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Converging evidence from diverse studies suggests that atypical brain connectivity
in autism affects in distinct ways short- and long-range cortical pathways, disrupting
neural communication and the balance of excitation and inhibition. This hypothesis is
based mostly on functional non-invasive studies that show atypical synchronization and
connectivity patterns between cortical areas in children and adults with autism. Indirect
methods to study the course and integrity of major brain pathways at low resolution show
changes in fractional anisotropy (FA) or diffusivity of the white matter in autism. Findings in
post-mortem brains of adults with autism provide evidence of changes in the fine structure
of axons below prefrontal cortices, which communicate over short- or long-range pathways
with other cortices and subcortical structures. Here we focus on evidence of cellular and
axon features that likely underlie the changes in short- and long-range communication
in autism. We review recent findings of changes in the shape, thickness, and volume
of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural
and neurochemical features of individual axons in the white matter, where pathology
is evident even in gross images. We relate cellular and molecular features to imaging
and genetic studies that highlight a variety of polymorphisms and epigenetic factors that
primarily affect neurite growth and synapse formation and function in autism. \We report
preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons
in prefrontal cortex, known to shape network dynamics and the balance of excitation
and inhibition. Finally we present a model that synthesizes diverse findings by relating
them to developmental events, with a goal to identify common processes that perturb
development in autism and affect neural communication, reflected in altered patterns of
attention, social interactions, and language.

Keywords: prefrontal cortex (PFC), parvalbumin-positive interneurons, anterior cingulate cortex, ratio of excitation
and inhibition, myelinated axons, GAP-43, white matter, short-range and long-distance pathways

INTRODUCTION—THE GENERAL HYPOTHESIS FOR
DISRUPTED CONNECTIVITY IN ASD

The balance of excitation and inhibition is disrupted in
autism spectrum disorders (ASD) with widespread repercus-
sions on neural communication (Rubenstein and Merzenich,
2003; Amaral et al., 2008; Rubenstein, 2011). Connections are
the conduit for neural communication, forming local or inter-
areal circuits, which collectively construct large scale networks.
In the primate brain, cortico-cortical, and cortico-subcortical
pathways that travel through the white matter originate from
excitatory neurons. The white matter pathways, which consist
largely of axons of excitatory neurons, can be subdivided into
short/medium- or long-range based on the distance they travel to
connect with other neural structures. When these pathways reach
their targets in the cortex or in subcortical structures they form
excitatory synapses with local excitatory or inhibitory neurons,
participating in local microcircuits within a column/minicolumn,
or neighboring columns in the cortex, or within subcortical struc-
tures. Axons from inhibitory neurons in primates are largely con-
fined within the gray matter and innervate nearby neurons found

in the same or different layers within the same or neighboring
columns.

This brief description of structural connectivity highlights
multiple levels at the macro and micro scales that may be dis-
rupted in varying degrees in ASD, affecting neural communica-
tion, and the balance of excitation and inhibition. Converging
evidence from genetic, functional, and structural studies sug-
gests that there are changes in excitatory and inhibitory neural
communication in ASD and in the structure of the underlying
cortical circuits or networks. At the microcircuit and synaptic
level, numerous genetic studies have highlighted a large variety
of polymorphisms and epigenetic factors that primarily affect
neurite growth, synapse formation, and synaptic transmission of
excitatory and inhibitory neurons (see Samaco et al., 2005; Hogart
et al., 2007; Weiss et al., 2009; Gilman et al., 2011; Hallmayer
et al., 2011; Hussman et al., 2011; Voineagu et al., 2011; Shulha
et al., 2012; reviewed in Geschwind, 2011). At the level of the net-
work, most imaging studies have also focused on affected brain
systems by identifying abnormalities in the gray and white mat-
ter, primarily in frontal and temporal lobes, or in their major
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pathways (Belmonte et al., 2004a; Herbert, 2005; Casanova, 2007;
Courchesne et al., 2007; Kumar et al., 2009; Schumann et al., 2010;
Schipul et al., 2011; Just et al., 2012).

However, there is a paucity of data about specific changes in
neural elements that form excitatory and inhibitory brain circuits
and underlie mechanisms of imbalance in ASD. While in short
supply, studies at the cellular level have described changes in the
cytoarchitecture, density and neurochemical features of excitatory
and inhibitory neurons in frontal and temporal areas in autism
(Bauman and Kemper, 2005; Casanova, 2007; Amaral et al., 2008;
Schmitz and Rezaie, 2008; Blatt and Fatemi, 2011; Penzes et al.,
2011; Schumann and Nordahl, 2011; Srivastava et al., 2012).
Only a few studies have employed a combination of high reso-
lution methods to study the neural pathophysiology of autism,
by identifying specific structural, neurochemical, and molecular
changes of neuronal elements that may underlie atypical develop-
ment of synaptic interactions within functional cortical networks
(Weidenheim et al., 2001; Garbern et al., 2010; Zikopoulos and
Barbas, 2010). The present review focuses on these structural
aspects that likely tip the balance of excitation and inhibition at
the level of circuits and networks in ASD.

Several cortical and subcortical areas including frontal and
temporal cortices, the amygdala, and the cerebellum exhibit atyp-
ical functional and structural characteristics in ASD; it should be
noted however, that pathology may also be present in other and
as yet not studied brain regions. Frontal cortical pathways have
received considerable attention because they consistently show
functional disruption in ASD (Hill, 2004; Pickett and London,
2005; Wass, 2011; Just et al., 2012). For this reason, here we
focus on three robustly interconnected prefrontal regions: ante-
rior paracingulate and cingulate areas (referred thereafter as ACC)
in the medial prefrontal cortex, orbitofrontal cortex (OFC) in the
ventral and ventrolateral prefrontal cortex, and lateral prefrontal
areas (LPFC). These areas have a key role in attention, social inter-
actions, emotions, and executive control (Barbas, 2000a,b; Barbas
et al,, 2011), in processes that are severely affected in autism
(Baron-Cohen, 1991; Ozonoff et al., 1991; Carper et al., 2002;
Maestro et al., 2002; Sparks et al., 2002; Mundy, 2003; Hill, 2004;
Girgis et al., 2007; Jiao et al., 2010). In some cases we include rel-
evant findings in temporal or parietal cortices that are connected
with the above prefrontal cortices.

The ACC, OFC, LPFC and their pathways are functionally
disorganized in autism. There is evidence that at least some of
these areas exhibit local over-connectivity and long-distance dis-
connection (Casanova et al., 2002b; Barnea-Goraly et al., 2004;
Casanova, 2004; Herbert et al., 2004; Courchesne and Pierce,
2005; Herbert, 2005; Kana et al., 2006b; Girgis et al., 2007; Just
et al., 2007; Pardini et al., 2009; Assaf et al., 2010; Hyde et al,,
2010; Anagnostou and Taylor, 2011; Bernardi et al., 2011; Wass,
2011). Aberrant function of ACC in autism includes hyperac-
tivity during response monitoring and social target detection
(Thakkar et al., 2008; Dichter et al., 2009) and desynchronized
activity during working memory tasks (Kana et al., 2006b), while
LPFC shows lower activity in working memory tasks (Luna et al.,
2002; Koshino et al., 2008; reviewed in Schipul et al., 2011).
Activity in LPFC and OFC is correlated with intellectual level
and predicts poor performance of individuals with autism in

neuropsychological tasks (Loveland et al., 2008). In addition, in
autism there is decreased functional connectivity between OFC,
other areas that process emotions, reward, and social interactions,
like the amygdala or insula, and language areas in the poste-
rior superior temporal sulcus (Sabbagh, 2004; Bachevalier and
Loveland, 2006; Hardan et al., 2006; Girgis et al., 2007; Abrams
etal., 2013).

The goal of this article is to synthesize recent high resolution
neuropathological findings at the cellular level of circuits and
relate the observed changes to relevant gross anatomical, func-
tional, genetic, or epidemiological data. The focus is on axons
and neurons that form local or distant circuits. We highlight
similarities and differences in the way local vs. long-distance cir-
cuits may be affected in ASD and propose refinements to the
hypothesis of disrupted connectivity in ASD that may reconcile
conflicting findings regarding the prevalence and significance of
over-connectivity or under-connectivity in frontal and temporal
networks. We additionally report preliminary findings of changes
in the ratio of distinct types of inhibitory neurons in dorsolateral
prefrontal area 9 of adults with ASD. This pilot study presents
novel evidence that addresses the overarching hypothesis of dis-
ruption in the balance of excitation and inhibition in autism.
Finally, by grounding findings within a developmental framework
we propose potential common mechanisms that may underlie
the disruption of neural communication and the imbalance of
excitation and inhibition in ASD.

WHAT BRINGS ABOUT CHANGES IN STRUCTURAL
CONNECTIVITY?

Structural connectivity can change by direct alterations in the
physical connections between neurons, reflected in the numbers
of synapses, and the biophysical attributes of individual synapses
that affect synaptic efficacy. Significant structural changes likely
affect functional connectivity, reflected in ASD as atypical syn-
chronization and connectivity patterns of frontal or temporal
areas in children and adults with autism, suggesting abnormal
engagement and interactions of short-range and long-range exci-
tatory pathways and local inhibitory circuits (Rubenstein and
Merzenich, 2003). The study of structural connectivity at the
synaptic level in humans is challenging, primarily due to limited
tissue availability and variability in tissue preservation that may
impede rigorous analyses. Despite these limitations there is con-
siderable evidence for changes in neuronal elements in cortical
areas that could affect synaptic function in ASD. Studies report
changes in the structure of presynaptic and post-synaptic ele-
ments, pathways in the white and gray matter, and density and
size of various neuronal and glial cell types, as elaborated below.

AXON PATHOLOGY IS AT THE CORE OF ATYPICAL
CONNECTIVITY IN ASD

Imaging studies in children and adults with autism, show
decreased functional connectivity between frontal and other areas
and gross changes in the structural integrity of frontal gray and
white matter (Barnea-Goraly et al., 2004; Kana et al., 2006a; Just
et al., 2007; Keller et al., 2007; Minshew and Williams, 2007;
Koshino et al., 2008; Thakkar et al., 2008; Pardini et al., 2009;
Minshew and Keller, 2010). Typical findings in the white matter
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include lower fractional anisotropy (FA) and higher radial diffu-
sivity in ASD groups than in controls, which may come about
by a reduction of diffusion barriers between axons (reviewed in
Muller et al., 2011). These findings suggest decreased axon diam-
eter and/or decreased myelination that reduce axon volume, and
may result in changes in the density of axons.

The relative position and size of axons in the white matter
below the cortex can be used as an indicator of their termina-
tion in nearby or distant brain areas. The deep (inner or sagittal)
white matter includes long-range excitatory pathways (Herbert

etal., 2004; Hilgetag and Barbas, 2006; Petrides and Pandya, 2006,
2007; Schmahmann and Pandya, 2006; Sundaram et al., 2008),
with thicker axons than found in the superficial white matter just
below the cortex (Zikopoulos and Barbas, 2010; Figure 1). The
superficial (outer or radiate) white matter is situated below cor-
tical layer 6, and carries mostly thin excitatory fibers as axons
branch to connect with nearby areas (Figure 1).

Based on the relationship of pathways within the white mat-
ter, functional imaging and physiological studies have shown that
long-range cortico-cortical pathways that link frontal areas with

FIGURE 1 | High resolution segmentation of the white matter. (A)
Coronal view of a representative ACC (A32) tissue slab. Dotted lines
indicate gross (macroscopic) distinction of superficial (SWM) and deep
(DWM) white matter, based on subsequent microscopic analysis. (B,C)
Fluorescent photomicrographs of coronal sections from A32 white
matter after labeling of axons with a neurofilament protein antibody
(NFP-200; green). Light microscopic segmentation of superficial (B) and
deep (C) white matter is based on the distinct orientation of axons at

200°pm

different depths from the gray matter. Axons in the superficial white
matter travel mainly perpendicular to the surface of the cortex (B,
axons appear mainly as thin lines), whereas in the deep white matter
most axons travel parallel to the cortical surface (C, axons appear
mainly as green dots). (D,E) EM photomicrographs show mostly
elongated axon profiles in the superficial white matter (D) and mostly
circular axon profiles in the deep white matter (E). Adapted from
Zikopoulos and Barbas (2010).
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other cortices are weak and disorganized in autism. Specifically,
there is reduced coherence and correlation in task-related activity
of distant areas, which constitutes decreased functional connec-
tivity (Just et al., 2004, 2007; Courchesne and Pierce, 2005). In
addition, gross structural imaging studies have shown reduced
size, FA, and diffusivity in deep white matter tracts, suggest-
ing differential composition or compromised structural integrity
of long-distance pathways in adults and children with autism
(Alexander et al., 2007; Just et al., 2007; Frazier and Hardan,
2009; Casanova et al., 2011; Jou et al., 2011; Shukla et al., 2011a).
In contrast, gross structural imaging studies have reported tran-
sient enlargement of the superficial white matter in the frontal
cortex of children with autism (Belmonte et al., 2004a; Herbert
et al., 2004; Herbert, 2005). Concomitantly, functional studies
have shown aberrant or excessive activation and increased syn-
chrony within frontal cortices, suggesting local overconnectivity
in autism (Courchesne and Pierce, 2005; Kennedy et al., 2006).

Our recent work in adult human post-mortem brain tissue
(Zikopoulos and Barbas, 2010) provides novel evidence for spe-
cific structural and molecular changes in individual prefrontal
axons (Figure 2). In agreement with the long-range undercon-
nectivity hypothesis, we found that below the anterior cingu-
late/paracingulate cortices (ACC) in the brains of adults with
autism there are fewer large myelinated axons in the deep white
matter, which link distant areas (Herbert et al., 2004; Hilgetag and
Barbas, 2006; Petrides and Pandya, 2006, 2007; Schmahmann and
Pandya, 2006; Sundaram et al., 2008). In sharp contrast, we found
a higher density of thin myelinated axons in the superficial white
matter below ACC, which was partially due to excessive branch-
ing of thin and medium-sized axons, which link nearby areas. In
addition, axons below OFC had thinner myelin in ASD cases than
in controls (Figure 2). The thinner myelin in OFC was not due to
a reduction in the density of oligodendroglia in the white matter
(Zikopoulos and Barbas, 2010).

The significance of these findings is twofold. First, the ACC
has a key role in attentional control (Gehring and Knight, 2000;
Paus, 2001; Ito et al., 2003; Johnston et al., 2007), and OFC in
emotions (Barbas and Zikopoulos, 2006; Zikopoulos and Barbas,
2012), and both processes are seriously disrupted in autism
(Gomot et al., 2006; Steele et al., 2007; Vlamings et al., 2008;
Norbury et al., 2009; Markram and Markram, 2010; Bernardi
et al., 2011). Second, in non-human primates, the ACC has
the most widespread connections with other prefrontal cortices
(Barbas et al., 1999). The OFC is distinguished for its multimodal
input from every sensory modality through high-order sensory
association and multimodal cortices (Barbas, 1993; Barbas and
Zikopoulos, 2006). These findings suggest that changes in axons
below ACC and OFC have widespread repercussions on pre-
frontal networks and beyond. That is why, even though axon fea-
tures below lateral prefrontal cortices (LPFC) appear unaffected
(Zikopoulos and Barbas, 2010), the altered white matter com-
position below ACC and OFC changes the relationship among
prefrontal areas. The changes in the relationship of axons below
prefrontal areas could affect LPFC function, because these regions
are robustly interconnected in primates (Petrides and Pandya,
1988; Seltzer and Pandya, 1989; Barbas et al., 1999; Barbas, 2000a;
Fullerton and Pandya, 2007; Schmahmann et al., 2007).

Two well-studied networks can be used to illustrate additional,
and perhaps more specific, implications for the pathology of
intrinsic or distant prefrontal circuits in ASD. First, studies of the
ACC-LPFC intrinsic circuit in non-human primates show that
ACC sends a robust feedback projection that targets primarily the
superficial layers of LPFC (Medalla and Barbas, 2009, 2010, 2012).
As is typical in cortico-cortical networks in primates, excitatory
axons from ACC mainly target excitatory pyramidal neurons in
LPFC. However, a smaller but significant proportion (~20%) of
excitatory ACC axons form synapses with inhibitory neurons in
the superficial layers of LPFC, where they innervate preferentially
calbindin (CB) inhibitory neurons (Medalla and Barbas, 2009).
Anatomic, physiologic, and computational studies have shown
that CB inhibitory neurons innervate the distal dendrites of exci-
tatory pyramidal neurons (Peters and Sethares, 1997) and modu-
late their activity, increasing the signal-to-noise ratio (Peters and
Sethares, 1997; Gonzalez-Albo et al., 2001; Wang et al., 2004).
These synaptic specializations suggest that ACC can enhance rel-
evant signals and reduce noise in LPFC, to facilitate focusing
attention on a task, and are especially useful during challeng-
ing cognitive tasks (Gehring and Knight, 2000; MacDonald et al.,
2000; Paus, 2001; Schall, 2001; Ito et al., 2003; Badre and Wagner,
2004; Johnston et al., 2007; Tanji and Hoshi, 2008). The exu-
berance of thin, short-range axons found in adults with autism
(Zikopoulos and Barbas, 2010) that link ACC with nearby areas,
including LPFC, suggests a potential exaggeration of this mecha-
nism that could underlie the difficulty of even high-functioning
individuals with autism to shift attention. Distant regions that are
likely affected are temporal lobe structures, including auditory
or multimodal temporal cortices and the amygdala, which have
strong bidirectional interactions with prefrontal cortices in non-
human primates (e.g., Barbas and Mesulam, 1985; Barbas et al.,
1999, 2005b; Ghashghaei and Barbas, 2002; Germuska et al., 2006;
Ghashghaei et al., 2007; Medalla et al., 2007; Zikopoulos et al.,
2008).

In spite of the small number of cases and heterogeneity on
the ASD spectrum, changes in axons below ACC were present
in all autistic cases studied, suggesting a fundamental autism
phenotype in axons below some prefrontal areas (Zikopoulos
and Barbas, 2010). The power and generalizability of these find-
ings are high likely because the cases were well-matched and
within a narrow age range (3044 years), obviating differences
in the developmental trajectory that can increase variability.
Importantly, the findings are based on multiple independent
methods to estimate the same or related variables. For example,
axon size and branching were independently evaluated both at the
confocal and electron microscopes, and additionally corroborated
by independently labeling and estimating the proportion of axons
that express axon growth factors, as elaborated below.

MOLECULAR MECHANISMS THAT REGULATE AXON GROWTH ARE
AFFECTED IN AUTISM

In the study of adults with autism (Zikopoulos and Barbas, 2010),
supernumerary branching, and density of thin axons below ACC
are associated with increased expression of the Growth Associated
Protein 43 (GAP-43; Figure 2). This intracellular protein is pro-
duced in the cell body and is quickly transported down the axon
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FIGURE 2 | Changes in myelinated axons below prefrontal cortices in
adults with ASD. (A) In the superficial white matter (SWM) below ACC (area
32) the relative density of small (thin) axons (+SEM) is increased in the
autistic cases, and more axons branch and express GAP-43. These data
suggest increased local connectivity of ACC in ASD. In contrast, in the deep
white matter (DWM) below ACC the relative density of large axons is
reduced in ASD, suggesting weakening of long-range connectivity. Thinning
of the myelin in axons of all sizes just below OFC (area 11) suggests weak
local connections. (B,C) Laminar and overall neuronal density below ACC,
OFC, and LPFC is similar in adults with ASD and controls and is not
correlated with the changes in axons below PFC. (D) EM photomicrograph of

Proportion of Myelin thick 0

T
ALl -SWM 1

(pm) 32 11 46

axons in the superficial white matter below ACC of an adult with ASD. (E)
Collapsed image (z-projection) from a three-dimensional confocal stack
shows myelinated axons branching, labeled with NFP-200 (green). A
branching axon is pseudo colored with orange/yellow hue for visualization
(yellow arrowheads point to branches). (F) Image from a three-dimensional
confocal stack with double immunofluorescence shows GAP-43 (red) in
axons labeled with NFP-200 (green). Some myelinated axons contain GAP-43
in their axolemma, which is transported to axon terminals and branching
points. Colocalization of the two antibodies is rendered white. (G) EM
photomicrographs show differences in myelin thickness in OFC between
control and autistic adults, apparent in all axon size groups.

to reach branching points, growth cones, and axon terminals
(reviewed in Benowitz and Routtenberg, 1997). It is, therefore,
most abundant in the superficial part of the white matter and
in the gray matter, as axons branch to innervate their targets.
GAP-43 also promotes neurotransmitter release, endocytosis and
synaptic vesicle recycling (Denny, 2006). These actions are con-
tingent upon phosphorylation of GAP-43 by protein kinase C,
which induces local actin filament-membrane attachment. GAP-
43 is expressed at high levels during late prenatal and early

postnatal stages of axon growth, and is subsequently markedly
reduced with the onset of myelination (Kapthammer and Schwab,
1994; Benowitz and Routtenberg, 1997). In the adult brain GAP-
43 is found in significant amounts only in some limbic areas,
including the hippocampus and ACC, where it also promotes
axon growth, and acts as a lateral stabilizer of actin filaments
presynaptically, strengthening synapses to promote long-term
potentiation, spatial memory formation, and learning (Maviel
et al.,, 2004; Holahan et al., 2007; Holahan and Routtenberg,
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2008). In addition, GAP-43 is found at focal sites after brain
injury, where it promotes axon sprouting and regeneration (Neve
et al., 1988; Benowitz and Routtenberg, 1997).

In autism, an increase in GAP-43 may persist in adulthood in
response to reported inflammation (Vargas et al., 2005; Morgan
et al., 2010), or due to axon damage. Interestingly, GAP-43 tran-
scription is directly regulated by calcineurin and nuclear factor
of activated T cells (Yoshida and Mishina, 2005; Nguyen et al.,
2009), which are targets of immunosuppressants like rapamycin
(Ho et al., 1996). Rapamycin inhibits the mTOR signaling path-
way, and improves neurological dysfunction in animal models
of tuberous sclerosis that are relevant for autism (Ehninger and
Silva, 2011). Therefore, it seems plausible that GAP-43 and related
signaling proteins may provide the link between neurological
deficits and the extensive immune dysregulation in autism (Smith
et al., 2007; Atladottir et al., 2009; Becker and Schultz, 2010;
Patterson, 2011; Garbett et al., 2012; Hsiao et al., 2012; Malkova
et al., 2012; Patterson, 2012).

A variety of external factors up-regulate GAP-43 expression,
including estrogenic agents that disrupt endocrine function, such
as bisphenol A, and immunosuppressive and psychiatric drugs
used for a variety of common disorders, including psoriasis,
asthma, rheumatoid arthritis, dry eye, depression, and anxiety
(Wong et al., 1989; Jyonouchi et al., 2001; Granda et al., 2003;
Croen et al.,, 2005, 2011; Ostensen et al., 2006; Sairanen et al.,
2007; Brown, 2009; Nguyen et al., 2009). Several of these sub-
stances came into heavy use in the early 80s at a time when the
prevalence of autism began to rise (Blaxill, 2004). The use of
endocrine disruptors during pregnancy has been correlated with
increased autism risk (Croen et al., 2011; Simpson et al., 2011; de
Cock et al., 2012).

Information on the developmental trajectory of axon growth
and relevant signaling pathways will help delineate a more
detailed timeline for the development of autism pathology, nar-
row down the temporal window for the insult, and spur new
research to identify affected signaling pathways and factors that
may be targeted for therapeutic interventions. Importantly, epi-
demiologic studies are necessary to investigate the relationship
between signaling pathways and possible cumulative effects of
environmental agents, diet, and drugs on the uterine and post-
natal environment that may perturb the expression of factors
implicated in axon growth and guidance in autism.

DENDRITIC SPINE PATHOLOGY IN ASD

Structural evidence for the disturbance of neural communication
in ASD is also apparent in the cortical gray matter, specifically on
post-synaptic targets of cortical or subcortical afferents, the den-
drites of excitatory pyramidal neurons. In dorsolateral prefrontal
area 9, temporal area 21, and parietal area 7, there is increased
dendritic spine density in layer II pyramidal neurons, and in neu-
rons of layer V only in area 21, among those studied (Hutsler and
Zhang, 2010). These differences were found in all major dendritic
branches (apical, basilar, and oblique), and along the length of
apical dendrites of pyramidal cells for several hundred microme-
ters from the cell body. Based on these results, ASD seems to be
part of a small group of developmental disorders where there is
no apparent loss of dendritic spines.

Since the majority of synapses on spines of pyramidal neu-
rons are excitatory (e.g., Lowenstein and Somogyi, 1991; Peters
et al., 1991; Ahmed et al., 1997; Somogyi et al., 1998; Alonso-
Nanclares et al., 2004; Douglas and Martin, 2004; Anderson and
Martin, 2009; Medalla and Barbas, 2009, 2010; Micheva et al.,
2010), changes in spine density suggest an alteration in the density
of excitatory synapses on dendritic segments within prefrontal,
temporal, and parietal cortices in ASD. However, one cannot
rule out possible changes in the density of inhibitory synapses
onto cortical neurons, which also target dendritic spines and
shafts in various ratios, depending on the pathway. Moreover,
preliminary morphological analysis (Hutsler and Zhang, 2010;
Avino et al., 2012) shows immature morphology and excessive
fluctuation in the length and shape of spines in ASD cases, sug-
gesting synaptic lability. The same morphological changes could
affect dendritic cytosolic compartmentalization, dendritic com-
putations, and ultimately neuronal processing (for a review see
London and Hausser, 2005).

The findings on spine features are limited to studies by one
group so far and do not offer explicit clues about the potential
local or distant presynaptic origin of the connections affected, but
are nevertheless informative about the overall pathology in ASD.
Specifically, a consistent finding is increased layer II connectiv-
ity in ASD in association areas examined by (Hutsler and Zhang,
2010). Neurons in the superficial layers of the cortex are primarily
involved in ipsilateral and contralateral cortico-cortical connec-
tions, and receive feedback projections from areas that have fewer
layers or lower neuronal density, such as the ACC (Barbas and
Rempel-Clower, 1997), and these pathways may be dispropor-
tionately affected in ASD. Layer II in LPFC receives strong input
from the amygdala (Ghashghaei et al., 2007), most subcortical
neuromodulatory systems (Berger et al., 1988; Lewis et al., 1988;
Gaspar et al.,, 1989; Lewis and Morrison, 1989; Raghanti et al.,
2008), and the ACC (Barbas et al., 1999; Medalla and Barbas,
2009, 2010). Another type of pathway that targets the superfi-
cial cortical layers, including layer II, originates from the widely
projecting matrix neurons of the thalamus, which can effectively
propagate and synchronize thalamocortical activity over large
expansions of the cortex (Zikopoulos and Barbas, 2007; Jones,
2009). It is possible that within the frontal lobe, potential thalam-
ocortical pathology in the upper layers may be restricted to lateral
prefrontal areas, because at least the gross features of myelinated
thalamocortical axons in the deep white matter below the ACC are
not affected in ASD (Zikopoulos and Barbas, 2010). Further work
is needed to determine if thalamocortical axons are more specif-
ically affected as they branch to innervate different prefrontal
cortices.

Further, based on the inside-out model of development of the
cortex, layer II is the last layer to develop. The maturation period
of layer II is protracted as connections are formed, in accord with
the fact that long-distance cortico-cortical and callosal connec-
tions that these superficial layers participate in also develop late.
It seems that changes in white matter axons, described in previ-
ous sections (Zikopoulos and Barbas, 2010), as well as changes
in dendritic spines in the gray matter (Hutsler and Zhang, 2010),
point toward late prenatal or early postnatal critical periods for
the development of ASD neuropathology. This is also supported
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by the fact that callosal pathways, which also develop late, are
severely compromised in ASD as well (Alexander et al., 2007; Just
et al., 2007; Frazier and Hardan, 2009; Jou et al., 2010; Anderson
et al., 2011b; Cantlon et al., 2011; Casanova et al., 2011; Fame
etal., 2011; Schipul et al., 2011).

The finding of increased dendritic spine density in layer V
pyramidal neurons only in temporal area 21 (Hutsler and Zhang,
2010) may be associated with atypical auditory or language pro-
cessing and with deficits in social-emotional interactions in ASD.
This idea is in accord with imaging studies (e.g., Just et al., 2004;
Gomot et al., 2006; Bigler et al., 2007; Lee et al., 2007). Within the
cortex, atypical activation patterns of layer V neurons in tempo-
ral areas may have an effect in feedback pathways to other cortical
areas. Moreover, the amygdala, thalamus, and striatum are major
subcortical targets of cortical layer V neurons, and structural as
well as functional studies indicate that these subcortical struc-
tures and their circuits may be affected in autism (e.g., Bauman
and Kemper, 1985; Tsatsanis et al., 2003; Schumann et al., 2004;
Haznedar et al., 2006; Schumann and Amaral, 2006; Shukla et al.,
2010; Tamura et al., 2010; Cheon et al., 2011; Di Martino et al.,
2011; Langen et al., 2012).

NEURONAL AND GLIAL CELL DENSITIES AND
MORPHOLOGY IN ASD

Several structural imaging studies have shown that there is abnor-
mal acceleration of brain growth in ASD. The brains of young
children with ASD are larger than those of typically developing
controls, and although this enlargement is attributed mostly to
increased white matter volume, there is also significant enlarge-
ment of gray matter, especially in frontal and temporal areas
(reviewed in Courchesne et al., 2011a). The white matter or cor-
tical enlargement appears to be transient and is not evident in
adults with ASD (Herbert, 2005; Redcay and Courchesne, 2005).
In agreement with these data, recent preliminary findings sug-
gest that the increase in gray matter volume in children with
ASD may, in some cases, be due to increased number of neu-
rons, at least in some prefrontal cortices (Courchesne et al.,
2011Db). The authors of this study reported that children with ASD
have, on average, 79% more neurons in dorsolateral prefrontal
cortices (DLPFCs) and 29% more neurons in mesial prefrontal
cortices (mesial: medial prefrontal cortices excluding cingulate
areas). An earlier study also reported neuropathological thick-
ening of the subependymal cell layer, multifocal subependymal
nodular dysplasia, and heterotopias in some children and adults
with ASD (Wegiel et al., 2010). These developmental changes
may reflect multiregional cortical and subcortical dysregulation
of neurogenesis, neuronal migration, and maturation in ASD.

In the brains of adults with autism there are no significant
changes in the overall number or density of neurons (Zikopoulos
and Barbas, 2010), or in the laminar density of neurons in medial
areas 24, 32, orbital area 11, or dorsolateral areas 9 and 46. This
evidence indicates that in autism the numbers of neurons in pre-
frontal cortices are comparable to controls in adulthood. Several
other studies also report no differences in the numbers or den-
sity of neurons in other cortical areas, including ventrolateral
language-related frontal areas 44 and 45 (Jacot-Descombes et al.,
2012), area 23 in the posterior cingulate cortex (PCC) and area

37 in the fusiform gyrus (FFG; Oblak et al., 2011b, but see van
Kooten et al., 2008), and in areas 3b, 4, 9, 10, 11, 17, 24, 43, and
44 (Casanova et al., 2002b, 2006) in children or adults with ASD.
In line with this evidence, there appear to be no differences in
cortical layering and thickness in prefrontal, temporal, and pari-
etal areas of children and adults with ASD (Hutsler et al., 2007;
Zikopoulos and Barbas, 2010). However, parts of areas 24 and
23 in the dorsal and posterior cingulate cortices display altered
cytoarchitecture with irregularly distributed neurons, leading to
irregular lamination and poor demarcation of layers IV and V in
some ASD cases (Simmis et al., 2009; Oblak et al., 2011b).

Detection of potential changes in the number or density of
neurons in ASD additionally depends on the types of neurons
analyzed. A recent study showed that children with autism con-
sistently had a significantly higher ratio of von Economo neurons
(VENS, also known as spindle neurons) to pyramidal neurons
than control subjects in frontoinsular cortex (Santos et al., 2011).
The authors of this study posit that higher numbers of VENs in
autism may be related to alterations in migration, cortical lami-
nation, and apoptosis, and may also underlie a heightened intero-
ception, described in some clinical observations. It seems though
that VEN numbers may be regionally specific and age-dependent,
because there are no overall differences between autism and con-
trol brains in ACC area 24 in teenagers and young adults (Simms
et al., 2009). However, among the autism cases, there were two
subsets; 1/3 of the cases had significantly increased VEN density
and the remaining 2/3 of the cases had reduced VEN density
compared to controls.

Changes in the density of glia in the cortex in ASD appear to
be type- and region-specific, as well. In a recent study, we did
not find differences in the densities of oligodendrocytes, astro-
cytes, and microglia in the white matter below OFC (Zikopoulos
and Barbas, 2010). However, findings suggest a role of glia in
ASD pathology in the gray matter based on increased density of
astrocytes in frontal cortices in ASD, although the results were
not based on stereological analysis (Cao et al., 2012). Another
intriguing finding pertains to a higher density of microglia in the
gray matter of DLPFC, accompanied by increased activation of
microglia in some ASD cases (Morgan et al., 2010). The same
group recently showed that microglia are more frequently present
near neurons in DLPFC leading to aberrantly close microglia—
neuron association (Morgan et al., 2012). Interestingly, the den-
sity of activated microglia is additionally elevated in the gray
matter of medial prefrontal, cingulate, orbitofrontal, and the gyral
fusiform cortices in ASD (Pardo et al., 2005; Vargas et al., 2005;
Suzuki et al., 2013). These findings indicate the potential for neu-
roinflammation and immune responses in some ASD cases that
may be linked to higher levels of GAP-43 (Zikopoulos and Barbas,
2010).

Finally, a frequently observed change in the structure
of cortical gray matter in children and adults with ASD
is minicolumnopathy, defined by decreased columnar width,
characterized by diminished and disrupted peripheral neuropil
compartment (Casanova et al., 2002a,b, 2006; Buxhoeveden et al.,
2006). More specifically, minicolumns in ASD appear to have
less peripheral neuropil space and increased spacing among the
constituent cells in several areas (3b, 4, 9, 10, 11, 17, 24, 43, 44).
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Frontal area 44 seems to be the most affected, and the pathology
is evident in children and adults with ASD. The increased number
of minicolumns in autism may be accompanied or brought about
by changes in the size of neurons, the number of cells per col-
umn, or their greater dispersion, resulting in no global difference
in neuronal density. In line with this evidence, there are reports of
decreased size of pyramidal neurons in layers II1, V, VI in language
related areas 44, 45 (Jacot-Descombes et al., 2012), in layers I-III
and layers V-VI of cingulate area 24b and in cell packing density in
layers V-VI of cingulate area 24c (Simms et al., 2009) in children
and adults with ASD. In addition, areas 24 and 23 in the ACC
and PCC display altered cytoarchitecture and increased density
of neurons in the subcortical white matter (Simms et al., 2009;
Oblak et al., 2011b). The latter is in agreement with observa-
tions of abnormal cell patterning at the cortical gray-white matter
border of areas 9, 21, and 7 in ASD (Avino and Hutsler, 2010).

All these reported changes in neuron density and morphol-
ogy, as well as laminar and columnar distribution, can affect both
excitatory and inhibitory connections and circuits. In particu-
lar, the peripheral neuropil space surrounding the minicolumn is
the conduit for inhibitory and excitatory local circuit projections
(Peters and Sethares, 1996; Mountcastle, 1997, 1998; Casanova
et al., 2003; Douglas and Martin, 2004) that may also be affected,
further tipping the balance of excitation and inhibition in ASD, as
elaborated below.

STRUCTURAL CHANGES IN CORTICAL INHIBITORY
NEUROTRANSMISSION

CHANGES IN INHIBITORY NEUROTRANSMISSION IN ASD

Key evidence for irregular inhibition patterns in autism comes
from functional data, suggesting decreased levels of synchroniza-
tion during response inhibition tasks (Rubenstein and Merzenich,
2003; Yizhar et al., 2011). In addition, molecular studies of autistic
individuals and relevant animal models have identified dysregu-
lation of inhibitory biomarkers and mutations in genes associated
with the development of cortical inhibitory neurons and their
synaptic communication (Ma et al., 2005; Collins et al., 2006;
Selby et al., 2007; Tabuchi et al., 2007; Yip et al., 2008; Fatemi
et al., 2009a,b; Chao et al., 2010; Blatt and Fatemi, 2011; Gandal
etal., 2012).

Importantly, a number of recent studies have consistently
found changes in the levels of GABA receptors in frontal and
temporal areas. The mean density of GABA, receptors and the
density of benzodiazepine binding sites in all layers of area 24
are decreased in ASD (Oblak et al., 2009). Similar reduction is
found in the superficial layers of areas 23 (PCC) and 37 (FFG).
In the deep layers of the FFG there is also reduction in the num-
ber of benzodiazepine binding sites (Oblak et al., 2011a), found
on inhibitory neurons (Murray and Wise, 2012). Interestingly, in
the superficial layers of PCC and FFG the autism group appears
to have higher binding affinity for ligands of the GABA, receptor.
The authors suggest that the observed downregulation of recep-
tors may be the result of increased GABA innervation and/or
release. In addition, there are significant reductions in GABAp
receptor density in the ACC, PCC and FFG in the brains of people
with autism compared to matched controls (Oblak et al., 2010).
These changes in the GABAg receptor subtype may contribute

to the functional deficits in socio-emotional and cognitive pro-
cessing, as well as identification of faces and facial expressions by
individuals with ASD.

The reduction in GABA receptors and benzodiazepine binding
in the cortex is a consistent deficit in autism, with similar findings
in the hippocampus (Blatt et al., 2001; Guptill et al., 2007), sug-
gesting widespread GABA receptor abnormalities in ASD. Based
on recent findings (Fatemi et al., 2009b) of reduced levels of
proteins in three of the GABA, receptor subunits in autism in
multiple cortical regions, it is possible that a defect in one or
more of the GABA4 receptor subunits exists as well. Moreover,
genetic studies found significant association and molecular inter-
actions of specific GABA receptor subunit genes in autism (Ma
et al., 2005). However, despite the evidence for widespread dis-
ruption of inhibitory neurotransmission in the cortex little is
known about the state of the GABAergic interneurons themselves
in the cortex in ASD (Lawrence et al., 2010; Oblak et al., 2011b),
whose organization and function is highlighted below.

CIRCUIT BASIS FOR THE INITIATION OF INHIBITORY CONTROL

In the cortex, inhibitory control is primarily mediated through
local GABAergic interneurons, which comprise a diverse group
distinguished by morphology, the types of neurons and sites they
synapse with, physiologic properties, and efficacy of inhibitory
control (White, 1989; Kawaguchi and Kubota, 1997; Thomson
and Deuchars, 1997; Somogyi et al., 1998; Gupta et al., 2000).
Inhibitory neurons represent 20-30% of all neurons in the mam-
malian neocortex and in the frontal cortex of humans they make
up ~21% of the neuronal population (Hornung and De Tribolet,
1994; Kalus and Senitz, 1996; Benes et al., 2001; Sherwood et al.,
2010). In primates, inhibitory neurons can be classified by their
expression of the calcium-binding proteins parvalbumin (PV),
calbindin (CB), and calretinin (CR), which comprise largely non-
overlapping neurochemical groups of inhibitory neurons in the
cortex (Hendry et al., 1989; Defelipe, 1997). PV labels basket and
chandelier inhibitory neurons (Defelipe et al., 1989b; Kawaguchi
and Kubota, 1997), which are most prevalent in the middle
layers of the cortex, where they form perisomatic synapses on
pyramidal neurons, providing strong inhibition (Defelipe et al.,
1989b; Shao and Burkhalter, 1999). CB labels several cortical
morphologic types of inhibitory neurons, which are most densely
distributed in cortical layers 2 and upper layer 3, and inner-
vate distal dendrites of pyramidal neurons (Peters and Sethares,
1997), modulating their activity. CR inhibitory neurons are found
mostly in the upper layers (I-IIla) as well, where they innervate
mostly other GABAergic neurons, at least in the upper layers
(Gabbott et al., 1997; Meskenaite, 1997; Defelipe et al., 1999;
Gonchar and Burkhalter, 1999). This regularity in the laminar
distribution of PV, CB, and CR neurons is seen in frontal, tem-
poral, and sensory association areas, which have been studied in
primates (Defelipe et al., 1989a, 1990; Conde et al., 1994; Kondo
et al., 1999; Dombrowski et al., 2001; Barbas et al., 2005b).

In the cortex there is also regularity in the laminar origin
and termination of excitatory pathways, which can be predicted
based on the structure of interconnected areas, as described by
the structural model for connections (Barbas, 1986; Barbas and
Rempel-Clower, 1997; Rempel-Clower and Barbas, 2000). Briefly,
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according to this model, limbic areas, which have fewer than 6
layers and lower cell density, send mainly feedback projections
to eulaminate areas, which have 6 layers and higher cell den-
sity. These projections originate mainly from the deep layers and
terminate mostly in the superficial layers. Projections in the oppo-
site direction are feedforward, predominantly originate from the
superficial layers of eulaminate areas and terminate in the mid-
dle/deep layers of limbic cortices. Connections between areas with
similar architecture originate and terminate equally in all lay-
ers. Numerous studies, have consistently supported this model
for ipsilateral and callosal connections among diverse cortices in
non-human primates (Barbas, 1986; Barbas and Rempel-Clower,
1997; Barbas et al., 2005a,b; Medalla and Barbas, 2006; Medalla
etal.,, 2007; Bunce and Barbas, 2011), and in other species (Grant
and Hilgetag, 2005; Hilgetag and Grant, 2010).

Moreover, a series of studies in non-human primates has
established that whereas excitatory prefrontal pathways inner-
vate mostly excitatory neurons at the site of termination, they
also innervate a smaller but significant (~10-30%) propor-
tion of inhibitory neurons (Barbas et al., 2005b; Medalla et al.,
2007; Medalla and Barbas, 2009, 2010; Anderson et al., 2011a;
Bunce and Barbas, 2011; reviewed in Barbas and Zikopoulos,
2007). These findings provide the circuit basis for initiation
of inhibitory control by prefrontal areas. Connections thus
originate and terminate in distinct laminar microenvironments
where the distribution of specific classes of inhibitory neurons
also varies, providing the framework to examine the struc-
tural underpinnings for the imbalance in excitation and inhi-
bition in autism, as elaborated in the preliminary experiments
presented below.

DECREASED RATIO OF PV/CB INHIBITORY NEURONS IN
DORSOLATERAL PREFRONTAL AREA 9 IN ASD

The balance of excitation and inhibition is affected in autism
with detrimental effects on neural communication. Elements of
inhibitory neurons are affected in autism, but the state of distinct
neurochemical classes of inhibitory neurons in prefrontal cortex
is unknown. Here we performed a preliminary study to examine
the laminar distribution of cortical inhibitory neurons in ASD,

using post-mortemn adult human brain tissue from dorsolateral
prefrontal area 9 (n = 2 autistic; n = 2 matched controls for age,
sex, and hemisphere; Figure 3; Table 1). We compared the den-
sity of two non-overlapping, functionally distinct classes of local
inhibitory interneurons, which, in primates, are also neurochem-
ically distinct, based on their expression of the calcium-binding
proteins calbindin (CB) or parvalbumin (PV).

There was a significant reduction of PV neurons in the autistic
brains, in both cases [(density: cells/ymm? + standard deviation)
control, PV: 3747 £ 786; CB: 3747 + 337; ASD, PV: 2390 +
564; CB: 3693 + 511; p = 0.01; Figure 4]. The ratio of PV/CB
inhibitory neurons thus decreased by approximately a third in
ASD (to 0.65), potentially affecting inhibitory efficacy and over-
all network dynamics. In typical controls the ratio is close to 1, as
is also found in non-human primates (Gabbott and Bacon, 1996;
Dombrowski et al., 2001).

PV inhibitory neurons are most prevalent in the middle corti-
cal layers, and provide strong perisomatic inhibition of excitatory
neurons (Defelipe et al., 1989b; Kawaguchi and Kubota, 1997;
Shao and Burkhalter, 1999). Reduction in PV inhibitory neurons
in area 9 may help explain abnormally high columnar activation
and desynchronization of oscillatory activity in autism (reviewed
in Defelipe, 1999). Our findings are in accord with evidence of
compromised inhibitory neurotransmission in autism, reflected
by reduced gamma band power of auditory responses in children
and adolescents with autism (Wilson et al., 2007), and absence
of stimulus-driven synchronization effects on sensory perception
(Tommerdahl et al., 2008). These findings suggest atypical coordi-
nation of local excitatory-inhibitory cortical activity. Our prelim-
inary findings are also in line with a recent report, showing that in
the fusiform face area (FFA) there is less synchrony between alpha
and gamma waves, when subjects with autism look at faces, when
compared to controls (Khan et al., 2013). Because both of these
brain rhythms depend on local inhibition driven primarily by PV
neurons (Chow et al., 1998; White et al., 2000; Whittington et al.,
2000, 2011; Borgers and Kopell, 2003; Buzsaki and Draguhn,
2004), reduction in phase-amplitude coupling between slow
alpha and fast gamma rhythms suggests compromised inhibitory
neurotransmission.

A Lateral view

Anterior

FIGURE 3 | Map of human frontal areas. (A) Lateral view of the human
brain shows the dorsolateral prefrontal area 9 and its relationship with other
frontal areas. Dotted lines indicate the coronal level used for analysis. (B) One

Posterior

centimeter thick slab of frontal cortex shows the region sampled in the
dorsolateral prefrontal cortex (red dotted-line square). See Appendix for
abbreviations.
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Table 1 | Clinical characteristics of post-mortem cases studied.

Case number Control-4786 Control-4981 Autism-4541 Autism-6677
Age at death (years) 36 42 44 30

Sex Male Male Male Male
Post-mortem interval (hours) 20 18 31 16

Primary cause of death Myocardial infarction ~ Myocardial infarction ~ Acute myocardial infarction ~ Congestive heart failure
Hemisphere Right Right Right Right
AUTISM DIAGNOSTIC INTERVIEW—REVISED (ADI-R) SCORES FOR AUTISTIC CASES

(A) Qualitative impairments in reciprocal social 26 26
interactions (cutoff: 10)

(B) Qualitative abnormalities in communication 18 22

(Verbal; cutoff: 8)

(C) Qualitative abnormalities in communication 13 #
(Non-verbal; cutoff: 7)

(D) Restricted, repeated, and stereotyped 6 12

patterns of behavior (cutoff: 3)

(E) Abnormality of development evident at or 5 5

before 36 months (cutoff: 1)

#Scores were not obtained/not applicable due to lack of communication skills. All donors in the autism group had difficulties with communication, social behaviors,

and atypical interests, consistent with a diagnosis of autism, and the ADI-R scores met and exceeded cutoffs for autism in each of these areas.

On the other hand, we found no differences in the density of
CB inhibitory neurons in area 9, which are most numerous in the
superficial cortical layers, and have modulatory effects (e.g., Peters
and Sethares, 1997; Gonzalez-Albo et al., 2001). CB neurons in
LPFC have a role in gain modulation during attentional processes,
and among inhibitory classes, they are targeted preferentially by
ACC pathways (Medalla and Barbas, 2009).

Previous findings of changes in the white matter suggest that
pathways linking ACC with nearby prefrontal areas are excessively
dense in autism (Zikopoulos and Barbas, 2010). These findings
are consistent with functional studies showing that ACC in autism
is hyperactive, especially during response monitoring (Thakkar
et al., 2008). This could lead to over activation of CB inhibitory
neurons in area 9. This circuit mechanism suggests heightened
ability to focus attention, which, on one hand, can be advanta-
geous for complex problem solving. On the other hand, excessive
strength in the pathway from ACC to LPFC may also disrupt the
ability to shift attention flexibly, and may contribute to the rigid
and repetitive behavior seen in autism. In line with this hypothe-
sis, the reported increase in the density of dendritic spines on layer
II pyramidal neurons of dorsolateral area 9 (Hutsler and Zhang,
2010), may reflect a plasticity change that spines can undergo
(Nimchinsky et al., 2002), perhaps to accommodate the excess
fiber input of feedback pathways from ACC in ASD.

A potential change in the ratio of the functionally distinct
classes of inhibitory neurons in lateral area 9 in autism can
have an impact on the activity of other areas both locally and
in widespread distributed circuits, affecting neural dynamics of
communication in the cortex. In accordance with our preliminary
data, a reduction in PV inhibitory neurons, which mediate periso-
matic inhibition of pyramidal excitatory neurons, may diminish
strong inhibition in prefrontal areas, leading to over excitation
and desynchronization of neuronal activity over large brain net-
works. This outcome could offer clues on the high prevalence

of epilepsy in autism (about 30%) (reviewed in Levisohn, 2007;
Hughes, 2008), and has profound implications for LPFC func-
tion, like working memory, as reported for autism (Luna et al.,
2002; Steele et al., 2007). The ability of LPFC to dynamically
adjust the attentional gain in these processes relies heavily on
the activity of local PV inhibitory neurons, which underlie shifts
in cortical rhythms during cognitive tasks (Abbott and Chance,
2005; Borgers et al., 2008), a process that is also necessary to shift
attention flexibly.

To date, DLPFC is the only cortical area in which changes in
the ratio of inhibitory neurons in ASD have been reported, since
Oblak et al. (2011b) found no differences in parvalbumin, or cal-
bindin interneurons in areas in the posterior cingulate and FFG.
It should be noted however, that given the extensive physiologi-
cal evidence for atypical inhibitory activity patterns in ASD more
cortical areas need to be examined. If supported with data from
more cases, our findings will have important implications for the
pathology in autism. In addition, studies in a variety of animals
and humans have established that CB neurons develop earlier
than PV neurons (Alcantara et al., 1993; Yan et al., 1997; Letinic
and Kostovic, 1998; Hof et al., 1999), and the selective reduction
of PV neurons in area 9 in autism suggests the likely timing of
the pathology. The status of axons below prefrontal areas also
point to changes that have their root in development, as discussed
below in the context of a model that relates pathological findings
to developmental events.

A MODEL FOR THE DEVELOPMENT OF DISRUPTED FRONTAL
NETWORKS IN ASD

LOCAL OVERCONNECTIVITY, LONG-DISTANCE DISCONNECTION, OR
BOTH? IT DEPENDS ON THE AREA

Findings from a variety of functional and structural imaging
studies suggest that the breakdown in neural communication
in autism involves local overconnectivity and long-distance
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FIGURE 4 | There is a decrease in the ratio of parvalbumin (PV) to

(A) Fluorescent photomicrograph shows the preferential laminar distribution
of CB (red) in the superficial layers and PV (green) in the middle-deep layers
of the human dorsolateral prefrontal cortex. (B,C) High magnification

calbindin (CB) inhibitory neurons in area 9 of the human brain in autism.
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photographs of CB and PV neurons in the human dorsolateral prefrontal
cortex (indicated by blue arrows). (D) Preliminary results show lower density
of PV neurons in autistic cases (cells/mm? =+ standard deviation). (E,F) Low
magnification photographs of PV neurons in the dorsolateral prefrontal cortex
(indicated by blue arrows) of control and ASD adults.
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disconnection, especially in pathways that include the frontal
lobe (Herbert et al., 2003; Belmonte et al., 2004b; Carper and
Courchesne, 2005; Courchesne and Pierce, 2005; Kennedy et al.,
2006; Thakkar et al., 2008). There is general agreement that long-
distance connections are weak in autism, but some studies suggest
that local connections are also weak, or at least not excessive
(e.g., Sundaram et al., 2008; Shukla et al., 2011a,b). The dispar-
ity in findings on first blush may be attributed to methodological
issues inherent in the limited resolution of MRI and DTI, spe-
cific methodological and data analysis choices (reviewed in Muller
et al., 2011), or poor contrast of the gray-white matter bound-
ary in autism that renders automatic segmentation ambiguous
(Bailey et al., 1998; Avino and Hutsler, 2010).

The most likely scenario, however, is that connectivity is
affected differentially in distinct cortical regions in autism
(Figure 5). This hypothesis is consistent with findings that suggest
weak local connectivity in some sensory areas or the face region
(Sundaram et al., 2008; Shukla et al., 2011a,b; Khan et al., 2013),
contrasted with excessive connectivity between some prefrontal
cortices in autism (Herbert et al., 2003; Kennedy et al., 2006;
Thakkar et al., 2008; Zikopoulos and Barbas, 2010). We found
evidence suggesting overconnectivity by the ACC, no change in
lateral prefrontal, and weak connectivity in OFC in autism. These
findings are based on high resolution methods to view individual
axons at the level of the system and to zero in at axon segments at
the electron microscope in post-mortem brain tissue (Zikopoulos
and Barbas, 2010). The high resolution methods employed make
it possible to differentiate not only the gray-white matter border,
but also to separate the superficial from the deep white mat-
ter based on axon orientation. In coronal sections, axons that
course in the superficial white matter appear as elongated rods
of variable size and direction. In contrast, axons that dive down

to the deep white matter en route to distant areas appear as small
circular, doughnut-like, structures, because they travel parallel to
the cortical surface (Figure 1).

Precise segmentation of the superficial white matter revealed
an excess number of medium and thin axons and more branch-
ing just below the ACC in the brains of adults with autism
(Zikopoulos and Barbas, 2010). The affected superficial white
matter links nearby areas. We found no such changes in axons
below lateral areas 9, 46, or orbital area 11. But just below
area 11 the myelin was thinner in the brains of autistic people
than in controls, consistent with decreased functional anisotropy
(FA) in some frontal areas (Sundaram et al., 2008). The above
findings demonstrate that the connectivity status in autism varies
depending on cortical region.

The changes in axons below the ACC are of special interest for
several reasons. To begin with, in non-human primates the ACC
has the most widespread connections with neighboring prefrontal
cortices (Barbas et al., 1999). The ACC may exercise its critical
role in allocating attention through its normally extensive influ-
ence on the rest of the prefrontal cortex. Further, in non-human
primates, excitatory pathways from the ACC innervate not only
excitatory neurons in LPFC, but also a smaller but significant
proportion of inhibitory neurons. Importantly, pathways from
ACC form large and efficient synapses with inhibitory neurons
in LPFC, and innervate preferentially the neurochemical class of
inhibitory neurons labeled for calbindin (Medalla and Barbas,
2009, 2010), which are suited to reduce neural noise and enhance
signal (Constantinidis et al., 2002; Wang et al., 2004). The exu-
berance of axons that connect the ACC with LPFC over short
or medium distances may help explain why people with autism
focus on a stimulus and have difficulty in orienting to other stim-
uli in the environment when needed. The problems in shifting

Long Distance Connections: weak

LPFC l'

¢ PV neurons
(area 9)

TEMPORAL LOBE

SWM: Tlhin axons
DWM: ‘I/ large axons

OFC

SWM: \I/rn_ velin

Local (Intrinsic) Connections: variable

FIGURE 5 | Relationship of axonal features to developmental events.
Changes in axons and inhibitory neurotransmission affect network dynamics
in ASD. ACC exhibits local overconnectivity in ASD, which combined with
changes in the ratio of inhibitory neurons in LPFC can tip the balance of
excitation and inhibition. OFC exhibits weak local connectivity in ASD due to

Pathways in typical development =

Pathways in ASD

thinning of the myelin, which may affect conduction velocity. Overall,
prefrontal areas exhibit weakening in their long-distance connections. This
connectivity pattern is supported by structural and functional data. Black lines
indicate typical connectivity and purple lines indicate connectivity in ASD. The
thickness of the line indicates the strength of a connection.
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attention are universal among people with autism, who are oth-
erwise heterogeneous with regard to language acquisition, or the
presence or absence of mental retardation or epilepsy (Zikopoulos
and Barbas, 2010).

On the other hand, there is general agreement that path-
ways that travel over long distances are weak in autism, based
on a variety of physiological and structural data (Courchesne
and Pierce, 2005; Lepagnol-Bestel et al., 2008; Zikopoulos and
Barbas, 2010; Muller et al., 2011; Schipul et al., 2011; Just et al.,
2012), including findings at the level of single axons (Zikopoulos
and Barbas, 2010). This consistent finding in autism likely con-
tributes to the incongruence of cortical rhythms that engage
distant cortices in autism (Thatcher et al., 2009; Lai et al., 2010;
Khan et al., 2013). The physiological changes within large scale
networks may help explain why people with autism have diffi-
culty in shifting attention from one stimulus to another as the
situation demands. In non-human primates, long-distance path-
ways are sparse in comparison with short-range pathways, which
account for about 80% of connections (Barbas, 1988; Hilgetag
et al., 2000; Hilgetag and Grant, 2000; Hilgetag and Kaiser,
2004; Barbas et al., 2005a). Nevertheless, long-distance pathways
have considerable influence on the cortex. The prefrontal cortex,
in particular, relies on sparse long-distance pathways for sen-
sory input. Long-distance pathways also include interhemispheric
connections, which have a critical role for synthesizing informa-
tion across the commissures for a large variety of cognitive tasks,
including language. In non-human primates, connections across
the two hemispheres are less dense than connections within one
hemisphere but involve just as many areas as the ipsilateral, at
least for the prefrontal cortex (Barbas et al., 2005a). Contralateral
pathways are also severely compromised in autism (Alexander
et al., 2007; Just et al., 2007; Frazier and Hardan, 2009; Jou et al.,
2010; Anderson et al., 2011b; Cantlon et al., 2011; Casanova et al.,
2011; Fame et al., 2011; Schipul et al., 2011). In view of their
functional significance and lower density, even small changes in
long-range connections in autism likely have devastating effects
on function.

In conclusion, areas are affected in varied ways in their con-
nections in autism (Figure5). In the superficial white matter
below ACC, there is exuberance of short- or medium-range axons
that link areas over short or medium distances. The white matter
below lateral areas 9 and 46 shows no differences in axon den-
sity. On the other hand, in the superficial white matter below
orbitofrontal area 11 the myelin is thinner, suggesting weak local
connectivity. In the deep white matter below ACC there is a
paucity of large axons that connect it with distant sensory and
association areas. Pathology in ACC, which has a key role in
attention, suggests that it may be the epicenter for abnormalities
elsewhere, resulting in deficits in attention—excessive focusing on
one stimulus or thought, and inability to disengage and attend to
other stimuli flexibly. The deficits in ACC are consistent with the
universal problems in attention in people with autism regardless
of the severity of symptoms.

A TESTABLE BIOLOGICAL MODEL RELATES STRUCTURAL AXON
FEATURES IN AUTISM TO DEVELOPMENT

Why are thin and medium axons in excess just below the ACC,
large axons in short supply in long-distance pathways, and myelin

is insufficient in orbital area 11? Are these disparate findings
independent or related? Autism is a disorder with its roots in
development and to begin to sort out what may go awry with con-
nections it is necessary to consider the development of affected
areas (Figure5). Let us first consider the ACC, which appears
to have more than its share of deficiencies in autism. In non-
human primates the ACC develops early in ontogeny (Rakic,
2002). When migrating neurons take their position in the cortex
they extend axons that branch to connect with other areas. Several
proteins expressed in development are critical for axon growth
and guidance. One of these proteins is GAP-43, which is expressed
at high levels in all areas during development (Milosevic et al.,
1995; Kanazir et al., 1996; Oishi et al., 1998). In adult brains
GAP-43 is expressed in significant levels only in some areas, albeit
less than in development, and the ACC is one such region. The
continued presence of GAP-43 into normal adulthood may help
explain the numerous pathways that connect the ACC with neigh-
boring areas, as seen in normal non-human primates (Barbas
etal., 1999).

In contrast to the early migration of neurons in ACC, myelina-
tion begins much later, and is nearly as late as the last myelinating
lateral prefrontal areas (Flechsig, 1901; Von Bonin, 1950; Yakovlev
and Lecours, 1967; Hasegawa et al., 1992). Why are two devel-
opmental processes so much separated in time in the ACC? It
turns out that GAP-43 and myelin proteins inhibit each other
and consequently there is an inverse relationship between GAP-
43 expression and myelination (Kapfhammer and Schwab, 1994;
Benowitz and Routtenberg, 1997). Axons first elongate and then
myelinate. The onset and duration of myelination varies among
cortical areas, starting prenatally, gradually increasing postnatally,
and continuing throughout childhood in most prefrontal cor-
tices (Flechsig, 1901; Von Bonin, 1950; Yakovlev and Lecours,
1967; Benes, 1989; Paus et al., 1999, 2001; Levitt, 2003; Suzuki
et al., 2003). The differences in development and myelination
among areas may help explain why areas are not equally affected
in autism.

In the brains of adults with autism just below ACC, GAP-43
is expressed in more than double the number of axons than in
normal controls (Zikopoulos and Barbas, 2010). If expression of
GAP-43 is also higher in children with autism that would help
explain the exuberant branching of axons below ACC in adults.
We used data from development and our findings from post-
mortem brains from adults with autism to construct a biological
model (Zikopoulos and Barbas, 2010). The model shows in broad
terms the likely fate of axons and their branching and myelination
based strictly on the sequence of developmental events in non-
human primates and humans. A high level of GAP-43 in ACC,
which develops early (Rakic, 2002), promotes axon growth and
branching. The selective increase in medium and thin axons in
the superficial white matter below the ACC is explained by the
exposure of axons to GAP-43, which is highest at the growing end
of axons, mediating branching as axons enter or leave the white
matter to link nearby areas. This pattern is expected to increase
the density of medium and thin axons. The model shows that
myelination should not be affected, because the ACC myelinates
very late (Flechsig, 1901; Von Bonin, 1950; Yakovlev and Lecours,
1967), when GAP-43 level drops relative to its expression early in
development.
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Development takes a different temporal course in OFC, where
there is no excessive branching of axons but the myelin is thin-
ner in the brains of autistic adults (Zikopoulos and Barbas,
2010). In OFC, neurons normally migrate to the cortex later than
in ACC, but myelinate earlier, effectively shortening the inter-
val between neuronal migration and axonal myelination. Based
on these developmental events, the model predicts that a small
increase in GAP-43 in OFC in development can affect myelination
but not axon branching, as seen in the brains of adults with autism
(Zikopoulos and Barbas, 2010). In lateral prefrontal areas 9 and
46, neurogenesis and migration are completed much later (Rakic,
2002), when levels of GAP-43 are comparatively low, which helps
explain why neither axon branching nor myelination are affected
in adults with autism (Zikopoulos and Barbas, 2010).

The predictions of our biological model, which is testable,
are bolstered by recent genetic studies that have associated sin-
gle nucleotide polymorphisms in the GAP-43 gene with autism
(Allen-Brady et al., 2009), and identified its extended chromo-
somal region as an autism risk locus (Trikalinos et al., 2006;
Szatmari et al., 2007). In addition, studies in mice have shown
that wide changes in the levels of GAP-43 can lead to autistic-
like behaviors, including learning disability and stereotypical
behaviors (Routtenberg et al., 2000; Zaccaria et al., 2010).

Atypical GAP-43 levels in autism may, therefore, help explain
the exuberance of short-range pathways below ACC, which leads
to intrinsic overconnectivity in the frontal lobe (Courchesne and
Pierce, 2005). Importantly, based on the late onset and comple-
tion of the development of connections between distant cortices,
high levels of GAP-43 in ACC may also help explain the weakened
long-distance connections that course in the deep white mat-
ter below ACC. Reduction in strength of long-distance pathways
that course through the deep white matter in autism may be sec-
ondary to the excessive short-range connections, which develop
first, reach their targets fast, and occupy sites that normally would
be available to the sparser long-distance pathways (Zikopoulos
and Barbas, 2010). Pathways that reach the ACC from a long dis-
tance thus may be at a competitive disadvantage, not only because
they develop late, but also because their axons must continue to
elongate to reach and form synapses in the prefrontal cortex.

In conclusion, using the distinct findings in ACC, orbitofrontal
and lateral prefrontal areas and their relationship to developmen-
tal events, including neuronal migration, axonal branching in the
presence of GAP-43, and myelination, a biological model can help
explain the varied effects within the frontal lobe. The findings
suggest overconnectivity of the ACC with nearby areas, long-
distance disconnection, weakening of nearby connections of the
OFC, and sparing of axonal structure in lateral prefrontal areas 9
and 46. However, even though none of the changes seen in axons
below ACC or orbitofrontal area 11 were evident below prefrontal
areas 9 and 46, the interlinkage of these areas suggests that they do
not remain unscathed. Indeed, the relationship of axon types was
seriously altered among prefrontal areas, suggesting widespread
repercussions beyond the immediate areas affected.

In line with the above findings, the increased density of spines
of the late-developing neurons in the superficial layers of lat-
eral prefrontal areas may help accommodate excessive feedback
from ACC in autism. Moreover, lateral prefrontal areas appear

to have reduced PV/CB ratio, due to fewer PV inhibitory neu-
rons, which also develop later than CB neurons in animals and
humans. Future studies with more cases are needed to investigate
if the ratio of distinct inhibitory neurons is altered in autism and
may help explain the changes seen in GABA receptors. Combined,
these findings provide converging information about the devel-
opmental timeline of ASD, pointing to a critical perinatal period
for the emergence of axon pathology and neural communication
deficits in autism.

MATERIALS AND METHODS

TISSUE PREPARATION

Post-mortem prefrontal brain tissue was obtained from the
Harvard Brain Tissue Resource Center through the Autism Tissue
Program from two autistic male adults and two typically devel-
oped, age-matched, male controls, ages 30—44 years. The selec-
tion of cases used was based on tissue availability of cases with
closely matched characteristics, including post-mortem interval
(Table 1), and period of storage of tissue in formalin (mean £
standard deviation = 137 & 37 months), which minimized vari-
ability of tissue immunolabeling and shrinkage. The study was
approved by the Institutional Review Board of Boston University.
The diagnosis of autism was based on the Autism Diagnostic
Interview-Revised (ADI-R) in both cases (Table 1). Clinical char-
acteristics are summarized in Table 1. We excised small blocks
(~2 x 3cm) of matched frontal coronal tissue slabs (~1cm
thick), containing gray and white matter from DLPFC area 9
(Figure 3) based on the human brain atlas from the Autism Tissue
Portal (www.atpportal.org) and (Von Economo, 2009, re-issued),
and additional cytoarchitectonic studies of human prefrontal cor-
tex (Selemon et al., 1998; Stark et al., 2004; Miguel-Hidalgo et al.,
2006). We matched all samples to minimize variability and max-
imize statistical power. To ensure adequate preservation of the
tissue the blocks were stored at —20°C in anti-freeze solution
(30% ethylene glycol, 30% glycerol, 0.05% azide in PB). The
blocks were rinsed in 0.1 M PB and cut coronally in series of
adjacent sections (50 um) on a vibratome (Pelco, series 1000).

IMMUNOHISTOCHEMISTRY

We used standard immunohistochemical procedures to label
inhibitory neurons, as described (e.g., Barbas et al., 2005b;
Zikopoulos and Barbas, 2006, 2007). Briefly, free-floating sec-
tions (50 wm thick) were treated with 1% H,O, aqueous solution
to suppress endogenous peroxidase activity, followed by 0.05M
glycine in 0.01 M phosphate buffered saline (PBS), pH: 7.4, to
reduce cross-linking of lipids due to fixation. Tissue was placed
in blocking solution of 0.3% Triton-X, 5% bovine serum albu-
min (BSA), 5% normal goat serum (NGS) in PBS, and then
incubated in mouse monoclonal antibody (0.3% Triton-X in
PBS) against CB, or PV, (1:2000, Swant). The sections were then
incubated with a secondary biotinylated anti-mouse antibody
(1:200 in PBS with 0.1% Triton-X; Vector), followed by avidin-
biotin-peroxidase solution (Vector ABC Elite kit). We visualized
positive neurons by the peroxidase-catalyzed polymerization of
0.05% 3,3-diaminobenzidine tetrahydrochloride (DAB; Zymed
Laboratories) in 0.01% H,O; buffer solution (pH, 7.5). After
binding of the primary antibodies some sections were rinsed in
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PBS, incubated for 4 h with goat anti-mouse secondary antibodies
conjugated with the fluorescent probes Alexa Fluor 488 (green) or
568 (red; 1:100; Invitrogen) and rinsed with PBS. To test for non-
specific labeling we performed control experiments with sections
adjacent to the experimental, omitting the primary antibodies,
and incubating with secondary antisera. A small number of CB+
neurons in the cortex are pyramidal, but their labeling is min-
imized by using a monoclonal antibody (Gonzalez-Albo et al,,
2001; and personal observations). In addition, we can morpho-
logically identify these neurons, since they are larger and have
spiny dendrites as opposed to smooth, small bipolar inhibitory
CB neurons.

STEREOLOGICAL ANALYSIS—LIGHT AND CONFOCAL MICROSCOPY
We estimated the laminar density of labeled PV and CB inhibitory
neurons as well as total neuronal density in tissue blocks of similar
size and volume of DLPFC area 9 using the stereological method
of the optical fractionator (Gundersen, 1986; Howard and Reed,
1998) and specific software (StereoInvestigator; Microbrightfield)
under the microscope at high magnification (x400), as we have
described (e.g., Dombrowski et al., 2001; Zikopoulos and Barbas,
2006, 2010). For microscopic analyses we used a minimum of
three sections from one series of coronal sections (50 wm thick)
from each case. To estimate the number of neurons we first mea-
sured the thickness of each section, and used Stereolnvestigator
to set a guard zone at the bottom and top of each section to cor-
rect for objects plucked during sectioning; the disector thickness
was thus smaller than the thickness of the section (Gundersen,
1986; West et al., 1991; Howard and Reed, 1998). The sampling
fraction was 1/50 of the total volume of the area examined. The
use of uniform random sampling ensured that every part of the
area examined had the same chance of being included in the sam-
ple. The estimated numbers of neurons and the volumes of the
corresponding layers (estimated with the Cavalieri method) were
divided to assess relative density of label. In all experiments we
stained one series of sections for Nissl (thionin) to place cytoar-
chitectonic borders. The section surface, the cytoarchitectonic
borders of areas of interest, and layers, were outlined with the aid
of a commercial computerized microscope system and motorized
stage at a magnification x400.

It should be noted here that the densities we report are rel-
ative, not absolute, since we did not apply a correction factor
to account for inevitable tissue shrinkage during prolonged fix-
ation and immunohistochemical processing. Variability due to
tissue shrinkage was likely minimal because the period of stor-
age of tissue in fixative was comparable across cases, and brain
sections were simultaneously processed, using a standardized pro-
tocol, under identical conditions. This resulted in comparable
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APPENDIX

Abbreviations: ACC, Anterior cingulate cortex; ASD, Autism spectrum disorders; CB, Calbindin; CC, Corpus callosum; CR,
Calretinin; cs, Central sulcus; DLPFC, Dorsolateral prefrontal cortex; DWM, Deep white matter; FFA, Fusiform face area; FFG,
Fusiform gyrus; GAP-43, Growth axon protein 43 KDa; ifs, Inferior frontal sulcus; LPFC, Lateral prefrontal cortex; M1, Primary
motor cortex; OFC, Orbitofrontal cortex; PCC, Posterior cingulate cortex; PFC, Prefrontal cortex; PV, Parvalbumin; sfs, Superior
frontal sulcus; SMA, Supplementary motor area; SWM, Superficial white matter.
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