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Recently, there have been a large number of studies using resting state fMRI to
characterize abnormal brain connectivity in patients with a variety of neurological,
psychiatric, and developmental disorders. However, interpreting what the differences
in resting state fMRI functional connectivity (rsfMRI-FC) actually reflect in terms of
the underlying neural pathology has proved to be elusive because of the complexity
of brain anatomical connectivity. The same is the case for task-based fMRI studies.
In the last few years, several groups have used large-scale neural modeling to help
provide some insight into the relationship between brain anatomical connectivity and
the corresponding patterns of fMRI-FC. In this paper we review several efforts at
using large-scale neural modeling to investigate the relationship between structural
connectivity and functional/effective connectivity to determine how alterations in structural
connectivity are manifested in altered patterns of functional/effective connectivity.
Because the alterations made in the anatomical connectivity between specific brain
regions in the model are known in detail, one can use the results of these simulations
to determine the corresponding alterations in rsfMRI-FC. Many of these simulation
studies found that structural connectivity changes do not necessarily result in matching
changes in functional/effective connectivity in the areas of structural modification.
Often, it was observed that increases in functional/effective connectivity in the altered
brain did not necessarily correspond to increases in the strength of the anatomical
connection weights. Note that increases in rsfMRI-FC in patients have been interpreted
in some cases as resulting from neural plasticity. These results suggest that this
interpretation can be mistaken. The relevance of these simulation findings to the
use of functional/effective fMRI connectivity as biomarkers for brain disorders is also
discussed.
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INTRODUCTION
In the past few years, brain connectivity analyses have become
important tools in the investigation of brain disorders [besides
the articles in this Special Issue, see, for example, the Frontiers
in Systems Neuroscience Special Issue on Brain Connectivity
Analysis: Investigating Brain Disorders (Horovitz and Horwitz,
2012; Horwitz and Horovitz, 2012)] 1 . Probably the most com-
mon connectivity studies have used diffusion tensor imaging

1Please note that we use the term “brain disorder” quite loosely. In particu-
lar, because there are both structural and functional changes during normal
development and normal aging, studies of either of these processes can be
considered here, since many of the issues that come about when comparing
patients and healthy subjects would also be present when comparing subjects
in different age groups.

(DTI) 2 to investigate brain anatomical connectivity and func-
tional magnetic resonance imaging (fMRI) to examine functional
and/or effective connectivity. Although there still exists some
confusion in the literature as to the definition of the latter two
terms (Horwitz, 2003), for the purposes of this article we follow
Friston (1994) and take functional connectivity to denote a sta-
tistical relationship between the functional neuroimaging signals
in two or more brain regions (e.g., a correlation coefficient or
a regression coefficient), and effective connectivity to mean the
direct effect of one brain region’s activity on another during a
specified experimental condition (e.g., the functional strength of
the directed anatomical link from one region to another during a
particular task).

2See Appendix for a list of all abbreviations used in this paper.
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The earliest functional connectivity neuroimaging studies that
used positron emission tomographic (PET) data were acquired
during the so-called resting state (e.g., Horwitz et al., 1984), but
gave way a few years later to task-based studies (Horwitz et al.,
1992), especially when fMRI became available (e.g., Friston et al.,
1997; Bokde et al., 2001). Thus, there developed a substantial
literature on activation studies of patients with brain disorders
employing functional/effective brain connectivity analysis meth-
ods (e.g., Horwitz et al., 1995; Bokde et al., 2006; Just et al., 2007;
Rytsar et al., 2011). However, during the past decade or so, there
has been an explosion in the number of studies using resting state
fMRI (rsfMRI) to characterize functional brain connectivity in
normal subjects (e.g., Biswal et al., 1995; Yeo et al., 2011) and in
patients with a variety of neurological, psychiatric, and develop-
mental disorders (e.g., Cherkassky et al., 2006; Wang et al., 2006;
Alexander-Bloch et al., 2010; Lynall et al., 2010; Damoiseaux et al.,
2012; Venkataraman et al., 2012; Lynch et al., 2013). The liter-
ature on functional neuroimaging connectivity studies in brain
disorder patients is now huge, and obviously difficult to summa-
rize. It is possible to generalize, however, and say that almost all
published studies have found differences in functional (or effec-
tive) connectivity between patients and healthy control subjects.
Often, the differences correspond to a decreased connectivity in
the patients, although in many instances, increased interregional
connectivity has been reported; sometimes, both types of differ-
ences are found together (e.g., Horwitz et al., 1995; Damoiseaux
et al., 2012; Venkataraman et al., 2012). Note also that it has
become widely appreciated that neuroimaging studies of brain
connectivity, both functional and structural, have the potential
for generating useful biomarkers for the detection and diagnosis
of brain disorders and for the assessment of their treatment [for
example, for Alzheimer’s disease (AD), see (Horwitz and Rowe,
2011; Damoiseaux, 2012)].

Nonetheless, the question does arise as to how these alter-
ations in functional/effective connectivity should be interpreted.
For example, some researchers have suggested that an increased
functional/effective connectivity may reflect some type of com-
pensatory change that helps maintain normal function in spite
of aberrant function in other parts of the brain. Also, can one
attribute, as is often done, a reduced functional/effective connec-
tivity to a decreased structural link between two brain regions? A
decreased structural link may manifest itself as a reduced axonal
input (either fewer axons or less effective synaptic inputs) from
one neural population to another. How can we determine if these
interpretations of functional brain connectivity analyses are jus-
tified? With respect to human brain disorders, it is obviously
hard (indeed impossible at present) to actually do this using
experimental data, since invasive techniques cannot be employed.
Furthermore, the complexity of the mammalian brain mostly
precludes any sort of direct comparison between measures of
interregional neuronal connectivity and fMRI based measures in
non-human animals, although some recent efforts in this direc-
tion (Logothetis, 2012), including using optogenetic approaches
(Lee, 2011), show some promise. Rather, these issues have started
to be addressed using computational neural modeling.

In this paper, we will discuss a few of these neural mod-
eling efforts in the section entitled Simulated fMRI Data and

Functional/Effective Connectivity, focusing especially on what
has been learned about how to interpret differences in func-
tional/effective connectivity between patients and healthy sub-
jects in Simulating the Effect of Altered Anatomical Connectivity
on Functional/Effective Connectivity. We will conclude in The
Role of Simulation in the Development of fMRI Biomarkers with
some thoughts on the role that neural modeling can play in devel-
oping fMRI functional/effective connectivity based biomarkers
for various aspects related to the detection and treatment of brain
disorders.

SIMULATED fMRI DATA AND FUNCTIONAL/EFFECTIVE
CONNECTIVITY
There have been a number of investigators who have developed
multi-region network models that can simulate functional neu-
roimaging data. These models vary with respect to how “biologi-
cally realistic” are the elements that comprise each model. Efforts
of this sort that deal with the kind of task-related flow/metabolic
neuroimaging data generated by PET and fMRI began in the
mid-to-late 90s (Arbib et al., 1995; Tagamets and Horwitz, 1998;
Horwitz and Tagamets, 1999), and have increased dramatically
since then (e.g., Corchs and Deco, 2004; Deco et al., 2004, 2008;
Husain et al., 2004; Edin et al., 2007; Marreiros et al., 2008; Smith
et al., 2013). Recently, a number of groups have developed model-
ing platforms for examining simulated rsfMRI data (for instance,
Alstott et al., 2009; Honey et al., 2009; Cabral et al., 2011, 2012b;
Smith et al., 2011; Ritter et al., 2013). Although some of these
modeling efforts have focused on examining differences between
healthy subjects and patients, others have used the computa-
tional models to address how specific tasks are implemented at
the neural level. Relevant to the discussion that will follow, we
will illustrate three of these modeling efforts.

The model developed by Tagamets and Horwitz (1998),
although initially applied to regional cerebral blood flow (rCBF)
PET data, was soon extended to blood oxygenation level depen-
dent (BOLD) fMRI (Horwitz and Tagamets, 1999). The model
was designed to simulate a short-term memory task for visual
objects. It consisted of a number of distinct neuronal popula-
tions along the ventral visual processing stream arranged in the
following brain regions (see Figure 1): primary and secondary
visual cortex (V1), extrastriate visual cortex (V4 and IT), and
prefrontal cortex (PFC). The visual feature that was modeled
was object shape, and thus the V1 neurons were configured to
respond to line orientation (for simplicity, the orientations were
restricted to horizontal and vertical). The basic neuronal element
in each module was a modified Wilson–Cowan unit (Wilson and
Cowan, 1972), which consists of an excitatory-inhibitory pair
that can be thought of as representing an extremely simplified
cortical column. Each model population contained 81 basic ele-
ments. The populations were connected together based, as much
as possible, on known primate neuroanatomy. For example, con-
nectivity was such that the spatial receptive field increased as
one moved down the object processing pathway. The PFC region
contained four distinct simulated neuronal populations whose
activities were designed to correspond to the experimental data
of Funahashi et al. (1990), obtained from monkeys during the
performance of a delayed response task. The model simulated
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FIGURE 1 | Large-scale neural network models of the visual and

auditory object processing pathways (Tagamets and Horwitz, 1998;

Husain et al., 2004). Shown are the modules specific to the visual model
(LGN, V1-V2, V4, IT) in black-bold and those specific to the corresponding
auditory model (MGN, Ai, Aii, ST, PFC) in gray-italics. Within each module
are sub-modules. The PFC module is common to both models and shown
are its sub-modules. Each sub-module contains 81 basic neural elements
consisting of an interacting pair of excitatory and inhibitory units (Wilson
and Cowan, 1972). Connections between modules are display (solid:

excitatory-to-excitatory; dashed: excitatory to inhibitory). Models perform a
delayed match-to-sample task for either visual objects (combinations of
horizontal and vertical lines) or auditory objects (combinations of pure
tones and up- and down-frequency sweeps. Abbreviations: LGN, lateral
geniculate nucleus; MGN, medial geniculate nucleus; V1-V2, primary and
secondary visual cortex; V4, extrastriate visual cortex; IT, inferior-temporal
cortex; Ai, primary auditory cortex; Aii, secondary auditory cortex; ST,
superior temporal gyrus-sulcus; PFC, prefrontal cortex. Taken from Horwitz
and Smith (2008).

a delayed match-to-sample task, in which a simulated object is
presented for a short period of time, there is a delay period, and a
second object is presented. The goal was to determine if the sec-
ond object was the same as the first. An intertrial interval then
occurred, and another trial began. The entire simulation corre-
sponded to multiple trials, as would occur during an actual PET
or fMRI study. The properties of the simulated neurons were con-
figured so that their firing patterns were similar to those obtained
from electrophysiological monkey studies. The spatiotemporal
integrated synaptic activities (absolute value of the excitatory and
inhibitory neuronal inputs) were assumed to represent the rCBF
in each area for PET (Tagamets and Horwitz, 1998). For fMRI, the
integrated synaptic activities were calculated for a time period of
about 50 ms (the time needed to acquire a single MRI slice), con-
volved with a function representing the hemodynamic response,
and then downsampled each TR (e.g., TR = 2 s) to represent
simulated BOLD-fMRI (Horwitz and Tagamets, 1999). Good
agreement was obtained between the simulated PET data and
the experimental PET data of Haxby et al. (1995) (see Tagamets
and Horwitz, 1998 for details). This model was later modified
by Husain et al. (2004) to produce a simulation model for audi-
tory object processing. Both the visual and auditory models were
subsequently employed to simulate fMRI-functional connectiv-
ity data (time-series correlations) (Horwitz et al., 2005; Kim and
Horwitz, 2008).

It is important to notice that these kinds of multiregion
large-scale simulations require a combination of three compo-
nent models. The first component is a structural model that
indicates how the simulated brain regions are anatomically
linked, and what are the strengths of the linkages. The sec-
ond component is a neuronal model. The third component is a

hemodynamic response model that converts the neural activity
into a neuroimaging signal. In the simulations just discussed, the
structural model was based on primate neuroanatomy, the neu-
ronal model was the Wilson-Cowan unit, and the hemodynamic
model was a simple Poisson convolution function acting on the
integrated synaptic activity.

An example of simulating human rsfMRI data was provided
by Honey et al. (2009). They used a structural model based on
diffusion spectrum imaging (DSI) data obtained from five nor-
mal human participants originally described by Hagmann et al.
(2008) (see Figure 2A) 3. The structural connections were eval-
uated from streamline tractography values between each pair of
998 cortical regions. The neural model assigned to each of these
regions employed the neural mass model of Breakspear et al.
(2003), which represents an ensemble of excitatory and inhibitory
neurons possessing both ligand-gated and voltage-gated mem-
brane channels. A non-linear hemodynamic model was used to
convert simulated neural activity into simulated BOLD fMRI
data (Friston et al., 2000) (see Figure 2B). Honey et al. (2009)
used this formulation to compare simulated rsfMRI data against
actual fMRI data obtained in the same subjects from whom the
DSI data were acquired. Their main conclusion was that in both
the simulated and experimental data, the underlying structural
connectivity constrained the pattern of resting state functional
connectivity, although some functional connectivity between
non-anatomically connected regions was also present. These

3The two matrices shown in Figure 2 were generated by the current authors
using the structural, neural, and hemodynamic models originally employed
by Honey et al. (2009) and Alstott et al. (2009).
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FIGURE 2 | Brain connectivity matrices. (A) Structural connectivity matrix
among the set of 998 ROIs of the average of the DSI data of five normal
subjects of Hagmann et al. (2008). (B) Functional connectivity matrix of
Pearson correlations from the computational model used by Honey et al.
(2009) and Alstott et al. (2009) for the averaged structural matrix of (A),
showing relatively high simulated rsfMRI-FC within lobes, and lower
rsfMRI-FC between hemispheres.

findings were supported by a resting state fMRI functional con-
nectivity (rsfMRI-FC) study in monkey by Adachi et al. (2012),
who also performed a simulation study employing the modeling
framework of an earlier Honey et al. paper (2007).

Gustavo Deco and his colleague have used a comparable mod-
eling approach to that of Honey et al. (2009) to investigate other
aspects of rsfMRI data (Deco et al., 2009; Cabral et al., 2011).
For instance, Cabral et al. (2011) found that slow power fluc-
tuations in gamma (60 Hz) oscillations at the local neural level
could result in long-range interregional resting state synchrony
at very low frequencies (<0.1 Hz), indicating that local neural
dynamics can have an important effect on network connectivity
patterns [see Hlinka and Coombes (2012) for a similar find-
ing]. Cabral and colleagues employed the same structural model
as used by Honey et al. [although downsampled to 66 regions
of interest (ROIs) from the full set of 998 of the original], as
well as the same hemodynamic model. However, they utilized
a simpler neural model: the Kuramoto oscillator (Kuramoto,
1984), which has been used extensively to examine the behav-
ior of coupled oscillatory systems. Other component models were
employed in other studies by this group. For example, in Deco
et al. (2009), the structural model was that of the macaque
monkey obtained using anatomical connectivity values from the
CoCoMac database (Kotter, 2004), and the neural model uti-
lized the Wilson-Cowan formulation (Wilson and Cowan, 1972).
An important insight they found was the critical role that con-
duction delays between connected brain regions play in allowing
synchrony to emerge.

It is worth noting that the main reason different component
models are used in different studies is because each study is
attempting to understand just a few aspects of the data. So, a
neural oscillator model was used when the goal of the study was
to relate high frequency neural activity to low frequency BOLD
activity, as was the case in the Cabral et al. paper (2011). Some of
the other studies that were mentioned placed more emphasis on
neural realism, and so models more directly inspired by neurons
were employed. In all cases, because there are so many interacting

neural units in these large-scale simulations, the simplest neural
model that embodied the crucial features of the data was chosen.
As more such studies appear in the future, it will be important
to determine the degree to which the simulated results depend
on the exact nature of the component models that are used. For
example, resting state studies may well be somewhat insensitive
to the exact neural and metabolic models that are employed,
whereas task-based studies may show a strong dependence on the
composition of the neural model that is used.

An important issue to mention here is that because these large-
scale models can produce multiregional simulated fMRI data that
are comparable to experimental data, many of the same analy-
sis techniques that are applied to the experimental data can be
applied as well to the simulated data. This is important, given
that network analysis techniques, especially graph theory, are
commonly employed in MRI studies of structural and func-
tional connectivity (Achard et al., 2006; Bassett and Bullmore,
2006; Bullmore and Sporns, 2009; Sporns, 2012), and as we shall
see, these network metrics can be utilized for investigating brain
disorders.

Finally, even though the current paper is focused on fMRI
functional/effective connectivity, it is worth noting that there
also is a vast literature in which brain connectivity analyses are
performed on EEG/MEG data (e.g., Gevins and Bressler, 1988;
Gross et al., 2001; Daunizeau et al., 2009; Brookes et al., 2011;
Rong et al., 2011), and large-scale neural modeling has been
employed to help interpret experimental findings (for example,
see Wendling et al., 2009; Banerjee et al., 2012).

SIMULATING THE EFFECT OF ALTERED ANATOMICAL
CONNECTIVITY ON FUNCTIONAL/EFFECTIVE CONNECTIVITY
One important application of these large-scale simulation models
has been the investigation of the effects of various types of brain
alterations on functional/effective connectivity. As we pointed out
in the Introduction, interpreting the results of a brain alteration
in real experimental data is difficult because of the complexity of
the underlying neural architecture, coupled with neuroplasticity
that can occur in real brains subsequent to the alteration. In a
large-scale simulation, however, everything is under the control
of the researcher, and, in principle, everything that goes on during
a simulation can be tracked and evaluated.

Cabral and colleagues published a study that nicely illustrates
what can be learned about bran disorders from simulations of
rsfMRI (Cabral et al., 2012b). In this investigation, the effects
of structural disconnection on rsfMRI-FC was examined using
a large-scale neural modeling framework. The structural model
that was employed consisted of 90 ROIs derived from DTI data
acquired from 21 healthy participants; the neural model for each
ROI, based on the dynamical equations of Mattia and Del Giudice
(2002), generated spontaneous neural activity; and the hemody-
namic model that the authors used was the Balloon-Windkessel
model of Friston et al. (2000). The simulated rsfMRI-FC was eval-
uated as the temporal correlation between ROI time series, and
graph theoretic measures (Bassett and Bullmore, 2006; Bullmore
and Sporns, 2009) were employed to characterize the pattern of
connectivity among all the ROIs. Two types of structural dis-
connection were simulated—global and local. In the equations
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relating the change in neural activity (firing rate) in one region
(region n) to that in other regions, there exists a term kCnp, where
k is the global excitatory coupling between all regions and Cnp is
the structural coupling strength from region p to region n. For
the global disconnection simulations, k was uniformly reduced. It
was found that a number of the graph theoretic metrics changed,
resulting in a less globally correlated and globally integrated set
of BOLD values. The second kind of structural disconnection
that they simulated was a more localized type, in which Cabral
and colleagues successively removed randomly 1% of the possible
links (what they termed “pruning the matrix”). The results for
this case were similar to that for the global disconnection case—
a reduction in functional connectivity leading to reduced global
integration.

Cabral et al. (2012a) went on to explicitly compare simulated
rsfMRI-FC with experimental data acquired from patients with
schizophrenia (Lynall et al., 2010). The experimental data showed
that, compared to healthy control subjects, the schizophrenia
patients had weakened functional connectivity and an increased
diversity of functional connections. Cabral and colleagues tested
the hypothesis that these disrupted functional networks in the
patients could be explained by a global decrease in structural cou-
pling between cortical regions. They found that a small decrease
in the global structural coupling parameter, k, yielded a reduced
functional connectivity that resulted in graph theoretic changes
similar to those documented by Lynall et al. (2010).

Other simulation studies have examined the effects of focal
lesions on rsfMRI-FC, including investigations that employed
structural models based on macaque connectivity (Honey and
Sporns, 2008) and those that used structural data from humans
(Alstott et al., 2009). We will discuss the latter of these. The
structural, neural, and hemodynamic models used by Alstott
et al. (2009) were the same ones as those employed by Honey
et al. (2009): a DSI data set from 5 healthy human participants
(Hagmann et al., 2008), the neural model of Breakspear et al.
(2003) and the Friston et al. balloon model (Friston et al., 2000).
A number of important findings were reported, including one
showing that lesions along the cortical midline, in the temporo-
parietal junction and in frontal cortex resulted in large and
widely distributed reductions in rsfMRI-FC; some of these alter-
ations involved regions outside the lesion site. In contrast, lesions
of sensory and motor regions produced functional connectivity
changes that were more localized to the area of the lesion (see
Figure 3).

The studies involving alterations in anatomical connectivity
that we have so far mentioned involved simulating rsfMRI data.
Task-based fMRI also has been examined using large-scale model-
ing, and one such paper by Kim and Horwitz (2009) investigated
the effect of decreased structural connectivity on task-related
effective connectivity. The general question that this study asked
was: how should one interpret a significant difference between
patients and controls in the effective connectivity between two
nodes? In particular, does such a difference imply that there
is a corresponding alteration in the underlying structural con-
nectivity between the nodes? Kim and Horwitz used the large-
scale neural model of Tagamets and Horwitz (1998), discussed
in Simulated fMRI Data and Functional/Effective Connectivity,

to address these questions. They reduced the strength of the
structural connection from IT to PFC (see Figure 4, upper) by
an average of 80% in 20 simulated “patients,” and compared
the simulated fMRI obtained during the DMS task with com-
parable data from 20 “normal control” simulations. Structural
equation modeling (SEM) (McIntosh et al., 1994) was used to
evaluate effective connectivity for all the connections between
all regions in the network. As shown in Figure 4 (lower), the
effective connection from IT to PFC (FS) indeed was signifi-
cantly reduced in the patients relative to the controls. So, this
simulation result suggests that reduced structural connectivity
can be reflected as reduced fMRI effective connectivity. Figure 4
also shows that the effective connectivity downstream from the
induced structural disconnection (i.e., the connectivity within
the PFC) also was generally reduced. This result is not unex-
pected: the disruption in the IT-FS connection leads to incorrect
neural processing in downstream parts of the PFC network.
The third result from this simulation is, at first glance, unex-
pected: the increased effective connectivity “upstream” (e.g., the
V1–V4 effective linkage) in patients relative to controls. As men-
tioned in Introduction, numerous groups have reported increased
patient functional/effective connectivity (e.g., for AD, Horwitz
et al., 1995; Damoiseaux et al., 2012), and in many cases, this
increase is attributed to some type of neural plasticity. The sim-
ulation produced by Kim and Horwitz (2009) indicates that this
interpretation may not always be warranted. In the simulation,
no structural alteration in the V1–V4 connections weights took
place. Rather, the increased effective connectivity resulted from
a reduced feedback effective connection from PFC to V4, which
in turn led to V4 being more influenced by V1 activity than
was the case in the normal subjects. A major conclusion from
the Kim and Horwitz study was that interpretation of fMRI
functional/effective connectivity changes in patients relative to
controls requires a careful consideration of the entire network
mediating the task under study.

What about the situation for rsfMRI-FC? Would similar find-
ings as illustrated by the Kim–Horwitz study (Kim and Horwitz,
2009) occur, or are those interpretational problems found only
in task-based fMRI studies? As Alstott et al. (2009) showed, both
increases and decreases in rsfMRI-FC occurred following cortical
lesions. For example, as illustrated in Figure 3B, a lesion cen-
tered in the left temporo-parietal junction resulted in strength-
ened rsfMRI-FC in the contralesional hemisphere. Some of these
increases are due to direct loss of inputs from the lesioned area,
resulting in greater functional connectivity between right hemi-
sphere nodes. As was the case with the Kim-Horwitz example,
these increases are not the result of any change in the strength
of the anatomical connection weights.

The studies discussed above obviously did not consider all
the complexities that are likely to be found in investigations of
brain disorders. Future neural modeling efforts will be needed
to address such issues as how the various kinds of neuroplas-
ticity, which can operate over multiple time scales, even ones
whose duration are within the time frame of a single scan,
affect the functional/effective connectivity of relevant networks.
Some of these neuroplastic changes may occur due to changes in
anatomical connectivity.
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FIGURE 3 | Functional connectivity changes following simulated brain

lesions (Alstott et al., 2009). Dorsal (middle) and left and right hemisphere
views of significant changes between lesioned and normal groups in
simulated resting state functional connectivity (all in the dorsal view;
hemisphere specific in the lateral views) between 66 anatomical areas

constructed from the 998 ROIs used by Alstott et al. Red (blue) lines indicate
a decreased (increased) correlation for the lesioned brains. Center of the
lesion site indicated by the green “+.” (A) Lesion in sensory cortex; (B)

lesion in temporo-parietal junction. Slightly modified from Alstott et al. (2009);
[(A) is from Supplementary. Figure 1A; (B) is from Figure 4B].

It is worth noting, by the way, that we have oversimplified
things by assuming that there is a clear distinction between
anatomical and function/effective connectivity. At the level of
neuron and synapse, however, this distinction breaks down: in
which category does one place axonal sprouting and the for-
mation of new synapses, or even the strengthening of a single
synaptic contact? Indeed, one kind of connectivity change can
lead to a change in the other—Hebbian learning would be an
obvious example. These issues will need to be confronted in future
neural modeling studies.

THE ROLE OF SIMULATION IN THE DEVELOPMENT OF fMRI
BIOMARKERS
An important issue that was alluded to in the Introduction was
the utilization of neuroimaging for generating assorted biomark-
ers for brain disorders. Horwitz and Rowe (2011) have discussed
the various uses for which such biomarkers could be employed4.
These include detection or prediction of a disorder, differen-
tial diagnosis, and staging a disorder and investigating treatment
efficacy.

A significant and obvious point related to biomarker develop-
ment is that such markers are meant to be used on individual

4The Horwitz-Rowe article focused on neurodegenerative disorders; however,
many of the points made are relevant for numerous brain disorders.

patients (or potential patients). As such, an important issue is
how likely is it that fMRI will be able to provide sufficient
signal-to-noise ratio to be usable in single subjects (Horwitz and
Rowe, 2011; Damoiseaux, 2012; Vemuri et al., 2012). Most of the
experimental studies we have mentioned were group studies, and
although these investigations are important for discerning signal
patterns that have the potential to discriminate between patients
(actual or potential) and non-affected individuals (or between
different types of patients), clinically useful fMRI biomarkers are
still a future goal, not a present reality. Two areas of fMRI research
that are likely to lead to improvements are in hardware develop-
ment and in advances in the use of multivariate signal processing
techniques (e.g., Smith et al., 2010); for a review, see Smith, 2012.

A second issue, implicit in our previous discussion, concerns
what kind of fMRI technique (i.e., resting state fMRI or task-
based fMRI) is better to use for a particular brain disorder. The
answer depends on two things: which brain disorder is the focus
of interest, and which question is the biomarker attempting to
address. In some cases, it may be that rsfMRI will be more appro-
priate. For example, getting small children to do a specific set of
tasks could lead to compliance problems of one sort or another. In
other cases, task-based fMRI might have a significant advantage.
Specifically, task-based fMRI provides the opportunity to record
behavioral measures during scanning, and thus, these behavioral
measures can be correlated with the changes in connectivity. This
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FIGURE 4 | Comparison of fMRI effective connectivity differences

between simulated patients and normal subjects for a delayed

match-to-sample task for visual shape (Kim and Horwitz, 2009). The
top part of the figure shows the nodes and connections of the neural net
model used (Tagamets and Horwitz, 1998) (it is the same model shown in
Figure 1, which should be consulted for abbreviations). Simulated patients’
data were obtained by reducing the connection weight between the IT and
FS modules an average of 20% of its normal value. The lower part of the
figures shows the results of applying an effective connectivity analysis
(structural equation modeling) to the normal and patient networks.
Significant reductions in patients relative to controls are in violet, significant
increases are in green. Modified from Kim and Horwitz (2009).

is a powerful method for determining which connectivity changes
are aiding the person being scanned and which are reducing their
performance. Similar behavioral correlations have been used with
resting state connectivity changes, but the behavioral measure is
on a subject by subject basis, not on a trial by trial basis. For exam-
ple, Venkataraman et al. (2012) found two co-existing patterns
of connectivity in their schizophrenia patients: increased frontal-
parietal connectivity that was associated with severity of positive
symptoms, and decreased parietal-temporal connectivity that was
related to negative symptoms.

As an illustration of the task vs. resting issue, consider AD.
We know that the pathology of AD can be found in individuals’
brains decades before clinical symptoms appear (Reiman et al.,
1996; Hampel et al., 2011), and young adults at risk for develop-
ing late-onset AD show default mode network (DMN) alterations
(Filippini et al., 2009). Given this situation, if an appropriate ther-
apy were available, when should it be given? One might want
to start it before a patient demonstrates cognitive deficiency (in
which case there may be a significant reduction in viable brain
tissue), but perhaps not years or decades before, given the likely
costs of the treatment and the potential side-effects of the ther-
apy. In analogy with cardiovascular disease, a “cognitive stress
test” during fMRI scanning might provide a way to assess neural
integrity. However, one study (Fleisher et al., 2009) has been used
to argue against task-based fMRI studies and in favor of rsfMRI
in AD. Fleisher et al. showed that rsfMRI of the DMN had a larger
effect size than did an fMRI encoding task for distinguishing AD
high-risk from low-risk groups. However, it should be noted that
although functional connectivity was utilized for the rsfMRI por-
tion of the study, the researchers only used differences in regional

BOLD deactivation in DMN nodes during the encoding part of
the investigation. As Horwitz and Rowe (2011) have suggested, a
task-base network analysis, targeting a network that shows early
impairment in AD (such as memory), might be more sensitive
compared to examining individual region of interests, since net-
work analysis is intrinsically multivariate. One would determine if
the at-risk subject’s data fit the network defined by healthy control
subjects performing the same task. If the fit is bad, that would sug-
gest that therapy might be warranted. This scheme is based on the
notion that neuroplasticity enables behavioral performance to be
maintained during the many years during which brain pathology
builds up.

As we have just seen, progress has been slow in develop-
ing fMRI based biomarkers. Among the reasons for this are the
difficulty in performing neuroimaging studies on patients, and
importantly, not being able to actually “know the answer.” Of the
patients at risk for a given disorder, how many will actually get
the disorder, and when will they get it? Patient variability is often
huge, and different individuals could have different amounts of
neuroplasticity over the years during which a disorder may have
gone undiagnosed. How do we know that a group difference in
some fMRI metric will be large enough in individuals to be able
to distinguish a single subject with a high sensitivity and speci-
ficity? Note that the problem is not just scanner signal-to-noise,
as was mentioned earlier. Rather, the additional problem is that
there is large subject-to-subject variability in humans, even in
healthy subjects—structural brain differences (e.g., see Amunts
and Zilles, 2001), and functional differences (e.g., see Kanwisher
and Yovel, 2006).

Computational neural modeling may provide a method to cir-
cumvent some of these issues in attempting to determine if an
fMRI based metric can serve as a biomarker for detecting a brain
abnormality. As an illustration, how weak can a brain structural
disconnection be so that it is undetectable using rsfMRI-FC anal-
ysis? In our review of the simulation studies of Deco, Cabral and
their group and Alstott, Honey, Sporns and their colleagues, the
extent of the structural damage was quite large in many cases. For
example, Alstott et al. (2009) found in one of their analyses many
significant differences in functional connectivity in 5 subjects
when they deleted 50 ROIs from an anatomical area (see Figure 3
for two examples). Using the same set of models (structural, neu-
ral, and hemodynamic) as Alstott and collaborators, we targeted
two anatomical areas for modification: the left precuneus (LPr)
and the left medial frontal cortex (LMPF). All modifications were
performed on the 25 ROIs closest in Euclidean distance to the cen-
ter of the targeted areas. Specifically, the structural connectivities
in a targeted area were scaled by 0.5 from the normal values. We
examined focal, unidirectional, and bidirectional modifications.
In focal alterations, connections among the 25 ROIs in a single
anatomical area were scaled by 0.5, but connections between these
targeted ROIs and all other ROIs in the cortex were left unmodi-
fied. Bidirectional and unidirectional structural alterations were
only applied to the two separate anatomical regions—LPr and
LMPF. In bidirectional modifications, the connections from one
set of 25 target ROIs to and from the second set of 25 target ROIs
were scaled by the specified amount of 0.5. In unidirectional mod-
ifications, the connections from one set of ROIs in LMPF to the
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LPr set of ROIs were scaled, but the connections from the latter
set of ROIs to the former set were left intact.

Simulations were run for 10 “normals” subjects and 10
“patients.” Variation in the subjects was introduced by adding
or subtracting to all the structural connection weights random
numbers from a Gaussian distribution with a standard devia-
tion of 0.01. Pearson correlations between the time series of the
simulated BOLD activity from each anatomical area for each
“normal” subject and for each “patient” were evaluated. Given
the small number of “subjects” (10 in each group), and the rela-
tively weak reduction of structural connectivity between just two
brain areas, it is not surprising that there were few robust group
differences. Indeed, no significant group differences in rsfMRI-
FC between the two targeted areas LPr and LMPF were found in
any of the cases (focal, unidirectional, bidirectional). These sim-
ulation results thus indicate the relative insensitivity of simple
rsfMRI-FC to detecting the presence of structural modifications
that are weak and of restricted extent, even if one knows where to
look. That is, not much change occurs when one input is reduced
to areas that have inputs from multiple other areas. Simulations
could be used to see if the situation is different when the modi-
fication affects a connection between nodes engaged in a task, as
was the case for the Kim-Horwitz simulation (Kim and Horwitz,
2009) that was discussed earlier, but that would require adjust-
ing the structural and neural models so that a specific task can
be performed. Moreover, newer experimental and data analysis
procedure could arise to improve the situation. For instance, high
spatial resolution MRI may be able to find mild abnormalities in
either structural or functional connectivity in the future.

CONCLUSIONS
In this paper we reviewed some recent efforts at using neural
modeling to help understand and interpret human neuroimag-
ing data comparing patients with brain disorders to healthy
subjects. Experimental neuroimaging data provide macroscopic
measures of brain structure and function. In the case of fMRI,
these data are indirect measures of function; the signals are those
of the metabolic/hemodynamic consequences of neural activity.
Among the factors confounding the interpretation of such data in
patients are the sheer complexity of neural anatomy and connec-
tivity and the immense plasticity of the brain. Large-scale neural
modeling provides a way to study such a system and investigate
how the size and extent of various modifications translate into
alterations in neuroimaging signals. Furthermore, because we
know what alterations actually took place in the modeled brains,
potential interpretations of actual data can be checked against the
simulated data.

Our review of several studies that explored the fMRI conse-
quences of alterations in anatomical connectivity lead to several
conclusions. First, interpretation of changes in either functional
or effective connectivity is not as straightforward as one might
first suppose. Although a weakening of the structural connec-
tion strength between brain areas can appear as a decreased
functional/effective connection, decreases and increases in func-
tional/effective connectivity between areas not directly affected by
the brain alteration are also found. Essentially, one must keep in
mind that in a functional network, one cannot just change one
link; functional networks are such that changes in one part of
the network result in changes everywhere else (although not all
these changes will be large enough to be statistically significant).
Moreover, some of the changes in parts of a network unaffected
by the structural alterations may result in a strengthening of the
functional/effective connectivity, but these changes are not nec-
essarily the result of neuroplasticity. Task-based fMRI may be a
better choice than rsfMRI to deal with this issue, since it is often
possible in task-based fMRI to acquire performance data during
the scanning. Such data can then be correlated with the mea-
sured functional/effective connectivity, and the results of such an
analysis may strengthen a claim for neuroplasticity mediating the
altered connection. The net conclusion from all this is that the
reverse inference—that a change in functional/effective connec-
tivity in a patient means that there is a corresponding change in
the underlying structural connectivity—is unwarranted.

We also discussed utilizing large-scale neural modeling as a
tool for helping to develop fMRI resting state and/or task-based
biomarkers for brain disorders. This is an area that is just begin-
ning, but it does have potential advantages, especially in terms
of cost and time. It is cheaper and less time consuming to run a
large number of simulations than it is to find subjects and run
fMRI experiments. But little work has been done in this area, so it
will be a while before one can assess whether or not modeling can
provide significant help in deciding which potential biomarkers
are viable.
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APPENDIX

Abbreviations:

AD Alzheimer’s Disease
BOLD Blood oxygenation level dependent
DMN Default mode network
DSI Diffusion spectrum imaging
DTI Diffusion tensor imaging
fMRI Functional magnetic resonance imaging
LPr Left precuneus area
LMPF Left medial prefrontal area
PET Positron emission tomography
PFC Prefrontal cortex
rCBF Regional cerebral blood flow
ROI Region of interest
rsfMRI Resting state fMRI
rsfMRI-FC Resting state fMRI functional connectivity
SEM Structural equation modeling
TR Repetition time
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