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Increased BOLD sensitivity at 7T offers the possibility to increase the reliability of fMRI,
but ultra-high field is also associated with an increase in artifacts related to head motion,
Nyquist ghosting, and parallel imaging reconstruction errors. In this study, the ability of
independent component analysis (ICA) to separate activation from these artifacts was
assessed in a 7T study of neurological patients performing chin and hand motor tasks.
ICA was able to isolate primary motor activation with negligible contamination by motion
effects. The results of General Linear Model (GLM) analysis of these data were, in con-
trast, heavily contaminated by motion. Secondary motor areas, basal ganglia, and thalamus
involvement were apparent in ICA results, but there was low capability to isolate activation
in the same brain regions in the GLM analysis, indicating that ICA was more sensitive as
well as more specific. A method was developed to simplify the assessment of the large
number of independent components. Task-related activation components could be auto-
matically identified via these intuitive and effective features. These findings demonstrate
that ICA is a practical and sensitive analysis approach in high field fMRI studies, particularly
where motion is evoked. Promising applications of ICA in clinical fMRI include presurgical
planning and the study of pathologies affecting subcortical brain areas.
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INTRODUCTION

Time-series SNR and BOLD sensitivity (BS) increase with field
strength (Triantafyllou et al., 2005; van der Zwaag et al., 2009;
Beisteiner et al., 2011; Duchin et al., 2012), motivating the use
of very high field for fMRI (Barth and Poser, 2011; De Martino
et al., 2011; Ugurbil, 2012). In clinical fMRI applications such as
presurgical planning (Roessler et al., 2005; Stippich, 2007) with a
patient cohort that may have limited tolerance in an fMRI session,
increased BS may allow the measurement time to be reduced, or
the reliability of fMRI findings to be increased for a particular
measurement time. Against this prospect of increased sensitivity
at ultra-high field stand a number of methodical challenges. In
clinical practice, the most significant of these is increased head
motion artifacts. Motion artifacts are the most frequent reason
for the failure of presurgical fMRI even at 1.5T (Krings et al.,
2001). This study addresses the question of whether activation
may be isolated from motion and other artifacts in ultra-high
field fMRI using independent component analysis (ICA), and
assesses the specificity of activation maps derived with ICA com-
pared with those generated with the general linear model (GLM)
approach.

Head motion between image volumes generates signal changes
at contrast boundaries such as the ventricles and edge of the brain,
while displacement in the slice select direction during one TR leads
to spin history effects (Friston et al., 1996). Motion also introduces

dynamic non-linear distortions in regions of high susceptibility
gradients (Hutton et al., 2002; Robinson and Jovicich, 2011; Visser
et al,, 2012) and increases Nyquist ghosting and parallel imaging
reconstruction artifacts (Poser et al., 2013). Head motion artifacts
are particularly severe in patient studies (Bullmore et al., 1999;
Seto et al.,, 2001) and at very high field, as parallel imaging recon-
struction artifacts, eddy currents, and BO changes due to motion
increase (Beisteiner et al., 2011).

Head motion can be reduced to some extent using molded
cushions (Kearfott et al., 1984) or restraining masks or helmets
(Greitz et al., 1980; Fox et al., 1985; Edward et al., 2000). Some
residual motion will be present, however, particularly if jaw move-
ment is inherent to the task. While motion can be corrected for
prospectively by tracking the head position (Zaitsev et al., 2006;
Ooietal.,2009; Qin et al., 2009), this cannot eliminate effects relat-
ing to motion during acquisition of a volume or changes to the
shim brought about by a modified head, jaw, or tongue position.
Motion-correction algorithms can improve the quality of fMRI
results (Oakes et al., 2005) but cannot correct for changing distor-
tions or spin history effects, and can also lead to false positive fMRI
results (Wu etal., 1997; Freire and Mangin, 2001). Motion parame-
ters can be included in a GLM as nuisance variables. This reduces
motion contamination, particularly in event-related designs (Birn
etal., 1999), but substantially reduces BS when even moderate cor-
relation exists between motion and task (Johnstone et al., 2006).
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In short, while a range of strategies exist to minimize and correct
for motion, some level of motion artifacts will remain, particu-
larly in ultra-high field fMRI with tasks which necessitate some
motion, such as overt speech (Foki et al., 2008) and motor tasks,
particularly of the jaw or feet. If motion is uncorrelated with the
stimulus these effects lead to increased residuals after fitting with
a GLM, which reduces BS (Friston et al., 1996). If they are time-
locked to the stimulus they can lead to false positive results in a
GLM (Hajnal et al., 1994).

Spatial ICA is a promising alternative analysis approach to iso-
lating activation in data containing motion effects since it identifies
signal sources on the basis of spatial independence rather than the
temporal similarity between stimulus and response. As well as
proving effective in identifying activation in conventional fMRI
experiments (McKeown et al., 1998), ICA can detect BOLD signal
changes resulting from epileptic events (LeVan and Gotman, 2009)
and multiple neuronal networks to be separated in such challeng-
ing contexts as natural stimulation (Malinen et al., 2007) and the
resting state (Beckmann et al., 2005).

Independent component analysis has proved capable of sep-
arating activation from computer-simulated motion (McKeown
et al., 1998). In the context of real motion, however, ICA has, to
date, been used as a filtering tool (Kochiyama et al., 2005; Tohka
etal., 2008; Kundu et al., 2012) or to motion-correction data (Liao
etal.,2006). In this study, we test ICA as the primary means to iden-
tify activation in data containing real motion effects. Our study
hypotheses were:

1. that ICA would allow a near complete separation of stimulus-
correlated motion and activation, even where there are devi-
ations from task timing or modified HRF in the region of
pathology and

2. that it would be possible to identify one or more components
reflecting task-relevant activation automatically on the basis of
temporal and/or spatial characteristics, or “features.”

These hypotheses were tested in a clinical study involving chin
and hand motion tasks at very high field.

MATERIALS AND METHODS

PATIENTS

All patients participated in the study, which was approved by the
Ethics Committee of the Medical University of Vienna, with writ-
ten informed consent. In the case of minors this was provided by
legal guardians. Patients were referred for functional localization
of essential motor cortex (primary hand representation — typically
localized in the precentral “knob” (Yousry et al., 1997) and primary
chin representation — typically the most lateral and inferior part of
primary motor cortex) by physicians who were not involved in this
study. Most referrals were for surgical planning prior to excision
of a tumor. All patients were in a good general state of health at the
time of measurement and were able to perform the tasks. Those
patients undergoing chin localizations showed normal masticatory
function and those undergoing hand localizations could move the
relevant hand against resistance. One patient from the Chin group
was excluded due to poor performance (difficulty following task
timing). Ten patients remained in the Chin study (age range 8-
55 years old, mean age 30 = 16 years old, 5 females); see Table 1
for demographic and clinical details. The Hand study consisted of
12 patients (age range 11-61 years old, mean age 31 & 17 years old,
5 females); see Table 1.

TASKS
The functional chin paradigm was repetitive opening and closing
of the mouth with a target of one open and close cycle per second.

Table 1 | Patient demographics.

Patient ID Head coil Age Gender Number Pathology
(# elements) of runs
completed

Chin Hand Chin Hand
C1 H1 24 55 F 12 7 Left precentral tumor, unknown origin
C2 H2 24 32 F 12 8 Temporal lobe resection left (status post glioblastoma)
C3 H3 24 1 M 10 5 Fronto-central focal cortical dysplasia right
Ca H4 24 21 M 12 8 Right central tumor, unknown origin
Ch H5 8 36 M 12 8 Right frontal tumor, unknown origin
Cé H6 24 28 M 1 8 Oligodendroglioma II., frontal lobe right
C7 H7 32 54 F 10 8 Left parietal tumor, unknown origin
C8 H8 32 14 M 10 8 Extra-temporal epilepsy
C9 H9 32 21 F 12 8 Temporal lobe epilepsy right, status post partial temporal lobe resection right

H10 24 61 F 4 Suspected precentral glioma right

H11 24 14 M 10 Cryptogenic epilepsy of the right parietal lobe

H12 24 21 M 7 Fibrillary astrocytoma (grade 2), temporal lobe epilepsy right
C10 32 8 F 8 Focal cortical dysplasia frontal and occipital

Patients who performed the chin task have patient IDs beginning with “C” and those who performed the hand task “H.” These IDs are used in other images and

descriptions in the text.
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The movement was self-paced and symmetrically performed in a
blocked design. The hand task was a repetitive opening and closing
of the affected hand with the eyes open. For both tasks, each run
consisted of four rest and three movement phases of 20s (eight
volumes). Patients were asked to perform 20 runs in total if they
were able. If a number of tasks were performed in the same scan
session (e.g., chin, hand, foot localizations), the task for each run
was communicated prior to the beginning of the run. Commands
to begin and stop movement were communicated via headphones
during image acquisition.

fMRI ACQUISITION
Images were acquired with a 7T Siemens MAGNETOM scan-
ner (Siemens, Erlangen, Germany). Three different head RF coils
were used, as hardware upgrades were undertaken during the
study. These were an 8-channel coil (Rapid Biomedical, Wiirzburg,
Germany), a 24-channel coil (Nova Medical, Wilmington, MA,
USA) and a 32-channel coil (Nova Medical). Table 1 lists which
coil was used for each patient measurement. To minimize head
movement, plaster helmets were individually constructed for each
patient (Edward et al., 2000). Functional MRI data were acquired
with a 2D single-shot gradient echo (GE) EPI sequence, with 34
slices acquired parallel to the AC-PC plane, with a matrix size of
128 x 128, FOV =230 mm x 230 mm (nominal 1.8 mm x 1.8 mm
in-plane resolution), 3 mm thick slices with 0.3 mm gap. This EPI
protocol has been used in a number of prior studies with neu-
rological patients at 3T (e.g., Foki et al., 2007; Beisteiner et al.,
2010), and has been validated in clinical application at 7 T (Beis-
teiner et al., 2011). The resolution is in the higher resolution
regime in which physiological noise is minimized and the high-
est BS gains are expected with field strength (Triantafyllou et al.,
2005). Three dummy excitations were performed before acquisi-
tion of 56 volumes per run. TE/TR were 22/2500 ms, and partial
Fourier encoding was used, with omission of the first 25% of
phase-encoding steps, receiver bandwidth was 1445 Hz/pixel, and
parallel imaging with GRAPPA (Griswold et al., 2002) was used
with a factor of 2.

High-resolution T1-weighted MR images were acquired using
a 3D MPRAGE sequence with a matrix size of 320 x 320 x 224,
with 0.7 mm isotropic resolution, flip angle of 9°, and GRAPPA
acceleration factor 2; acquisition time 7 min 57s.

fMRI PREPROCESSING
Acquisition, preprocessing, and analysis steps are schematically
illustrated in Figure 1.

Image preprocessing was carried out in general accordance
with the approach used by the Clinical fMRI Study Group at the
Department of Neurology of the Medical University of Vienna
for presurgical mapping (e.g., Foki et al., 2007; Beisteiner et al.,
2010, 2011). For the single-subject analysis, the following prepro-
cessing steps were carried out, with FSL (Smith et al., 2004), in
the native space of the high-resolution EPI of each patient. Each
run was registered to the first volume of the middle run using
FLIRT (Jenkinson et al., 2002), with 12 degrees of freedom, after
which runs were concatenated. In the GLM, temporal concatena-
tion equates to a fixed effects analysis in which run is treated as a
fixed effect, a valid approach if there is signal stability between runs
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FIGURE 1 | A schematic representation of data processing steps for
each patient in the main analysis.

and no inferences are to be drawn about a group. No slice timing,
normalization, or spatial smoothing was performed. These data
were analyzed with MELODIC ICA (Beckmann and Smith, 2004).
For GLM analysis, the concatenated time-series was addition-
ally motion-corrected using MCFLIRT (Jenkinson et al., 2002).
Non-brain tissue was also removed using BET (Smith, 2002), the
grand-mean intensity of the entire 4D dataset was normalized
using a single multiplicative factor and high-pass temporal fil-
tering was applied (Gaussian-weighted least-squares straight line
fitting, with sigma = 20.0's).

GLM ANALYSIS
Analysis was carried out using FSUs FEAT (Smith et al., 2004). The
six parameter rigid-body transformations determined in motion
correction were included in the analysis model as confounds.
Time-series statistical analysis was carried out using FILM with
local autocorrelation correction (Woolrich et al., 2001). Resulting
statistical z-images were first thresholded at Z > 2.3 to determine
continuous clusters. Each resulting cluster was then compared
against a (corrected) cluster significance threshold of P < 0.05
using Gaussian random field theory (Worsley, 2001).

The possibility the GLM may be able to provide an improved
separation of activation and motion-related artifacts at higher sta-
tistical thresholds was investigated by closely examining results
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over a range of thresholds. In supplementary analyses, the pos-
sibility of reducing motion-related artifacts in GLM results via
cluster size was evaluated by using larger cluster extent thresholds.
The possibility that using no cluster thresholding might reveal
activation in the basal ganglia and thalamus in GLM results was
assessed by applying no cluster extent threshold.

To explore additional possibilities for reducing motion artifacts,
GLM analysis was also repeated (i) with the inclusion of the tem-
poral derivatives of motion parameters (in addition to the motion
parameters themselves), (ii) on data which were smoothed with a
Gaussian kernel with FWHM of 5 mm, and (iii) in a subject-level
analysis, rather than a temporal concatenation analysis.

INDEPENDENT COMPONENT ANALYSIS

Probabilistic ICA was carried out with FSL's MELODIC (Beck-
mann and Smith, 2004). No temporal filtering was performed on
the assumption that the signal was stable and that ICA would
prove capable of isolating minor drifts, if present, in separate
components. Non-brain voxels were masked before voxel-wise
de-meaning of the data and a normalization of voxel-wise vari-
ance. Pre-processed data were whitened and projected into an
n-dimensional subspace using probabilistic principal component
analysis. The number of components into which the data was
decomposed (the model order) was estimated for each patient
using the Laplace approximation to the Bayesian evidence of the
model order (Beckmann and Smith, 2004).

AUTOMATED IDENTIFICATION OF SALIENT ICs

Several hundred components may be generated in the analysis of
data from each patient. From these, the single component or small
number of components which reflect task activation must be iden-
tified. In MELODIC, components are ordered by the percentage
of the total signal variance in the data for which they account.
In the presence of motion and other artifacts, task-related activa-
tion often appears low in the list, meaning that a large number of
components need to be assessed.

One or more ICs related to task activation were identified by
a clinical fMRI expert (RB), who assessed all components for all
patients. The identification was based on the presence of clear
activation in primary and secondary motor areas, with consid-
eration of the effects of the brain pathology (e.g., cluster divi-
sions), supported by time courses which approximately accorded
with that expected from the paradigm, and with reference to the
clinical report (the local gold standard) (Beisteiner et al., 2000,
2008).

Automatic identification of task-activation components was
implemented via ranking of components on the basis of spatial
and temporal features. Three features were implemented. The first
was the value of the correlation between each IC spatial map
and the GLM t-map (“GLMcorr”). The second was the correla-
tion between each IC spatial map and a mask for the precentral
gyrus (“TEMPLATEcorr”). The third feature was the correlation
between the frequency distribution of ICs and the frequency distri-
bution of the model regressor (“SPECcorr”). For the third feature,
correlation between frequency spectra rather than time courses
was used to ensure sensitivity to responses which could be delayed
due to modified HRF or late task performance (Moritz et al., 2003),

and to reduce sensitivity to low frequency behavior such as drift.
All features were programed in MATLAB (Mathworks Inc, Natick,
MA, USA).

GLMecorr was calculated as the correlation between in-brain
voxels in the unthresholded IC maps and the unthresholded Z-
statistic map for the sole contrast of interest in the GLM, using
MATLAB’s “corrcoef” function.

The Harvard-Oxford template (Desikan et al., 2006)! was used
for the calculation of the TEMPLATEcorr feature. This proba-
bilistic atlas assigns unique numerical labels to 48 cortical and 21
subcortical regions. For the TEMPLATEcorr feature, the Harvard—
Oxford template was converted to a precentral gyrus mask by
converting atlas values of 7 (the template value for the precentral
gyrus) to 1, and setting all other values to 0. This mask was reg-
istered to the space of each patient’s EPI using a transformation
derived as follows. First, the MNI T1 brain (i.e., skull-stripped)
template, which is in the same space as the Harvard-Oxford tem-
plate, was coregistered, using FLIRT (Jenkinson et al., 2002), to
patients’ MPRAGE structural scans, which had been bias-field
corrected with FAST (Zhang et al., 2001), and skull-stripped
using BET (Smith, 2002). This defined the first transformation
matrix. Secondly, each patient’s skull-stripped, bias-field corrected
MPRAGE was coregistered to the middle EPI of the concatenated
time-series. This defined the second transformation matrix. The
two transformations were combined to define the transformations
from the template space to the space of each patient’s EPI. The cor-
relation between the precentral gyrus of this template and each IC
map was calculated.

For the SPECcorr feature, the frequency distribution of each IC,
calculated using MELODIC, was correlated with the frequency dis-
tribution associated with the predicted responses. This latter was
calculated as the Fourier transform of the convolution of a regres-
sor for the ON and OFF task periods convolved with a HRF. The
HRF was generated with the statistical parametric mapping (SPM)
software (Friston et al., 1995) using the function spm_hrf.m, in the
SPMS version?, using default values for the parameters (p) of the
response. The convolution and Fourier Transform were carried
out in MATLAB.

TIME-COURSE ANALYSIS

To assess the signal behavior in activated areas virtually free from
bias of analysis approach (ICA or GLM), the mean time courses
(over runs) of voxels in the left and right primary motor areas
(PMA) were calculated for each patient, and averaged over runs.
VOIs were coboids sized 9 x 9 x 9 voxels centered on the peak
voxel in the ICA results in the left and right motor cortex. The
ICA results were chosen because they were cleaner, but selection
of the GLM peak voxels would not significantly affect results, as
these were close to ICA peak voxels, and VOIs were large.

INDEPENDENT ASSESSMENT OF ACTIVATION

To provide an additional means to assess the validity of GLM
and ICA results, activation maps were also generated with the
“risk map” approach (Beisteiner et al., 2000, 2008); a correlation

Uhttp://www.cma.mgh.harvard.edu/fsl_atlas.html
Zhttp://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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analysis over a range of thresholds and with shifted regressors
to generate a map of a small number of highly reliably acti-
vated voxels. This method has been validated via reference to
Direct Electrocortical Stimulation (Roessler et al., 2005), and
is used locally as a clinical gold standard to generate clinical
reports.

RESULTS

EXTENT OF HEAD MOTION

Patients in the Chin group completed between 8 and 12 runs (aver-
age 11.0 £ 1.4),and those in the Hand group between 4 and 10 runs
(average 7.4 £ 1.6). Rigid-body motion correction yielded three
translation vectors (x, y, z) and three rotation vectors (roll, pitch,
yaw). These were reduced to two representative metric vectors, one
for translation — the root-mean-square (RMS) translation and one
for rotation — the sum of the magnitudes of the individual angles
(i.e., disregarding sign). Over all patients and all runs in the Chin
group, the mean RMS displacement was 0.43 = 0.45 mm, and the
mean rotation 0.0078 = 0.0083 rad. Corresponding values for the
Hand group were a mean RMS displacement of 0.107 & 0.058 mm
and a mean rotation of 0.0035 =% 0.0030 rad.

CHIN TASK

General linear model

There were no significant signal discontinuities between runs.
Motion artifacts were identified as suprathreshold voxels either
on the edge of the brain or at high contrast boundaries or in
areas affected by Nyquist ghosts (Hajnal et al., 1994; Robinson
and Moser, 2004; Beckmann, 2012). This attribution was sup-
ported by an assessment of the independent components whose
time courses correlated best with motion parameters (not shown).
Motion artifacts were present in all GLM results at a cluster-
corrected threshold of P <0.05 (Figure 2, left). Partial volume
motion artifacts manifested as suprathreshold voxels either on the
edge of the brain or at high contrast boundaries. These were appar-
entin the GLM results of patients C2, C4, C5,C7,and C8 (Figure 2,
left, at yellow arrows). Broad areas of false positive results, tenta-
tively ascribed to reconstruction artifacts, were present in GLM
results of patients C1, C2, C4, C5, C6, and C10 (Figure 2, left,
at cyan arrows). Typically these artifacts were reduced at higher
thresholds but did not disappear. Increasing the cluster extent
threshold did not help to reduce motion artifacts, as they were
large and distributed. Inclusion of the temporal derivatives of

FIGURE 2 | A comparison of GLM and ICA analyses of 7T fMRI data with
a chin task. GLM results are contaminated by motion artifacts (yellow and
cyan arrows). ICA components show no motion contamination and bilateral
activation throughout primary motor areas. Activated areas not present in

corresponding GLM results, or not distinguishable from artifacts, are
indicated by magenta arrows. White vertical lines separate sample slices
covering the basal ganglia from those showing primary motor regions. All
brain images are displayed in radiological convention.
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motion parameters in the analysis (in addition to the motion
parameters themselves) led to a moderate reduction in the arti-
fact level in two patients (C7 and C9, not shown) but not in other
patients. Smoothing data prior to GLM analysis increased signif-
icance values in both artifacts and activation clusters, leaving the
overall pattern of suprathreshold voxels smoother, but broadly
unchanged. The contamination of GLM results by artifacts was no
lower in subject-level analysis than in the temporal concatenation
analysis reported here throughout. Basal ganglia activation present
in ICA results but not GLM is indicated in Figure 2 by magenta
arrows in lower slices.

Despite artifacts, it was possible to identify the perirolandic
area via detection of central sulcus activation in all patients. Acti-
vation was not apparent in some known motor regions, however
(Figure 2, magenta arrows). In many patients there was no clearly
segregable activation in the basal ganglia and thalamus. The extent
to which motion artifacts and low sensitivity to basal ganglia acti-
vation may be threshold effects is investigated in Figure 3, and
reported in Section “Additional Task-related Components.”

Independent component analysis

A task-activation component was identified for all patients. Bilat-
eral precentral gyrus activation was identified in these, with no
contamination by motion artifacts (Figure 2, right column). Acti-
vation was confirmed to correspond to the clinical report and
also to the GLM results (Table 2). Subcortical motor activa-
tion, in the basal ganglia, was also present in all patient’s results
other than C9 (Figure 2). This was evaluated and judged, on
a neuroanatomical and neurophysiological basis, to be plausible
task-related activation.

Separate resting-state networks in motor regions (Biswal et al.,
1995) and the basal ganglia (Robinson et al., 2009), which are
known from other studies to persist during task execution (Fox
et al., 2007; Calhoun et al., 2008) could also be identified in the
ICA results of a number of patients (not shown).

Comparison of GLM and ICA

Primary motor activation in ICA generally extended into more
inferior parts of the motor strip and was more concordant with
known motor regions than GLM results, and motion artifacts
were dramatically reduced (Figure 2). Basal ganglia activation
associated with the motor task was apparent in most patients’
ICA results, but not GLM results. GLM results in the basal gan-
glia were not substantially changed when no cluster extent size
was imposed, regardless of the statistical threshold at which these
results were assessed. This demonstrates that the low sensitivity of
GLM in subcortical regions was not a cluster extent or a thresh-
olding effect. Thalamic activation was present in all patients’ ICA
results other than those of C9, and in the putamen in the results
of all patients other than C1 and C9 (Figure 2). Artifacts were
also lower in ICA results than in high-threshold GLM images
(Figure 3).

For patients C1, C2, C5, C6, C7, C8, and C10, the most infe-
rior and lateral extent of primary motor activation merged with
motion artifacts in the GLM analyses, so that their detection was
much more difficult, regardless of the statistical threshold. Table 2
lists the extent to which activation could be detected with GLM

and ICA in cortical and subcortical regions. GLM and ICA results
are compared over a range of GLM thresholds in Figure 3 in slices
which indicate increased ICA sensitivity.

HAND TASK

General linear model

General linear model results for patients H1, H2, H4, H5, H8, H9,
H10, H11, and H12 were subject to significant contamination by
motion artifacts at a cluster-corrected threshold of P < 0.05. These
artifacts appeared as areas of false positive results on the edge of the
brain and/or at boundaries between high contrast areas (Figure 4,
at yellow arrows). Wide areas of false positives were also present
in H1, H8, and H9 (cyan arrows), originating from reconstruction
errors for these GRAPPA-accelerated acquisitions.

Despite contamination by false positive voxels, activation in the
contralateral primary motor area, responsible for hand motion,
was detected in all the patients. However, activation in the sup-
plementary motor area was difficult to identify due to motion
artifacts in H1 and could not be identified in H3 with the GLM at
this threshold (magenta arrows). Thalamic activation was present
bilaterally in patient H7 and unilaterally in patients H2, H3, H4,
H5, H6, H8, H11, and H12. No thalamic activation was evident in
patients H1, H9, and H10.

Basal ganglia activation was present in H3, H4, H5, H6, H7, HS,
H11, and H12, depicting the putamen either bilaterally (H4, H5,
He6, H7, H11, H12) or unilaterally (H3, H8). The posterior part
of the left putamen was apparent in H1, but not the right, due to
the presence of GRAPPA artifacts. No basal ganglia activation was
detected with the GLM in H2, H9, and H10.

Independent component analysis

Clear and well-defined activation of the contralateral primary
motor area was evident in one or more components in the ICA
results for each of the 12 patients. There was little or no motion-
related artifact contamination at a canonical Gaussian mixture
model threshold of 0.5. Activation in the supplementary motor
area was clearly depicted in all the patients.

Activation of subcortical structures, such as the thalamus and
the putamen, was evident in the ICA results for all patients except
for H9 and H10. A small number of voxels corresponding to acti-
vation in the right putamen and in the right thalamus were visible
in H3.

Motion artifact level was higher in ICA results in H7 than
in other patients, though activation in the primary and supple-
mentary motor regions and in the basal ganglia (putamen and
thalamus) was still clearly visible.

Comparison of GLM and ICA
There was a high level of consistency in all the patients between
PMA identified as being activated using GLM and ICA. Motion-
related false positive results were more prominent in GLM results,
in which detected activation was in many cases highly contam-
inated. Motion-related false positives were strongly reduced in
both cortical and subcortical regions in ICA results for all patients
except for H7, in which the quality of the results was similar in
GLM and ICA.

Independent component analysis results for patient H1 show
a clear advantage over the GLM results in the depiction of
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FIGURE 3 | Examination of the activation visible in GLM results over a
range of thresholds (chin task). Activation visible in independent
components and GLM results is compared in a single slice. The threshold
corresponding to a GLM cluster-corrected P =0.05 is indicated by a yellow

spot. Activation maps are illustrated at higher and lower thresholds than this
to allow the ability to separate activation and motion in GLM results to be
assessed. Clusters which are substantially better defined in ICA are indicated
by green arrows.

activation in the putamen. The anterior part of the right puta-
men and the left putamen are easily identified in ICA results, with
no surrounding false positives, whereas in the GLM results the

anterior part of the right putamen is not visible, even at higher
thresholds, and only the posterior part of the left putamen is clearly
depicted.
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Table 2 | A comparison of the ability of the GLM and ICA to detect
activation in cortical and subcortical sensorimotor areas in the chin
task.

Patient Cortical sensorimotor Subcortical sensorimotor
activity (perirolandic activity (basal
cortex) ganglia/thalamus)

GLM ICA GLM ICA

C1 y y ty) Y

C2 y y n y

C3 y y ty) y

C4 y y n ty)

C5 y y ly) y

Cc6 y y y y

C7 y y n y

cs y y ty) y

C9 y y n n

C10 y y (y) y

GLM results were assessed at a number of statistical thresholds. Activation was
marked as unequivocally present “y,” arguable “(y),” or not detectable “n.” A clear
benefit for detection of subcortical activation was evident with ICA, with better
depiction of the basal ganglia in 8 out of 10 patients.

Table 3 details the extent to which activation could be detected
with GLM and ICA in cortical and subcortical regions.

ADDITIONAL TASK-RELATED COMPONENTS

For patients C4, C5, C7, and C8, only one component was related
to task-related motor activation. For C1, C2, C3, C6, C9, and C10,
some task-related activation was present in additional compo-
nents. In most cases this was secondary motor and basal ganglia
activation. These components are illustrated in Figure 5. For C1,a
component was identified which showed activation mainly on the
side of the pathology, in face-M1. The time course of this second
component suggests that it was dominated by activation in a sin-
gle run. A component for C2 detected secondary motor regions,
including the precentral sulcus and SMA, indicating the capacity
for ICA to separate subnetworks of motor function. This compo-
nent was associated with a more rapidly fluctuating time course
than the primary component. A component for C3 contained
both pre-SMA, SMA, precentral sulcus, and posterior parietal acti-
vation, again demonstrating ICA’s ability to separate PMA from
secondary areas responsible for motor planning and sensorimotor
integration. Neither this nor the primary motor IC showed a time
course which correlated well with the stimulus (see Figure 6). An
additional component of interest for C6 included participation of
the basal ganglia, particularly the thalamus, with activation also
in the SMA and right perirolandic area on the pathological side.
The time-course of this IC was similar to that of the main com-
ponent but was dominated by later runs. A secondary component
for C9 showed activation in the precentral sulcus and inferior
parietal regions, language-related areas, including Wernicke’s area
arising from the response to auditory command and possible
vocalization. An additional component for C10 showed activa-
tion in primary motor area (left hemisphere) and the postcentral

sulcus (right hemisphere), reflecting sensorimotor integration
(Figure 5).

In H4, the main component shows the predicted activation
in the right hemisphere (see Figure 4, which uses radiological
convention). An additional task-related motor component was
found for patient H4 (see Figure 5), which represents bilateral
integrative parietal activity and additional M1 activation in the
left hemisphere, in response to motion of the left hand. This could
be interpreted as auxiliary M1 activation due to paresis elicited by
motion of the contralateral arm. The time course associated with
this activation is delayed, so was not detected in the GLM analysis.

An additional bilateral component was also found for patient
HO9. This was interpreted as representing activation in the face area.
The time course of this component is counter to that of the task,
indicating that it could be associated with facial movements dur-
ing the rest phases or with systematic reduction in perfusion in the
face area.

TIME COURSES
With the exception of patients C2 and C3, time-courses in the
PMA in the chin task accorded well with the prescribed timing;
four rest periods (A) and three task periods (B) of equal duration,
presented in an ABABABA design (Figure 6). Time courses in
PMA in C2 and C3 are non-model-conform (see graphs outlined
red in Figure 6), and GLM results show high levels of noise as well
as activation in the PMA. Clean activation is detected in the ICA
results, however, indicating that characteristic signal changes take
place in the PMA, despite a lack of conformity with the model.
Time courses for the hand task were in good agreement with
the prescribed timing, which was identical to that in chin task
(Figure 7).

MOTION ARTIFACTS

Independent component analysis allows contributions to the
motion artifacts in GLM to be separated into contributing sources
and assessed in more detail. We examine these here as an aside from
the central aim of this study. Examples of the most prominent arti-
facts are illustrated in Figure 8, for a single patient, C5, along with
tentative attribution of their origin. Artifacts labeled “A” and “B”
in Figure 8 arise from motion in the anterior-posterior direction,
and manifest at contrast boundaries; the edge of the brain and the
borders of gyri. Artifact “C” reflects motion in the through-plane
direction, and presents as an outline of the ventricles. One compo-
nent indicates rapid intensity fluctuations in the Nyquist ghost of
a single slice (“D”). Component “E” likewise occurs in a Nyquist
ghost region but occurs in every second slice of the volume (which
was acquired interleaved), and shows interference with the signal
in the main image. These components were identified by their
similarity with those reported in Beckmann (2012).

AUTOMATIC IDENTIFICATION OF SALIENT ICs

In MELODIC, independent components are ranked by the per-
centage of total variance in the data that they explain. Primary
task components in the Chin group (which had been identified by
an expert) were ranked by variance on average in position 145 + 48
out of a total of 194 & 73 components (with quoted errors being
one standard deviation). In the single-patient analysis of the hand
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FIGURE 4 | A comparison of GLM and ICA analyses of 7T fMRI
data with a hand task. The same thresholds were applied as in
Figure 2. Activation in the basal ganglia and thalamus is indicated by

arrows in ICA. Activated areas not present in corresponding GLM
results, or not distinguishable from artifacts, are indicated by
magenta arrows.

task, they were ranked in position 92 & 36 out of 126 = 43. Primary
motor components were ranked more highly using the features
tested; GLMcorr, TEMPLATEcorr, and SPECcorr. Of these, both
GLMcorr and TEMPLATEcorr were highly effective. Over the Chin
and Hand tasks, the primary activation component was ranked
in position 1.8 £ 1.0 using TEMPLATEcorr, in position 2.6 £ 6.6
using GLMcorr and 17 &= 47 using SPECcorr. A full list of compo-
nent rankings by feature is given in Tables 4 and 5 for the Chin
and Hand groups, respectively. The potential of the GLMcorr and
TEMPLATECcorr features to discriminate from other components
is demonstrated in Figure 9.

DISCUSSION

Independent component analysis of 7T fMRI data acquired
from neurological patients performing chin and hand tasks
cleanly separated primary motor activation from motion artifacts.

Secondary motor areas and the basal ganglia and thalamus could
also be distinguished in most patients. A single (default) ICA
threshold was appropriate to be able to visualize PMA bilat-
erally in all patients. GLM analysis of the same data was, in
contrast, contaminated by severe motion artifacts arising from
partial volume and spin history effects, increased Nyquist ghost-
ing and parallel imaging reconstruction noise. This was despite
the use of effective head fixation, motion correction, and the
inclusion of motion parameters in the analysis model. Because
of these artifacts, GLM results had to be assessed over a range
of statistical thresholds in order to be able to identify primary
motor activation. The participation of some secondary motor
regions and subcortical regions could, in many patients, not be
distinguished from artifacts in GLM results. The advantages of
ICA were particularly evident in patients whose responses devi-
ated — either because of locally modified hemodynamics or because
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Table 3 | A comparison of the ability of the GLM and ICA to detect
activation in cortical and subcortical sensorimotor areas in the hand
task.

Patient Cortical sensorimotor Subcortical sensorimotor
activity (perirolandic activity (basal
cortex) ganglia/thalamus)

GLM ICA GLM ICA

H1 y y ty) Y

H2 y y ty) ty)

H3 y y y) ty)

H4 y y y y

H5 y y y y

H6 y y y y

H7 y y y y

H8 y y y y

H9 (y) y n n

H10 y y n n

H1 y y y y

H12 y y y y

GLM results were assessed at a number of statistical thresholds. Activation was
marked as unequivocally present “y,” arguable “(y),” or not detectable “n.” ICA
detected cortical sensorimotor activation in one patient in which it was not clearly
visible in GLM (H9), and in the basal ganglia in one patient in which it was not
detectable in GLM (H1).

FIGURE 5 | Additional motor components identified in the ICA results
of chin patients C1, C2, C3, C6, C9, C10, H4, and H9.

ICA

C8

C9

C10

HEEEEEE R EE

FIGURE 6 | Mean responses in voxels in primary motor areas in the
chin task. Time courses in PMA in C2 and C3 (outlined in red) are
non-model-conform, and correspond with low sensitivity in GLM results
(left) but not ICA (right).

task execution strayed from the intended task timing — from the
model.

Previous studies have used ICA to identify and remove non-
activation components (Kochiyama et al., 2005; Tohka et al., 2008).
The features implemented included slice-to-slice signal variation,
brain boundary signal, and time-course heteroscedasticity, which
are very different from the features we applied here, which were
targeted at identifying activation rather than artifacts. While arti-
fact removal using ICA was successful in those prior studies at 1.5
and 3 T, it would be substantially more challenging to correctly
identify only artifacts in the data acquired in this study, particu-
larly in the chin task. At 7 T, signals resulting from motion — partial
volume effects, spin history effects, parallel imaging artifacts, and
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GLM
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H11
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FIGURE 7 | Mean responses in voxels in primary motor areas in the
hand task. Time courses in PMA in C2 and C3 (outlined in red) are
non-model-conform, and correspond with low sensitivity in GLM results
(left) but not ICA (right).

B0 changes — account for a larger proportion of the total variance
than at lower field strength, and motion effects manifest with very
different spatial signatures. As such, there is increased likelihood
that some motion-related components would not be identified
by the algorithms proposed (false negatives), or that activation-
related components be erroneously removed (false positives). For

FIGURE 8 | Motion artifact components isolated in data from Chin
patient C5. These artefacts are attributed to motion in the anteriorposterior
direction (A, B), through-plane motion (C), fluctuating Nyquist ghost (D, E).

that reason, a direct analysis with ICA, with ranking/classification
of components, would seem to be a more promising option than
filtering with ICA prior to GLM analysis.

The model orders estimated in this study (mean =+ SD over
patients: 194 +73) were much higher than those reported by
Tohka et al. (2008). This is likely to be because our concatenated
runs were longer and the data itself more complex, due to the
artifacts induced by the task combined with higher resolution, the
use of GRAPPA, and very high field. In a study into model order,
Abou-Elseoud et al. (2010) found that 70 & 10 components were
appropriate for PICA of the 1.5-T data they considered, but that
“Different model orders may be found more optimal when higher
field strengths and higher resolutions are used.” Our findings
support those authors’ conclusions.

Resting-state networks in motor regions (Biswal et al., 1995)
and the basal ganglia (Robinson et al., 2009), which are known
from other studies to persist during task execution (Fox et al,
2007; Calhoun et al., 2008) (and which are also known as “Tem-
porally Coherent Brain Networks” in this context) could also be
identified using ICA in this study. This is of particular relevance
for patients who may have difficulty performing motor tasks, as
others studies have shown that the sensorimotor area can be local-
ized with resting-state measurements in presurgical populations
(Kokkonen et al., 2009).

Recent implementations of ICA (Calhoun et al., 2001; Beck-
mann et al., 2005) make it a simple analysis to perform. The
identification of relevant, activation-related component(s) can,
however, be time-consuming, given a large number of independent
components. The use of ranking according to one of a number of
simple features greatly simplifies this problem. When components
were correlated with a precentral gyrus mask, the primary motor
component was ranked in position 1 for most patients, and within
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Table 4 | Summary of the total number of components identified in
the Chin group (No. ICs) and ranking of the primary motor component
in the list by (i) percentage of variance explained (MELODIC default)
(ii) GLMcorr: the correlation between IC spatial map and GLM t-map
(iii) TEMPLATEcorr: the correlation between IC spatial map and a
precentral gyrus template (iv) SPECcorr: the correlation between the
frequency spectra of model time courses and frequency spectra

of IC.

Patient ID No. ICs Primary motor IC position in ranking by

Variance GLMcorr TEMPLATEcorr SPECcorr

(i) (ii) (iii) (iv)
C1 234 132 1 2 4
C2 205 191 2 2 18
C3 138 129 32 1 223
Ca 200 155 1 1 15
C5 250 159 5 2 16
C6 118 110 1 1 10
C7 209 167 1 1 19
C8 163 162 1 1 5
C9 256 13 1 1 16
C10 165 138 1 1 1
Median 203 147 1.0 1.0 15.5
Mean 194 145 4.6 13 32.7
SD 73 48 9.7 0.5 67.2

Table 5 | Summary of the total number of components identified in
the Hand group (No. ICs) and ranking of the primary motor
component in the list by (i) percentage of variance explained
(MELODIC default) (ii) correlation between IC spatial map and GLM
t-map (iii) correlation between IC spatial map and a precentral gyrus
template (iv) correlation between frequency spectrum of model time
course and frequency spectrum of IC.

Patient ID No. ICs Primary motor IC position in ranking by

Variance GLMcorr TEMPLATEcorr SPECcorr

(i) (ii) (iii) (iv)
H1 161 99 1 1 1
H2 138 130 1 3 1
H3 120 80 1 2 44
H4 126 58 1 3 1
H5 169 93 1 6 1
H6 100 70 1 2 2
H7 24 16 1 1 1
H8 158 122 1 3 1
H9 163 108 1 1 1
H10 84 79 1 1 1
H11 159 157 1 1 1
H12 108 102 1 2 1
Median 132 96 1.0 2.0 1.0
Mean 126 93 1.0 2.2 4.7
SD 43 37 0 15 12.4
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FIGURE 9 | A plot of the two most successful features used to
automatically identify primary motor activation components (red
circles) amongst other components (black crosses) in the Chin and
Hand groups.

the first six positions for all others. This reduces the time required
for an interpretation of the ICA results by the clinician. A similar
approach might also work for other clinical tasks such as presur-
gical language mapping with neuroanatomical predefinition of
Brocas and Wernicke areas. Limitations concern the possibility
of missing components related to neuroplastically shifted brain
activations or difficulties in defining neuroanatomical regions
of interest in largely distorted brains. In these cases, individual
screening of all components would probably still be necessary. In
an extension of the ranking we have demonstrated, fully auto-
matic identification of the primary motor component might be
achieved with a combination of the “GLMcorr” and “TEMPLATE-
corr” features using a trained classifier (Tohka et al., 2008; e.g.,
Soldati et al., 2009), although this would need to be developed
with a larger number of data sets for training and testing. The
performance of the SPECcorr feature, which has shown to be an
effective ranking feature in a previous motor task study at 1.5T
(Moritz et al., 2003) was relatively poor in this context. This is
due to the similarity between the frequency spectra of activation
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and stimulus-correlated motion. The poor performance of the
SPECcorr feature also suggests that the Hybrid ICA approach of
McKeown (2000), which combines components with time courses
similar to a hypothesized reference function, would be likely to
incorporate motion components if applied to these data.

In contrast to Tohka et al. (2008), no motion correction was
carried out prior to analysis with ICA in this study. Given effective
head restraint, it was expected that ICA would be able to cleanly
separate activation from motion-related signal sources without
using prior motion correction. This proved to be the case, proba-
bly because the dominant motion artifacts in these data were not
related to voxel shifts, but rather to changes in B0 and GRAPPA
reconstruction errors, which are more pronounced at very high
field. At lower field and with less effective head restraint voxel
shifts may constitute the dominant source of signal change, and a
prior motion correction may be necessary to ensure the effective
performance of ICA.

We consider the potential implications of our findings for ultra-
high field presurgical planning with motor tasks. In the resection of
tumors close to motor regions, the primary aim is to reliably iden-
tify the perirolandic area via detection of central sulcus activation.
If reliable definition of the course of the central sulcus is possible,
the primary motor cortex may be spared in its entirety. In this
study, central sulcus activation could be identified in all patients
using the GLM approach, despite substantial motion-related arti-
facts. Depending on the degree of malformations present in the
perirolandic area, precentral gyrus regions can be rendered dys-
functional by a tumor, however, and neoplastic reorganization
may take place. This leads to function being subsumed by other
portions of the precentral gyrus or the contralateral precentral
gyrus. In this case it may be necessary to map the primary motor
homunculus with a variety of motor tasks. In such cases sensitivity
may be required in more inferior regions, where motion artifacts
are more pronounced, as observed in this study. ICA results have
been shown to be more sensitive and specific in these regions.

The presence of pathology can lead to modification of the
hemodynamic response. In presurgical planning it may be nec-
essary to include the temporal derivative of the HREF, use a Finite
Impulse Response or Fourier Basis set approach, or estimate the
HREF for each patient (Carter et al., 2008; Casanova et al., 2008)
and assess the consistency of response over a range of thresholds
and runs (Beisteiner et al., 2000, 2010). The results achieved here
suggest that the same end — robust results in the case of atypical
temporal dynamics — may be achieved using ICA with a much
reduced clinical analysis and assessment overhead. “Killer applica-
tions” of ICA are those in which task timing cannot be monitored,
such as studies of the resting state (Beckmann, 2012). While per-
formance can be recorded for many tasks, such as the simple motor
tasks described here, there may be an absence of compatible mon-
itoring devices for ultra-high field systems, and some stages of
processing may be hard to monitor for other tasks relevant to
presurgical planning, such as the “home town walking” task used
to map memory (Beisteiner et al., 2008).

For specific clinical questions targeting responses of all parts of
amotor network (e.g., movement disorders) and for research pur-
poses, it is desirable to have the sensitivity to be able to detect the

participation of motor regions which may show smaller BOLD sig-
nal changes, such as subcortical sensorimotor areas predominantly
involved in extrapyramidal motor disease. Our results indicate the
most prominent benefit of ICA for such tasks.

Although not directly assessed in this study, the artifacts
observed here are expected to be similar to those encountered with
overt speech paradigms used in presurgical localization of lan-
guage (Gartus et al., 2009). Language tasks lead to smaller BOLD
signal changes which are localized more inferiorly, where artifacts
are more pronounced. Another promising area of application is
basic neuroscience studies involving painful or emotionally evoca-
tive stimuli, which may likewise elicit substantial motion (Moser
et al., 2007). The effectiveness of ICA in isolating the weaker and
more variable responses in emotion and language tasks needs to
be established in dedicated studies, however.

We have shown that ICA, combined with feature-based rank-
ing of components, constitutes a fast and practical approach to
the analysis of 7T fMRI motor task data containing stimulus-
correlated motion. Assessment of the first few ranked components
at a single statistical threshold is sufficient to identify motor
activation without contamination by motion artifacts, offering
additional information and clarity compared to a GLM analysis.
ICA allows advantage to be taken of the increased SNR and BS
promised by ultra-high field for clinical studies (Beisteiner et al.,
2011) even for challenging tasks involving head motion. This paves
the way for increased reliability of results and the use of higher
resolution in such applications as presurgical mapping at 7 T.

CONCLUSION

Independent component analysis was found to be capable of
cleanly separating activation from motion artifacts in ultra-high
field fMRI data which contained stimulus-correlated motion.
Some activated regions were evident in ICA results but not GLM
results, indicating not only higher specificity to activation but
also higher sensitivity in the analysis of motion-contaminated
data. The features presented here allowed task-relevant activation
components to be easily identified from the large number of con-
tributing signals, making ICA a feasible approach to the routine
analysis of presurgical planning fMRI data with motor tasks in
the lab and clinic. The fact the correlation between GLM results
and ICA spatial maps allowed the primary motor components to
be identified in most patients adds weight to the argument that
both methods should be applied to the analysis of such patient
data.
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