control = 0.049

Right middle
frontal gyrus

Right accumbens

Right caudate

ASD = 2.73
Control = −2.68
ASD = 2.62
Control = −2.64

ASD = 0.0378
Control = 0.0355
ASD = 0.0378
Control = 0.0355

Right
paracingulate
gyrus

Right accumbens

Right caudate

ASD = 3.29
Control = −3.55
ASD = 3.07
Control = −3.14

ASD = 0.0118
Control = 0.0006
ASD = 0.0118
Control = 0.0009

Right frontal
orbital gyrus

Right accumbens

Left accumbens

ASD = 2.67
Control = −2.47
ASD = 2.38
Control = −1.91

ASD = 0.0484
Control = 0.07
ASD = 0.0484
Control = 0.09

Left
paracingulate
gyrus

Right accumbens

Right caudate

Left caudate

ASD = 2.98
Control = −3.05
ASD = 0.3.00
Control = −2.68
ASD = 2.39
Control = −2.25

ASD = 0.0149
Control = 0.0247
ASD = 0.0149
Control = 0.0328
ASD = 0.0436
Control = 0.06

In a meta-analysis of functional neuroimaging studies, hypoacti-
vation was reported in the perigenual ACC in ASD during social
tasks and in the dorsal ACC for non-social tasks (Di Martino et al.,
2009). Reduced ACC gray matter volume (Haznedar et al., 2000;
Greimel et al., 2012a,b) and surface area (Hadjikhani et al., 2006;
Doyle-Thomas et al., 2012), primarily in the right hemisphere,
have also been reported.

Hyperconnectivity between the right ACC and the left cau-
date was associated with deactivation to social rewards in ASD
as reported in a previous study among the same participants
(Delmonte et al., 2012). This is in keeping with the role of the
ACC in social perception and social cognition deficits in ASD
(Di Martino et al., 2009) and with recent evidence of abnormal
ACC activation during social and non-social reward processing
(Dichter et al., 2011; Kohls et al., 2012a,b)—although we did not
observe the latter in our previous study. Taken together these
results suggest that abnormal activation in the left caudate during
social reward feedback may have been due to abnormal top–down
processes governed by the ACC.

Hyperconnectivity between the paracingulate (Pcg) and striatum
in ASD
The Pcg is often thought of as part of the ACC (Gallagher
and Frith, 2003; Walter et al., 2005), though it is anatomically,

FIGURE 6 | Connectivity between the left caudate and right anterior

cingulate and activation to social rewards in the left caudate.

Connectivity values are shown on the x-axis and percent signal change for
social reward feedback is shown on the y-axis. The ASD group is shown in
gray (with dashed trend-line) and the controls in white (with solid black
trend-line).

and perhaps functionally, distinct from the ACC (Gallagher
and Frith, 2003). Diffusion MRI data in humans indicates that
it is connected to the VS and DS and the dorsal prefrontal
cortex (Beckmann et al., 2009). The Pcg is involved in emo-
tion, social interaction, reward and decision-making, conflict
monitoring and error detection (Vogt, 2005; Amodio and Frith,
2006; Beckmann et al., 2009). The anterior Pcg, along with
the superior temporal sulci and the temporal poles, plays an
important role in theory of mind (Gallagher and Frith, 2003;
Walter et al., 2005) with activation modulated by the amount
of social interaction involved in the task (Walter et al., 2004).
The Pcg and striatum are thought to be involved in separate
phases of decision-making, with the Pcg involved in action selec-
tion and the VS responding to positive outcomes (Rogers et al.,
2004).

Previous functional connectivity studies of the striatum in
ASD have not implicated the Pcg (Turner et al., 2006; Di Martino
et al., 2010), however, reduced connectivity between the Pcg
and the intraparietal sulcus during working memory task per-
formance (Koshino et al., 2005) and reduced connectivity with
the IFG during sentence comprehension have been reported in
ASD (Just et al., 2004). Additionally, reduced Pcg activation dur-
ing theory of mind tasks (Kana et al., 2009) and reduced gray
matter volume in the right Pcg (Abell et al., 1999) have been
reported. In the present study increased connectivity between the
Pcg and the NAcc was negatively associated with SCD deficits,
suggesting that increased connectivity between these regions in
people with high functioning ASD could reflect a compensatory
mechanism.
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FIGURE 7 | Plots of the correlations between connectivity values and behavioral measures for the ASD group. Connectivity values are shown on the
x-axes and scores on the behavioral measures on the y-axes. ASD single subjects are represented as gray diamonds (solid black trend-line).

Hyperconnectivity between the middle frontal gyrus (MFG) and
striatum in ASD
The MFG, along with part of the SFG, comprises the dlPFC
(Barbas and Pandya, 1989; Badre and D’Esposito, 2009; Yeterian
et al., 2012), which is connected to the rostral dorsolateral cau-
date as well as the OFC and medial prefrontal cortex (mPFC)
(Haber, 2003; Lehéricy et al., 2004; Leh et al., 2007; Draganski
et al., 2008). The dlPFC is involved in a host of executive func-
tions including working memory, set-shifting, rule learning, and
planning (Goldman-Rakic et al., 1996; Leung et al., 2002; Badre
and D’Esposito, 2009) and is thought to work together with the
caudate to mediate these functions (Haber, 2003; Pasupathy and
Miller, 2005). In terms of rule-learning, rewarded associations
are thought to be identified in the striatum, which trains slower
learning mechanisms in the dlPFC (Pasupathy and Miller, 2005).
The dlPFC is involved in rule-learning via reinforcement; once
the rule has been acquired, the dlPFC is no longer required and
action execution is controlled by the premotor cortex (Badre and
D’Esposito, 2009).

As in previous studies of striatal connectivity (Turner et al.,
2006; Di Martino et al., 2010), there was a significant increase
in connectivity between the caudate and MFG in ASD. In addi-
tion, the ASD group showed hyperconnectivity between the MFG
and the NAcc. This is in keeping with a body of evidence impli-
cating the MFG/dlPFC in ASD. Decreased functional connectivity
has been reported between the dlPFC and the visuospatial regions
in the occipital and parietal lobes during visuospatial processing
(Damarla et al., 2010). ASD subjects also show less negative cor-
relation between the dlPFC and amygdala during passive viewing
of emotional facial expressions (Rudie et al., 2011) and increased
regional homogeneity (local synchronization of the BOLD signal)

in the right MFG during rest (Paakki et al., 2010). Reduced
activation in the dlPFC during social and non-social informa-
tion processing, including spatial working memory (Luna et al.,
2002), sustained attention (Christakou et al., 2012) and mem-
ory encoding of social information have been recorded (Greimel
et al., 2012a,b) as well as abnormal involvement in tasks such
as gaze perception (Vaidya et al., 2011). In addition, increased
gray matter volume (Ecker et al., 2012) and neuronal number
(Courchesne et al., 2011) indicate structural abnormalities in the
dlPFC in ASD.

Connectivity between the right MFG and right caudate was
associated with increased RRB. This in keeping with previ-
ous literature implicating the frontostriatal circuitry, particularly
the caudate and MFG/dlPFC, in executive function and repet-
itive behavior deficits in ASD (Hollander et al., 2005; Rojas
et al., 2006; Estes et al., 2011; Langen et al., 2011a; Ecker
et al., 2012) and suggests that cognitive as opposed to senso-
rimotor circuitry is implicated in repetitive behaviors in high
functioning ASD.

Hyperconnectivity between the orbitofrontal cortex (OFC) and
striatum in ASD
The OFC is involved emotion, motivation and reward, and is the
region of prefrontal cortex most often associated with reward-
guided decision-making, subserving both sensory and abstract
reward processing (Haber, 2003; Haber and Knutson, 2009;
Rushworth et al., 2011). Specifically, OFC activity is thought
to reflect signal valuation, for both rewards and punishments,
tracking expected reward value prior to decision-making and the
received reward value after a choice has been made (Rushworth
et al., 2011). Efferent connections from the OFC provide input to
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the VS, with the VS also receiving input from the amygdala and
hypothalamus (Haber, 2003; Draganski et al., 2008). The OFC,
together with the VS and amygdala, is thought to compute the
salience value of social stimuli, with this circuitry playing a poten-
tial role in social motivation deficits in ASD (Chevallier et al.,
2012; Kohls et al., 2012a,b).

Previous fMRI studies have indicated abnormal activation of
the OFC, VS and amygdala during both social and non-social
reward processing in ASD (Scott-Van Zeeland et al., 2010; Dichter
et al., 2011, 2012; Kohls et al., 2012a,b), providing support for the
hypothesized role of these regions in social motivation difficulties
in ASD. Additionally, structural alterations have been recorded in
the OFC in ASD, including decreased gray matter volume (Ecker
et al., 2012), increased cortical thickness (Hyde et al., 2010) and
altered sulcogyral morphology (Watanabe et al., 2013). Previous
examinations of frontostriatal functional connectivity in ASD
have not specifically implicated abnormal OFC—VS connectiv-
ity (Turner et al., 2006; Di Martino et al., 2010). The results of the
present study indicated that increased connectivity between the
OFC and NAcc was associated with fewer SCD deficits, suggesting
that increased connectivity between these regions may function
to reduce social difficulties among adolescents/young adults with
high-functioning ASD.

FRONTOSTRIATAL STRUCTURAL CONNECTIVITY
There were no significant group differences in white matter
microstructure (FA, MD, RD, AD) in tracts connecting the cau-
date or NAcc to the prefrontal cortex. Only one previous study
has specifically examined microstructural integrity of frontostri-
atal circuits. Greater MD was reported in projections between
the right NAcc and prefrontal cortex but not in projections
between the caudate and prefrontal cortex among adults with
ASD (Langen et al., 2011a,b). The disparity between the present
findings and those of Langen et al. (2011a,b) could be due to age
differences between the samples, with the sample in the present
study being younger than those previously examined. The dif-
ference between structural and functional connectivity findings
in the present study, with significant group differences for func-
tional data but not structural data, may be due to several factors.
Resting state connectivity analysis is not anatomically constrained
therefore differences in connections between the striatum and
PFC could potentially arise from structural alterations in another
part of the circuit, for example in fiber pathways connecting the
striatum and pallidum, pallidum and thalamus, or thalamus and
cortex. Frontostriatal connections may be characterized by topo-
graphical reorganization of fiber pathways in ASD rather than
microstructural alterations. This could be explored using connec-
tivity based classification methods (Behrens et al., 2007). Another
potential explanation is that structural data may be less sensitive
to group differences than functional data (Finger et al., 2012)
or that subtle white matter differences may remain undetected
by the typical “tract averaged” approach used in most tractog-
raphy studies and may require the use of “tract resampling”
techniques to capture more subtle variations over the length of
a tract (Colby et al., 2012). Finally, with the exception of a sig-
nificant correlation between functional connectivity between the
right caudate and MFG, and AD in the right caudate to prefrontal

tract, measures of functional connectivity were unrelated to struc-
tural metrics in the present study. Greater concordance between
functional and structural connectivity metrics may be obtained
by examining specific loops (i.e., cingulo-striatal loops or dlPFC-
striatal loops) in frontostriatal circuitry rather than connections
between the striatum and the entire frontal cortex. It is likely that
such analyses would require high-resolution diffusion imaging
(HARDI) data and advanced modeling techniques such as con-
strained spherical deconvolution (CSD) rather than the tensor
model used here.

LIMITATIONS AND FUTURE DIRECTIONS
The results of the present study should be interpreted in the light
of several methodological issues. We did not replicate previous
findings showing positive functional connectivity between fron-
tostriatal regions, for example between the MFG and the caudate,
in our control group (Di Martino et al., 2008). This is perhaps
due to developmental factors related to the age range of the
participants in the present study. Indeed negative connectivity
between frontostriatal regions in controls was no longer appar-
ent when covariates were not included in the analyses. Another
potential explanation is that Di Martino et al. (2008) divided the
caudate into ventral and dorsal regions, which showed distinct
patterns of connectivity with sub-regions of the ACC and dlPFC,
whereas we examined connectivity using gross morphological
boundaries. Examining connectivity across entire structures in
the current study may have obscured functional relationships
between sub-regions of these structures. This can be circum-
vented to some extent by using a seed-to-voxel approach rather
than the ROI-to-ROI approach taken in this study. However,
the seed-to-voxel approach also requires a significantly greater
number of statistical comparisons, which can potentially lead
to Type II errors (false negatives). Given that ASD is a func-
tionally heterogeneous population and this study has a relatively
small sample size (N = 21), the ROI-to-ROI approach used in
the present study is likely to have been more sensitive to group
differences. Recent studies have shed light on the topography
of functional and structural connections within the striatum
(Robinson et al., 2012; Verstynen et al., 2012; Tziortzi et al., 2013)
which may be useful in defining seed regions for future stud-
ies of functional and anatomical connections in frontostriatal
circuitry in ASD.

A limitation of functional connectivity methods used in the
present study is that one cannot infer the source of differences
in functional connectivity. Frontostriatal loops are part of larger
circuitry which also involve thalamo-cortical connections (Haber
and Knutson, 2009). Increased connectivity between the thalamus
and frontal cortical regions has been reported in ASD (Mizuno
et al., 2006), indicating that thalamo-cortical circuitry is also
abnormal in ASD, which could impact on frontostriatal circuitry.
Given the looped structure of cortico-striatal-thalamo-cortical
connections (Alexander et al., 1986, 1990), and various regulatory
influences on this circuitry (Haber and Knutson, 2009), it is diffi-
cult to infer at what point dysregulation occurs, i.e., in the frontal
cortex, the thalamus, the striatum, other regulatory subcortical
structures, or in specific connections between these structures.
We did not examine the connectivity of the midbrain—which
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provides important dopaminergic input to the striatum (Schultz
et al., 1997; Haber and Knutson, 2009)—due to the fact that
the midbrain is particularly susceptible to artifacts from car-
diac (Greitz et al., 1992; Dagli et al., 1999) and respiratory (Raj
et al., 2001) signals. Future studies could examine midbrain
function in ASD using optimized fMRI methods (Limbrick-
Oldfield et al., 2012), could include additional ROIs in regions
such as the midbrain and thalamus, and could use effec-
tive connectivity modeling techniques to more fully character-
ize connectivity within frontostriatal circuitry (and potentially
shed light on the source of hyperconnectivity in this circuit)
in ASD.

The lack of group differences in structural connectivity should
be interpreted in the light of several factors. Firstly, DTI is asso-
ciated with a number of confounds (Jones, 2010). The tensor
model cannot characterize diffusion in regions of complex fiber
architecture, or “crossing fibers” where fibers kiss, twist, splay
kink, or bend (Basser et al., 2000; Frank, 2001; Tuch, 2004; Jones,
2010). This is an important issue given that crossing fibers are
thought to make up to 90% of white matter (Jeurissen et al.,
2012). Tensor derived metrics are also influenced by acquisi-
tion parameters, such as the b-value (Vos et al., 2012), which
may further confound results. Improved understanding of brain
structural connectivity in ASD will therefore require the use of
HARDI methods such as CSD tractography. Another potential
concern is that the presence of subtle differences along white
matter fiber tract may remain undetected as the diffusion met-
rics are typically averaged along the entire tract segment under
investiagtion, thus masking subtle and highly localized regions
of effect. Emerging tractography techniques that assess variations
in the diffuison meteric along the tract using a “tract resam-
pling mechanism” have been shown to potentially increase the
sensitivity of analyses to the presence of very subtle but impor-
tant white matter fiber differences (Colby et al., 2012). Again the
use of HARDI methods may provide futher insight into more
subtle stuctural differences in ASD. Another potential method-
ological issue is that the age range of the participants in the
present study may have introduced heterogeneity in the data due
to ongoing developmental processes, which could have reduced
power to detect group differences. Previous studies suggest that
both gray and white matter undergo different developmental tra-
jectories in ASD (Carper et al., 2002; Keller et al., 2007; Langen
et al., 2009; Cheng et al., 2010; Mak-Fan et al., 2012), therefore
future studies should use tighter age ranges to limit heterogeneity
for group-wise comparisons. Finally, the size of the sample in the

present study may have reduced power to detect potential group
differences in structural connectivity.

Interestingly, hyperconnectivity between the PFC and the
striatum was primarily lateralized to the right hemisphere in the
present study. This is in keeping with evidence that differences
in the structure and function of the ACC are largely lateralized
to the right hemisphere (Haznedar et al., 2000; Bejjani et al.,
2012; Dichter et al., 2012; Joshi et al., 2012), that increased gray
and white matter volume asymmetries are lateralized to the right
hemisphere (Herbert et al., 2005) and that regional homoegene-
ity, a measure of functional connectivity thought to index local
synchrony in the BOLD signal, is primarily lateralized to the
right hemisphere in ASD (Liu et al., 2008; Paakki et al., 2010).
Future studies may wish to further examine potential hemi-
spheric asymmetries in functional and structural connectivity
in ASD.

CONCLUSIONS
These results are in line with previous reports of increased
functional connectivity between the striatum and frontal, tem-
poral and parietal lobes as well as the pons in ASD (Turner
et al., 2006; Di Martino et al., 2010). In the present study,
hyperconnectivity was confined to limbic and associative fron-
tostriatal circuits. Unlike previous studies (Di Martino et al.,
2010), there were no group differences in sensorimotor loops.
These findings add to a growing body of literature indicating
significant increases as well as decreases in functional connec-
tivity in ASD and do not support general under-connectivity
accounts (Just et al., 2007), but suggest that ASD is character-
ized by complex functional re-organization which also involves
hyperconnectivity within certain circuits. Increased functional
connectivity in frontostriatal circuitry was associated with behav-
ioral characteristics of ASD in terms of social interaction and
communication and restricted interests/repetitive behaviors, as
well as deactivation to social rewards in the striatum. There were
no differences in structural connectivity as measured by DTI.
This suggests that differences in functional connectivity were
not detectable by DTI tractography in frontostriatal white mat-
ter but further research using advanced CSD based tractography
is needed to clarify if subtle structural abnormalities exist in
this region.
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