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In recent decades, a lot of achievements have been obtained in imaging and cognitive
neuroscience of human brain. Brain’s activities can be shown by a number of different
kinds of non-invasive technologies, such as: Near-Infrared Spectroscopy (NIRS), Magnetic
Resonance Imaging (MRI), and ElectroEncephaloGraphy (EEG; Wolpaw et al., 2002;
Weiskopf et al., 2004; Blankertz et al., 2006). NIRS has become the convenient technology
for experimental brain purposes. The change of oxygenation changes (oxy-Hb) along task
period depending on location of channel on the cortex has been studied: sustained
activation in the motor cortex, transient activation during the initial segments in the
somatosensory cortex, and accumulating activation in the frontal lobe (Gentili et al., 2010).
Oxy-Hb concentration at the aforementioned sites in the brain can also be used as a
predictive factor allows prediction of subject’s investigation behavior with a considerable
degree of precision (Shimokawa et al., 2009). In this paper, a study of recognition algorithm
will be described for recognition whether one taps the left hand (LH) or the right hand (RH).
Data with noises and artifacts collected from a multi-channel system will be pre-processed
using a Savitzky–Golay filter for getting more smoothly data. Characteristics of the filtered
signals during LH and RH tapping process will be extracted using a polynomial regression
(PR) algorithm. Coefficients of the polynomial, which correspond to Oxygen-Hemoglobin
(Oxy-Hb) concentration, will be applied for the recognition models of hand tapping.
Support Vector Machines (SVM) will be applied to validate the obtained coefficient data
for hand tapping recognition. In addition, for the objective of comparison, Artificial Neural
Networks (ANNs) was also applied to recognize hand tapping side with the same principle.
Experimental results have been done many trials on three subjects to illustrate the
effectiveness of the proposed method.

Keywords: polynomial regression algorithm, support vector machines, artificial neural networks, hand tapping

recognition, functional Near-Infrared Spectroscopy

INTRODUCTION
Human brain has a complex structure with around 100 billion
neurons, so it is a big challenge for all scientists in biological com-
puting (Wolpaw et al., 2002). These neurons can communicate
from one to another with or without external excitations to make
typical decisions (pattern recognition, cognition, motion, and
others; Critchley, 2009). Moreover, in prefrontal cortex of human
brain plays an important role in social activity for both adults
and children. Tobias Grossmann represented a review related to
the role of prefrontal cortex of human brain, in which specific
areas in the adult human brain as social brain could process the
social world (Aydore et al., 2010; Grossmann, 2013) and also Tila
Tabea Brink et al. investigated about orbitofrontal cortex in chil-
dren with 4− to 8-year-old through processing empathy stories
(Brink et al., 2011). The result is that children could passively
follow these stories presenting social situations. Regarding pre-
frontal cortex, EEG electrodes were mounted on frontal positions
of human brain for wheelchair control (Ahmed, 2011). In par-
ticular, user could move eyes to drive the electrical wheelchair to
reach the desired target.

In recent decades, a lot of achievements have been obtained
in imaging and cognitive neuroscience of human brain. Brain’s
activities can be explored using different kinds of non-invasive
technologies, such as: Magnetic Resonance Imaging (MRI), Near-
Infrared Spectroscopy (NIRS), and ElectroEncephaloGraphy
(EEG; Wolpaw et al., 2002; Weiskopf et al., 2004; Blankertz
et al., 2006; Ince et al., 2009). Many researchers have been
attracted by these technologies with many approaches to find
out problems related to human brain for rehabilitation and
treatment. For the rehabilitation problem, information obtained
from human brain using EEG technique could be employed to
perform shared control of motion wheelchairs (Tanaka et al.,
2005). A brain simulator can lead to improve or to recover the
cognitive/motor functions of tetraplegic patients with degen-
erative nerve diseases spinal cord injuries (Kauhanen et al.,
2006). In these non-invasive technologies, the NIRS technol-
ogy is often applied to measure Oxygen Hemoglobin (Oxy-
Hb), deOxy-Hb, and Total-Hb concentration changes. These
changes allow us predict brain activations related to body
behaviors.
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fNIRS has become the convenient technology for experimental
brain purposes. This non-invasive technique emits near infrared
light into the brain to measure cerebral hemodynamics as well
as to detect localized blood volume and oxygenation changes
(Tsunashima and Yanagisawa, 2009). The change of oxy-Hb along
task period depending on the location of channels the cortex has
been studied: sustained activation in the motor cortex, transient
activation during the initial segments in the somatosensory cor-
tex, and accumulating activation in the frontal lobe (Gentili et al.,
2010). Oxy-Hb concentration at the aforementioned sites in the
brain can also be used as a predictive factor allows prediction
of subjects’ investigation behavior with a considerable degree of
precision (Shimokawa et al., 2009).

fNIRS technique is a non-invasive technique which is applied
to monitor human body for diagnosis and treatment (Bozkurt
et al., 2005; Macnab et al., 2011; Reher et al., 2011). Hiroshi
Taniguchi et al. investigated six subjects with unilateral spa-
tial neglect (USN)-positive (+) and 6 others with USN-negative
(Taniguchi et al., 2012). In this research, brain activity was sim-
ulated by prism adaptation tasks using fNIRS. The result showed
that there was a typically great reduction in Oxy-Hb of the USN
(+). For monitoring carotid endarterectomy, one was applied
the NIRS technique to evaluate its reliability in the detection
of clamping ischemia (Pedrini et al., 2012). The result found
that there were three patients who represented transient ischemic
deficits at awakening and no case of perioperative stroke or death.

In addition, fNIRS technique has been appeared as an alterna-
tive brain-based experimental technique (Lloyd-Fox et al., 2010)
to measure human thoughts and activities for rehabilitation. For
evaluating behaviors related to human brain during experiments,
subjects feel free for performing his or her brain activities. In par-
ticular, this technique has been successfully used to study brain
functions such as assessment of motor task from everyday liv-
ing, athletic performance, recovery from neurological illness (Hu
et al., 2010), assessment of verbal fluency (Schecklmann et al.,
2010), and quantification of brain function during finger tap-
ping (Sato et al., 2007). However, to the best of our knowledge,
there have been a few applications of the fNIRS technique to
quantify the motor control signals leading to brain simulator for
rehabilitation (Chunguang et al., 2010; Gentili et al., 2010).

Neural networks can be used for cognition brain tasks as a clas-
sification module, in which wavelet decomposition can be used as
feature extractions (Khoa and Nakagawa, 2008); wavelet can be
used to remove artifacts (Molavi and Dumont, 2010). Base on the
slope of straight line, hand side tapping can be distinguished (Ngo
et al., 2012). Oxy-Hb and Deoxy-Hb can also be used directly
with SVM algorithm for the recognition of hand tapping (Sitaram
et al., 2007).

Savitzky–Golay (SG) filters have been used to smooth signals
and images with noises as well as artifacts in recent years. In the
SG filters, the coefficients of the local least-square polynomial fit
are pre-computed to preserve higher movements and then the
output of the filter is taken at the center of the window (Savitzky,
1964; Steinier et al., 1972; Gorry, 1990). In this paper, the SG
filter was applied to reduce spike noises of Oxy-Hb signals. The
Oxy-Hb signals after filtering allow us be easier in recognizing left
(LH) or right hand (RH) tapping status. Moreover, a Polynomial

Regression (PR) approach has been applied for estimation of sig-
nals and images with noise (Cui and Alwan, 2005; Cai et al., 2007;
Zhang et al., 2009; Khan et al., 2011). In our research, in order to
estimate Oxy-Hb signals, the PR algorithm was used to produce
polynomial curves with their features. Based on these features,
one can classify tapping hand tasks.

Support Vector Machine (SVM) algorithms have been applied
for classification problems in the machine learning community
in recent years. In this case, the SVM was employed to clas-
sify hypothyroid disease based on UCI machine learning dataset
(Chamasemani and Singh, 2011). Another application related to
medical images is that the SVM was utilized to recognize the leaf
spectral reflectance with different damaged degrees in the image
processing and spectral analysis technology (Dake and Chengwei,
2006). In this project, the SVM algorithm (Sitaram et al., 2007)
was applied to recognize hand tapping tasks using fNIRS technol-
ogy. Oxy-Hb signals after reducing noise will be extracted features
using a PR algorithm. Based on coefficients obtained from the PR,
the SVM algorithm will be applied for the recognition of the LH
and RH tapping tasks.

Another algorithm for classification is that a recursive train-
ing algorithm for EEG signals using Artificial Neural Networks
(ANNs) to generate recognition patterns from EEG signals was
proposed to control electric wheelchair (Tanaka et al., 2005;
Singla et al., 2011). Mental tasks were classified for wheelchair
control using prefrontal EEG (Rifai Chai, 2012). The relevant
mental tasks used in this paper are mental arithmetic, ringtone
imagery, finger tapping, and words composition with additional
tasks which are baseline and eyes closed. The feature extraction
is based on the Hilbert Huang Transform (HHT) energy method
and then the ANNs with the Genetic Algorithm (GA) optimiza-
tion (Subasi et al., 2005) was applied for classification. The result
is that the accuracy of the proposed classification algorithm with
the five subjects participated was between about 76 and 85%.

In this paper, we proposed the recognition algorithm for
developing a brain computer interface using fNIRS. First of all,
Savitzky–Golay filter is used to reduce noises as well as artifacts.
Coefficients, which are features of Oxy-Hb signals, are found
by using a PR algorithm. For the recognition of tapping hands
related to the left and right brain activation, ANN and SVM
algorithms were used. These two methods will be compared to
find out the best one. The results and discussion about tapping
hand activity will be shown to illustrate the effectiveness of the
proposed approaches. This process is shown in Figure 1.

MATERIALS AND METHODS
SUBJECTS AND THE EXPERIMENTAL SETUP
A multichannel fNIRS instrument, FOIRE-3000 (SHIMAZU Co.
LTD, Japan), is used to acquire brain Oxy-Hb. This machine
was located at Lab-104 of Biomedical Engineering Department,
International University, VNU, Vietnam. The FOIRE 3000 system
with the eight pairs of the probes, consisting of the illumina-
tor and detector optodes, produces 24 channels as shown in
Figure 2A. These probes were placed on the scalp to collect fNIRS
data, in which the detectors were installed at a 3 cm distance from
the illuminators. The optodes were arranged to install at the left
hemisphere on the head of the subject.
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Oxy-Hb concentration changes in motor control area of
human brain was captured from a set of the holder with 24 chan-
nels for both hemispheres using the fNIRS technique as shown in
Figure 2B. In particular, when the subject performs one typical
activity, brain signals will be obtained from the fNIRS system
and then calculated to produce three types of signals [Oxy-Hb
(red), Total-Hb (green) and Deoxy-Hb (blue)] corresponding to
three wavelengths (780, 805, and 830 nm), in which [Total-Hb] =
[Oxy-Hb] + [Deoxy-Hb]. Moreover, the distance between pairs
of emitter and detector probes was set at 3 cm and all probes were
attached with holders arranged on different sides of human brain
hemispheres depending on users. Concentration changes of three
signals produce time points in an output. In this research, Oxy-
Hb changes are calculated in the following formula (Shimadzu
Corporation, 2010):

Oxy = −3.6132 ∗ Abs[780 nm] + 1.1397 ∗ Abs[805 nm]
+ 3.0153 ∗ Abs[830 nm] (1)

in which Abs: Absorbance.
Three subjects (male, average: 25 years old, 60 kg weights,

right-handed) were participated into this study. All participants

FIGURE 1 | Recognition algorithm block diagram. First of all,
Savitzky–Golay filter is used to reduce noises as well as artifacts. After that,
feature of Oxy-Hb is found by a polynomial regression based on its
coefficients. Finally, Artificial Neural Network or Support Vector Machines is
used to determine whether left hand or right hand is tapped.

were healthy and showed no musculoskeletal or neurological
restrictions or diseases. Before participating into the experiments,
each subject was asked to fill out a questionnaire consisting of
patient’s identification, age and gender, which was kept confi-
dential. The tenets of the Declaration of Helsinki were followed;
the local Institutional Review Board approved the study. These
subjects informed consent agreement after reading and under-
standing of the experiment protocol and the fNIRS technique.

After reading and understanding the experiment protocol and
the fNIRS technique, he will start doing hand tapping. The sub-
ject was required to perform hand tapping motions, both left and
right sides as motor activities. In these hand tapping motions, a
protocol includes 20 s (Rest)—20 s (Task)—20 s (Rest), it means
that the subject relaxed in 20 s, tapped his hand up/down about
10 times in 20 s, and then rested 20 s, as shown in Figure 3.

Oxy-Hb data were collected on 20 channels, in which 10 chan-
nels are of the left brain side and that of the opposite side will be
obtained for hand tapping recognition. However, we just chose 4
channels of each side which focus on hand and leg motion area
to analyze and to estimate features. In particular, the left brain
channels are 2, 5, 6, 9, and the 12, 15, 16, 19 channels are of the
right brain side as in Figures 4A,B. In this research, Oxy-Hb data
obtained from these channels will be processed to recognize hand
tapping tasks. Without loss of generality, the natural architecture
is different from person to person. The probes are allocated on the
holder, in which the transmitter probes and receiver probes are
predicted to cover as much as area of brain based on the physical
structure of each subject. The authors (Aihara et al., 2012) com-
bined EEG and NIRS for estimation of cortical current source.
The probes position using stylus marker to allow co-registration

FIGURE 2 | (A) fNIRS FOIRE-3000 system. This system operates at three
different wavelengths of 780, 805, and 830 nm. (B) Subject’ head with
installed probes. The distance between pairs of emitter and detector
probes was set at 3 cm and all probes were attached with holders.

FIGURE 3 | Setting of experiment protocol. The subject relaxed in 20 s,
tapped his hand up/down about 10 times in 20 s, and then rested 20 s.
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FIGURE 4 | Probes location and channels on two hemispheres. (A) Probes location (red—emitter, blue—detector) and channels on the motor control area
of the left hemisphere. (B) Probes location and channels (yellow) on the motor control area of the right hemisphere.

of EEG and NIRS results. In this paper, we also used marker to
find out the average positions of motor area of human brain cor-
tex. To achieve more accuracy, the NIRS activity was mapped onto
cerebral cortex using fusion software (Shimadzu Corporation,
2010). From this evidence, we proposed the selection of channels
2, 5, 6, 9 and 12, 15, 16, 19 for hand tapping recognition with the
20-channel NIRS system configured above.

DATA PRE-PROCESSING
Brain data of a subject acquired from the channels have noise and
artifacts. In order to obtain more smoothly brain data, a filter as
the Savitzky–Golay filter was applied in this paper. The Savitzky–
Golay filters (Orfanidis, 2010) are also known as polynomial
smoothing. It means that the idea of the polynomial smoothing is
replacing samples of signal by the values that lie on the smoothing
curve. In moving an average FIR filter, the output is a simply aver-
age version of its inputs, in which this filter has the response of
the low-pass filter. In practice, NIRS signals fluctuate along time
corresponding to excitations and have the unknown specific fre-
quency. Therefore, it could not be the average of inputs with the
arbitrary FIR filter length. In this research, to track the acquired
signal, the Savitzky–Golay filter as the FIR filter can be used.

In general, we can evaluate a polynomial with the order of d
to smooth the length-N data x with the condition N ≥ d + 1.
Assume that, the data x is the type of a vector

x = [x−M, . . . , x−1, x0, x1, . . . , xM]T (2)

in which N samples of x are replaced by the polynomial with the
order of d as follow:

x̂m = c0 + c1m + · · · + cdmd, −M ≤ m ≤ M (3)

where c0, c1, . . ., cd denote polynomial coefficients. M is the
number of points on either side of x0

In this case, there are d + 1 based on the vector si, i = 0, 1, . . .,
d as follows:

si(m) = mi, −M ≤ m ≤ M (4)

Thus, we can write the vector S as follows:

S = [s0, s1, . . . , sd] (5)

in which s0, s1, . . ., sd are the polynomial basic vectors.
The smooth values in (3) can be re-written in the following

equation:

x̂ =
d∑

i = 0

cisi = [s0, s1, . . . , sd]

⎡
⎢⎢⎢⎢⎣

c0

c1
...

cd

⎤
⎥⎥⎥⎥⎦ = Sc (6)

Coefficients of the desired filters are obtained as follows:

B = SGT = GST = SF−1ST = [b−M, . . . , b0, . . . bM] (7)

in which, b−M , . . ., b0, . . ., bM are the column filters of the
Savitzky–Golay filter set.

{
F = ST S

G = SF−1 (8)

Finally, the values to create more smoothly signals are estimated
in the following equation:

x̂m = bT
mx, m = −M, . . . , 0 . . . , M (9)

in which, bT
m are the transpose version of bm.

In this paper, the Savitzky–Golay filter will be utilized to
smooth spikes of brain Oxy-Hb signals for identifying hand tap-
ping tasks. The filtered Oxy-Hb signals allow us extract features
with reliable information.

FEATURE EXTRACTION
In general, the first step in classification work is to find the
features of data samples. For this purpose, there are many meth-
ods such as Principle Component Analysis (PCA), Independent
Component Analysis (ICA) and etc. However, hemodynamic
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response of human brain changes in time domain. Moreover,
we want to evaluate the Oxy-Hb concentration corresponding to
hand tapping tasks based on analyzing numeric as well as having
a look in graphical figures.

PR algorithm (Montgomery and Runger, 2003) presents the
relationship between amplitude and time of a signal. In this paper,
the PR algorithm was applied to analyze brain Oxy-Hb data in
blood flow corresponding to hand tapping tasks. From the pro-
cessed data, one can distinguish the difference between the LH
and RH tapping times corresponding to the difference of the
Oxy-Hb concentration changes.

Assumed that we have the set of two-dimensional data,
(x1, y1), . . ., (xn, yn), where each of x and y has no information
about the other. Our problem is fitting a polynomial curve gener-
ated by a typical data. Thus, the relationship between x and y can
be found out. Based on the coefficients of the regression curve
with the order of 5, one can estimate the hand tapping. In partic-
ular, the PR equation between independent variable x and y fitted
can be expressed as:

ŷ = ĥ0 + ĥ1x + ĥ2x2 + · · · + ĥmxm (10)

in which, ĥ0, ĥ1, ĥ2, · · · , ĥm are estimated values of h0,
h1, h2, · · · , hm. There are m regressors and n observa-
tions,

(
xi1, xi2, · · · , xim, yi

)
, i = 1, 2, . . ., n corresponding to(

xi, x2
i , · · · , xm

i , yi
)
. In this equation, the powers of x play the role

of different independent variables.
The PR model can be re-written as a system of linear equations

y = Xh + ε (11)

where: ε = [ε1, ε2, · · · , εn]T is a vector of error.
The ordinary least square ĥ of h given by the arguments that

minimize the residual sum of squares and the distributive law is
employed. One obtains the equation,

RSS(h) = y′y + h′(X′X)h − 2y′Xh (12)

Equation 12 is minimized by taking ∂RSS
∂h and set the result to zero.

This leads to

X′Xh = X′y (13)

The ordinary least square in the case of the inverse of X′X exists is
given by

ĥ = (
X′X

)−1
X′y (14)

From these coefficients, one can determine problems of the LH
tapping or RH tapping tasks with the measured brain data using
the fNIRS technology. Figure 5 represents the regressed signal
of the channel-2 corresponding to Equation 15. Similarly, the
regression signals of channels 5, 6, 9, 12, 15, 16, and 19 can be
shown.

yC2 = −0.0001x5 + 0.0023x4 − 0.0114x3 + 0.0182x2

+ 0.0043x − 0.0329 (15)

FIGURE 5 | The regression signal of filtered channel 2. Sudden changes
had been removed with the window size of 11.

In this figure, the blue Oxy-Hb signal after the Savitzky–Golay
filter was calculated to produce the red regressive curve. Each
hand tapping creates the regressive Oxy-Hb curves which contain
information or its feature coefficients. For recognition of hand
tapping types, these coefficients will be given the input of the
identification system or called the identification algorithms.

The regressed polynomial must represent the original signal
with the best fit. The smaller error between the origin (here is
the filtered NIRS signal) and the regressed signal is higher than
the order of the polynomial is. It means that one should choose
the order not only to fit the origin but also to show the gen-
eral trend and the characteristic of NIRS signal. In practice, the
NIRS signal can not change immediately at the moment of tap-
ping hand. For example, one hand moving up or down will make
an excitation to both hemispheres. Therefore, in 20 s of tapping
hand, one person could take 10 times of moving hand up and
down. In this case, Oxy-Hb level, which will flow from the low-
est to highest level in short time, is not the “trend” of overall
signal. This is the reason for choosing the polynomial with the
order of 5.

ARTIFICIAL NEURAL NETWORK
ANNs are the very powerful tools for the problems of classifi-
cation and pattern recognition. We can use the estimated coef-
ficients as the features from the PR algorithm by connecting with
a multilayer feed forward network for recognition. The archi-
tecture of this network used here consists of an input layer, one
hidden layer, and the output layer as shown in Figure 6. In par-
ticular, input samples are the features from channel coefficients
corresponding to Oxy-Hb concentration changes. The number of
hidden nodes is carefully chosen for this case to obtain higher per-
formance. Therefore, it can be chosen as an average of number of
the input nodes and the output nodes. With the hidden layer, we
used the double sigmoid function and this sigmoid function was
also used for the output layer.
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FIGURE 6 | Architecture of classification network. This net has 48 nodes
input, 100 nodes at hidden layer and 2 nodes at output.

In general, standard back propagation is used for training the
network with three layers. It is a gradient descent algorithm,
in which the network weights are moved along the negative of
the gradient of the performance function. With this argument,
the training is based on the minimization of the following error
function:

E =
N∑

n = 1

(on − dn)
2, (16)

where N is number of samples, o is network output and d is
desired output.

Suppose that the network has I nodes of the input layer, J
nodes of the hidden layer and the output layer is K nodes. Call

w(1,0)
j,i is weight from the ith node of the input layer to the jth node

of the hidden layer and w(2,1)
k,j is weight from the jth node of the

hidden layer to the kth node of the output layer. The backpropa-
gation learning of the 3-layers network is shown in Table 1. The
application is that with the LH tapping, the output is desired to
get the value of [1; 0] and [0; 1] is the desirable value of the right
tapping. The ANN is one of the approaches which is often used for
recognition. In this research, the SVM is also applied to identify
hand tapping tasks through Oxy-Hb flowing in brain blood.

SUPPORT VECTOR MACHINES
In order to estimate hand tapping tasks, after determining coef-
ficients of hand tapping times using the PR algorithm, we also
used the linear SVM algorithm (Shawe-Taylor, 2000) to vali-
date the coefficient data. In the linear SVM algorithm, assume
that the training data are {xi, yi}, i = 1, . . .,l ,yi ∈ {−1, 1},xi ∈ Rd.
The points x which lie on the hyperplane satisfy w.x + b = 0, in
which | b |/‖ w ‖ is the distance from the hyperplane to the ori-
gin (where ‖ w ‖ is the Euclidean norm of w). Let d+ (d−) be
the shortest distance from the seperation hyperplane to the clos-
est positive (negative) samples corresponding to the coefficients
of LH tapping and RH tapping, respectively. This is showed in
Figure 7.

Table 1 | The three-layers network with backpropagation learning.

Random initial weights
While the Mean Square Error (MSE) is unsatisfied or the number of
epochs is not exceed,

For each input xp, 1 ≤ p ≤ P, (*)

Compute the inputs of hidden layer net(1)

p, j ;

Compute the outputs of hidden layer x(1)

p, j ;

Compute the inputs of ouput layer net(2)

p, k ;

Compute the outputs of network op, k ;

Modify outer weights

�w (2, 1)

k, j = η
(
dp, k − op, k

)
S′

(
net(2)

p, k

)
x(1)

p, j

Modify weights between input layer and hidden layer

�w (1, 0)

j, i = η

k∑
k = 1

((
dp, k − op, k

)
S′(net(2)

p, k

)
w (2, 1)

k, j

)
S′(net(1)

p, j

)
xp, i

End (*)

End While

Where: S() is the active function, η is the learning rate.

FIGURE 7 | Linear seperation hyperplane for right hand tapping feature

and left hand tapping.

Margin of the hyperplane is d+ + d−. In the linear case,
the support vector looks for the separating hyperplane with the
largest margin using the primal Lagrangian. Suppose that all
training data satisfy the following contraints:

xi · w + b ≥ +1, for yi = +1 (17)

xi · w + b ≤ −1, for yi = −1 (18)

The optimization problem is considered to transform Equations
17 and 18 using the primal Lagrangian as follows:

Lp(w, b, α) = 1

2
||w||2 −

l∑
i = 1

αiyi(xi · w + b) +
l∑

i = 1

αi (19)

where αi ≥ 0 are the Lagrange multipliers.
Differentiating Lp with respect to w and b and then getting the

results to zeros, we have the following equation:

∂Lp(w, b,α)

∂w
= w −

l∑
i = 1

yiαixi = 0 (20a)
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FIGURE 8 | Raw data and its smoothed version. (A) Raw and smoothed NIRS data of channel 2, 5, 6, 9 of the left hemisphere. (B) Raw and smoothed NIRS
data of channel 12, 15, 16, 19 of the right hemisphere.

∂Lp(w, b,α)

∂b
=

l∑
i = 1

yiαi = 0 (20b)

Equations can be re-written to calculate the support vector as
follows:

w =
l∑

i = 1

yiαixi (21)

The regressed data will trained using the SVM method, in which
the hyperplane is a linear function and divided into two planes:

D+ contains the coefficients and y = +1 is of the left tapping;
similarly D− has the coefficients and y = −1 is of the right
tapping.

RESULTS AND DISCUSSION
Oxy-Hb raw signals (blue) were collected from the fNIRS system
using the proposed protocol (see Figure 5) which plays an impor-
tant role during measure tasks. In particular, each subject tapped
his hand up or down 10 times in 20 s. Therefore, we could sep-
arate this task into 10 parts, in which each part has 1 s up and
1 s down as shown in Figure 9. Before analyzing Oxy-Hb signals,
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FIGURE 9 | Smoothed signal analysis. Black dash line shows tapping
time period while the green solid curve shows the changes in theory for
channel 2.

the Savitzky–Golay (SG) filter was chosen to produce the smooth
Oxy-Hb signals (red) as shown in the Figures 8A,B. In this filter,
if the size of the window is too small, noises still affect upon the
Oxy-Hb signals. Otherwise, if the large window size is chosen, the
useful information may be lost. As mentioned before, Oxy-Hb
signals using fNIRS technique are the concentration of Oxy-Hb
in blood flow of human brain related to excitations or activities
of human body. Therefore, choosing the window size as well as
the order of the filter is very important and also depends on each
typical case. For this reason, the SG with the window size of 11
and the order of 3 was applied (see Figures 8A,B).

After smoothing Oxy-Hb signal by using the SG filter, the
features of Oxy-Hb signal corresponding to hand tapping are
extracted using a PR algorithm. In this case, the PR algorithm
with the order-5 polynomial produces six coefficients and its
equation is represented as follows:

y = h5x5 + h4x4 + h3x3 + h2x2 + h1x + h0 (22)

where x represents time from 0 to 7 s with the resolution of 0.07.
The fact is that choosing the window size as well as the order

of the polynomial plays an important role due to avoidance of
loosing information of signals. In Figures 8, 9, the red Oxy-Hb
signals are the smoothed signals, in which the window size and
the order were carefully calculated and chosen so that the peaks
of the signals removed after filtering do not affect consequences
on the analysis.

This equation was applied to determine the regressed Oxy-Hb
signals of the channels 2, 5, 6, 9 (left hemisphere) and the chan-
nels of the right hemisphere, 12, 15, 16, 19. Thus, the obtained
results of the RH tapping and the LH tapping as showed in
Figures 10A,B are compared together. However, these features of
the Oxy-Hb signals obtained at two hemispheres are very hard to
distinguish between are the right tapping and the left tapping. For

this reason, training data, which are coefficients of the regressed
polynomials as shown in Table 1, were applied to identify hand
tapping tasks. In particular, in each time of hand tapping, Oxy-
Hb concentration changes of two hemispheres allow us obtain the
regressed coefficients using the PR algorithm. Moreover, six coef-
ficients of each channel as shown in Table 2 are arranged to be
a vector. For classification of hand tapping tasks, the vector was
employed to the algorithms such as the ANN or SVM for training
data.

Assume that vr is the vector of the RH tapping and the vector
of the LH tapping is vl. In one run of experiment, the subject per-
formed a hand tapping task 20 times, in which 10 times for the LH
tapping and 10 times for the RH one. Therefore, a set of the LH
tapping coefficients Sl includes 10 vectors (from vl1 to vl10) and
that of the RH tapping coefficients Sr is 10 vectors (from vr1 to
vr10). With 80 sample vectors obtained from subjects, the recog-
nition algorithm was worked out by splitting the sample vectors
to be 4 runs of 20-fold cross recognition. For identifying the LH
tapping, one used 9 vectors of the Sl set combined with the 10
vectors of the Sr set and the remaining vector of the Sl set is used
to be a sample vector for identification. In the case of identify-
ing the RH tapping, 9 vectors of the Sr set combined with the 10
vectors of the Sl and the remaining one is used to be the sample
vector for identifying. As known, Oxy-Hb signals obtained from
human brain have many noises and artifacts. Therefore, identify-
ing hand tapping tasks corresponding to Oxy-Hb concentration
changes is not easy. For this reason, the identification algorithms
such the ANN and SVM are reliable in this research. In the SVM
method, the linear hyperplane was chosen. In each training pro-
cess, the values α (having 15 values of α) are produced, also there
are 15 support vectors w (each vector w is 48 elements) and b is
0.068. In similarity, the ANN algorithm with the hidden layer of
100 nodes was applied to obtain the training result, in which the
goal of training is set up of 0.001 and the number of epochs is
5000.

From the data sets of the hand tapping tasks, the SVM algo-
rithm was applied for learning to analyze data and recognize
patterns. In understanding this SVM training algorithm, data
vectors from the hand tapping tasks are given the input of the clas-
sifier with a hyperplane which forms two possible classes of the
output. In this method, experimental results to the LH tapping
of Subject-1 and Subject-3 are the same and Subject-2 showed
the lower performance with just 72.5% of the accuracy com-
pared with 82.5% of Subject-1 and Subject-3 as shown in Table 3.
While basically its results are the same to that of tapping the
RH side.

The ANN algorithm used for identifying hand tapping tasks
here consists of one input layer, one hidden layer of 100 nodes
and the output layer with two nodes. In addition, the second
method in this paper is one of recognition methods which have
been applied in recent years. Although this algorithm is used
very popular for recognition problems, it still uses here due to
giving the good performances and also being a reliable method.
The result is that classification using the ANN method gave the
around 83% performance of tapping the RH side is higher than
the performance of around 73% for the RH tapping as shown in
Table 4.
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FIGURE 10 | Regressed polynomial corresponding to hand tapping. (A)

Regressed polynomial of 8 channels of the left hand tapping. Blue curves
are the signals on the left brain side and red curves are of the right

brain side. (B) Regressed polynomial of 8 channels of right hand tapping.
Blue curves are the signals on the left brain side and red curves are of
the right brain side.

Table 2 | The arrangement of the regressed coefficients of hand tapping tasks for obtaining the input of the recognition networks.

Left hand tapping coefficients Right hand tapping coefficients

Ch-2 Ch-5 Ch-6 Ch-9 Ch-12 Ch-15 Ch-16 Ch-19

h21 . . . h26 h51 . . . h56 h61 . . . h66 h91 . . . h96 h121 . . .126 h151 . . .156 h161 . . .166 h191 . . . h196

All the results of hand tapping tasks obtained here have the
accuracy of more than 70%. In this research, two methods were
applied to find the best one. The first method is that the SVM
algorithm is used for recognition on three subjects and produce

different performances. In particular, Subject-3 with tapping the
RH has the best result with over 80% of the accuracy, while the
accuracy of Subject-2 is only 75% for the case of the RH tapping
and 72.5% for that of the LH tapping. While the second method
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Table 3 | Experiment result of 3 subjects with SVM.

Run Hand Accuracy— Accuracy— Accuracy—

tapping subject 1 (%) subject 2 (%) subject 3 (%)

1 Right 70 80 80

Left 80 80 70

2 Right 90 80 80

Left 100 70 90

3 Right 90 60 90

Left 80 70 100

4 Right 70 80 80

Left 70 70 70

Average Right 80 75.0 82.5

Left 82.5 72.5 82.5

Table 4 | Experiment result of 3 subjects with ANN.

Run Hand Accuracy— Accuracy— Accuracy—

tapping subject 1 (%) subject 2 (%) subject 3 (%)

1 Right 80 80 70

Left 70 80 60

2 Right 90 90 80

Left 80 70 80

3 Right 90 70 100

Left 70 70 80

4 Right 80 90 80

Left 70 80 70

Average Right 85 82.5 82.5

Left 72.5 75 72.5

using the ANN is that the accuracy in the case of the RH tap-
ping is equal to or greater than 82.5%. In particular, Subject-1 has
the best accuracy of the right tapping, while the accuracy of the
left tapping just stops at 72.5% for both Subject-1 and Subject-
3. Moreover, the result is that Subject-2 has the best accuracy in
the case of the LH tapping. It is clear that two methods used in
this research give a little bit different performance. In general, the
SVM method is better in this case. We also observed that Subject-
2 produced the best accuracy in the case of the LH tapping. The
right tapping accuracy is greater than the left tapping of all three
subjects in the case of the SVM is performed. Each classification
network has a different response to the same inputs. It can give
the good accuracy in some cases of the right tapping, but it can
show the poor in others. Because of this selective problem, one
should more carefully choose the classification network type to
obtain the higher performance.

In recent years, researchers have proposed different algorithms
in exploring body activities related to human brain. The poor
spatial resolution of NIRS made it difficult to distinguish two
closely located cortical areas from each other. A combination of

the multi-channel NIRS and a Center of Gravity (CoG) approach
widely accepted in the field of Transcranial Magnetic Stimulation
(TMS) could be used to discriminate between closely located
cortical areas activated during hand and foot movements of the
subject (Koenraadt et al., 2012). Hemodynamic responses were
measured using a NIRS system of 8 channels. For estimating adapt
of Oxyhemoglobin (OHb) and Deoxyhemoglobin (HHb), a CoG
algorithm was determined for each condition using the mean
hemodynamic responses and the coordinates of the channels.
Therefore, significant hemodynamic responses were found for
hand and foot movements. This is the interesting methods which
can be applied to develop for identifying hand tapping. Based on
this information, the proposed algorithms in our research can
be improved with some thresholds to find out which channel
gives the valuable information. The order of the filter we had
chosen here belongs to the pulses time of moving hand up and
down. Thus, the method to quantitatively estimate the start and
end timing of the hand movement using the neural network was
proposed.

In (Muroga et al., 2006), the authors measured regional cere-
bral blood flow during tapping movement of the RH using NIRS
technique. The following tendencies of total-Hb were observed,
in which Hb increased within 10 s from the movement start time,
decreased within 10 s from the movement end time. The direction
of arm force from hemoglobin concentration changes measured
by using NIRS technique was discriminated. A Self-Organizing
Map (SOM) was used to classify the force direction informa-
tion obtained from the NIRS signals. The results confirmed that
the direction of the arm force is discriminable through the NIRS
signal. In the simple classification approach, the average discrim-
ination rate gave the performance of 87.5% for two directions.
The experimental results showed that the NIRS signal from arm
force contained information related to the force directions (Sato
et al., 2009). This research is from our research about the pro-
posed methods and experimental tasks. While the SOM method,
possibly called the ANN, evaluated the arm force directions with
the 87.5% large performance is a little bit higher than that com-
pared with the SVM and the ANN for the LH and RH tapping
tasks. This is one of methods which we need to apply for our
experimental tasks to determine the best one.

In using NIRS technology, the local distribution of fingers
(right thumb and ring finger, respectively) was distinguished to
hemodynamic responses on Somatosensory cortex by the elec-
trical stimuli intensity (SI), whose results showed in good accor-
dance with the anatomical arrangement of hand area (Xu et al.,
2007). Another application is that in NIRS-based brain activa-
tion mapping, a novel real-time NIRS signal analysis framework
based on the General Linear Model (GLM) and the Kalman
estimator was proposed (Ge et al., 2010). A set of simulated
data was processed using the proposed framework. The results
obtained suggested that the method can effectively locate brain
activation areas in real-time, thereby demonstrating its poten-
tial for real-time NIRS-based brain imaging applications. Both
these researches, the authors were proposed the same experiment
with finger movements using different methods. It is clear that
the NIRS technology is not only used to distinguish hand tapping
tasks in this paper, but also applied for finger movement tasks.
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From the previous researches, we have realized that the pro-
posed algorithm can be accompanied with other algorithms for
finding more accuracy. The NIRS technology has been used to
obtain Oxy-Hb signals in recent years. However, these Oxy-Hb
signals always exist noises and artifacts due to subject move-
ments, noisy environments, human biological changes and oth-
ers. Proposing a good method for estimating Oxy-Hb concen-
tration changes related to brain activities is always necessary to
researchers. In particular, the poor resolution in spatial domain
needs to be overcome and also applications in real time are
an interesting field for research developments using the NIRS
technology.

CONCLUSION
In this paper, original brain signals of hand tapping tasks were
filtered by the Savitzky–Golay filter to produce the smooth sig-
nals. Moreover, the smoothed signals of the LH and RH tapping
tasks corresponding to Oxy-Hb concentration changes in human
brain were analyzed using the PR algorithm. Based on different

coefficients of the curves obtained from the PR algorithm, the
ANN and SVM algorithms were employed to validate Oxy-Hb
data for the recognition of the hand tapping times. Experimental
results with hand tapping times showed that one could distin-
guish the LH or RH tapping tasks of the subject. In addition, from
the obtained results of two methods, it was realized that the SVM
algorithm is faster than the ANN one in term of time recognition.
Based on the proposed algorithms, future work is that experi-
ments will be developed on many subjects to investigate more
accuracy and to apply for treatment and rehabilitation.
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