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Reading comprehension depends on neural processes supporting the access,
understanding, and storage of words over time. Examinations of the neural activity
correlated with reading have contributed to our understanding of reading comprehension,
especially for the comprehension of sentences and short passages. However, the
neural activity associated with comprehending an extended text is not well-understood.
Here we describe a current-source-density (CSD) index that predicts individual
differences in the comprehension of an extended text. The index is the difference
in CSD-transformed event-related potentials (ERPs) to a target word between two
conditions: a comprehension condition with words from a story presented in their
original order, and a scrambled condition with the same words presented in a
randomized order. In both conditions participants responded to the target word, and
in the comprehension condition they also tried to follow the story in preparation for a
comprehension test. We reasoned that the spatiotemporal pattern of difference-CSDs
would reflect comprehension-related processes beyond word-level processing. We used
a pattern-classification method to identify the component of the difference-CSDs that
accurately (88%) discriminated good from poor comprehenders. The critical CSD index
was focused at a frontal-midline scalp site, occurred 400–500 ms after target-word
onset, and was strongly correlated with comprehension performance. Behavioral data
indicated that group differences in effort or motor preparation could not explain these
results. Further, our CSD index appears to be distinct from the well-known P300 and
N400 components, and CSD transformation seems to be crucial for distinguishing
good from poor comprehenders using our experimental paradigm. Once our CSD index
is fully characterized, this neural signature of individual differences in extended-text
comprehension may aid the diagnosis and remediation of reading comprehension deficits.
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INTRODUCTION
The most enduring model of reading is the “simple model”
first proposed by Gough and Tunmer (1986). The simple model
holds that effective reading requires two fundamental steps: word
decoding and language comprehension (Hoover and Gough,
1990; King and Kutas, 1995; Rapp et al., 2007; Ferstl et al., 2008).
Word decoding describes the process of making correct pairings
between visual word forms and their associated sounds. Language
comprehension describes the process of accessing the meanings of
spoken or written words, integrating these words into meaningful
discourses, and maintaining the apprehended meaning over time.

Much effort has been made to understand the neural mech-
anisms of language comprehension. Language networks in the
human brain have been identified by monitoring time-averaged
metabolic brain activity using neuroimaging methods such as
functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) (see Ferstl et al., 2008 for a meta-
analysis). Investigations of the neural underpinnings of read-
ing have also relied on the excellent temporal resolution of

methods such as electroencephalography (EEG) because word
decoding and language comprehension occur in temporal stages
that overlap one another during reading. In particular, experi-
ments that use a stimulus-locked averaging approach to produce
event-related potentials (ERPs) have revealed separable compo-
nents related to reading, some of which are more closely related
to decoding, others to comprehension. One of the most well-
established components related to decoding is the N170, a com-
ponent that is usually negative-going (depending on the reference
electrode), peaking at about 170 ms after word onset (for review,
see Maurer and McCandliss, 2008). Word decoding efficiency
is correlated with the difference between left-lateralized N170
responses to words vs. non-words (Maurer et al., 2007; Coch
and Mitra, 2010). Perhaps the best-established ERP component
related to language comprehension is the N400, which is negative-
going and peaks at about 400 ms after word onset over the
central-parietal scalp region (Lau et al., 2008). The amplitude of
the N400 is less negative when a word is predictable from its global
or local context (as compared to the more negative response for
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unpredictable words), suggesting that the N400 reflects the access
and/or integration of word meaning (Kutas and Hillyard, 1980,
1984; Kutas and Federmeier, 2000).

This progress in using ERPs to characterize the neural activ-
ity related to reading comprehension has been made despite a
notable limitation. Most ERP (also fMRI and PET) studies of
reading comprehension have used a few (1–5) sentences or sin-
gle paragraphs as reading materials rather than extended texts
(Kutas and Hillyard, 1980; St. George et al., 1994; King and Kutas,
1995; VanPetten et al., 1997; Kutas and Federmeier, 2000; Ferstl
et al., 2008; Lau et al., 2008). Meanwhile, the comprehension
of an extended text is likely to engage processes that are not
substantially engaged while reading a few sentences or a short
paragraph. For example, the comprehension of an extended text
is likely to place heavy demands on verbal working memory
(Daneman and Carpenter, 1980; Daneman and Merikle, 1996;
Swanson and Alexander, 1997; Cain et al., 2004; Swanson et al.,
2006; Cutting et al., 2009; Chein and Morrison, 2010; Dahlin,
2011), to require processes that resolve the build-up of proactive
interference (Lustig et al., 2001; Bunting, 2006), and to include
higher-order processes for grasping ideas that span many para-
graphs. Although syntactic and semantic manipulations within
a sentence have been used to understand the neural processes
involved in reading at the level of sentences (e.g., King and Kutas,
1995), it has not been clear how to examine neural activity associ-
ated with the comprehension of extended texts. For example, it is
unclear how the content of an extended text should be manip-
ulated so that this manipulation would distinguish the neural
activity specific to comprehension from the neural activity related
to word-level processing.

In the current study, we attempted to overcome this limitation
by using an extended text (over 1100 words), a word-detection
task, a comprehension test given at the end of reading the
entire text, an individual-differences approach, and a pattern-
classification algorithm, all combined to allow us to identify
the spatiotemporal pattern of ERPs specific to extended-text
comprehension. Specifically, to isolate the neural activity tied to

language comprehension (rather than word decoding and access),
we compared electrophysiological responses to the same target
word (“and”) between two conditions (Figure 1). In one con-
dition, which we call the scrambled condition, we presented the
words of a story visually, one word at a time in a scrambled order,
and we asked participants to press a button whenever the target
word appeared (Figure 1A). In the other condition, which we call
the comprehension condition, we presented the same words but
in the original order in which they appear in the story, and we
asked participants to perform the same target-word detection task
(Figure 1B). In the comprehension condition we also asked par-
ticipants to simultaneously try to follow the story in preparation
for a comprehension test. We selected “and” as the target word
because it is a function word joining two words or phrases, so
that ERPs in response to it are likely to reflect the integration and
storage processes required for comprehension in the context of a
story, but not in the context of a random sequence of words. Also,
the word “and” naturally appears relatively frequently in almost
any extended English text to provide an appropriate signal-to-
noise ratio for computing reliable ERPs; at the same time, because
“and” is a highly familiar word and its occurrence is rare (2.4% in
our extended text) the target-detection task caused minimal inter-
ference with reading. Thus, to extract comprehension-related
processes beyond word-level processing, we used the difference
waves computed as the difference in ERPs to the target word
between the comprehension and scrambled conditions.

To further distinguish the processes specifically tied to the
comprehension of extended text beyond the comprehension of
individual sentences and paragraphs, we determined the spa-
tiotemporal pattern of the ERP difference waves (between the
comprehension and scrambled conditions) that predicted indi-
vidual differences in comprehension based on an evaluation of
sustained understanding throughout the entire text. We hypoth-
esized that readers with good reading comprehension should
engage comprehension-specific neural processes more effectively
than readers with poor reading comprehension, so that a specific
spatiotemporal pattern of the difference waves would distinguish

FIGURE 1 | Scrambled and comprehension conditions. In the
scrambled condition (A), a story was presented in a scrambled
order one word every 500 ms, and participants were asked to
perform the target-word detection task: pressing a mouse button
every time they saw the word “and.” In the comprehension

condition (B), the same story was presented in its original order
one word every 500 ms, and participants were asked to perform
the target-word detection task and also to follow the story in
preparation for a comprehension test. Condition order was
counterbalanced across participants.
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good vs. poor extended-text comprehenders. We attempted to
identify this comprehension-specific pattern of electrophysiolog-
ical activity in a data-driven manner by letting an automated
non-linear pattern-classification algorithm determine the criti-
cal scalp sites and time points that most accurately predicted
individual differences in comprehension.

In order to characterize the critical electrophysiological activ-
ity with high spatial resolution, instead of examining raw ERPs (as
electrical potentials) we examined their second spatial derivative
[known as the current-source-density (CSD) transform, or CSD;
e.g., Hjorth, 1980; Kayser and Tenke, 2006; Tenke and Kayser,
2012]. CSD-transformed ERPs indicate the spatial distribution
of charge density (implying current sources and sinks), and the
transformation increases spatial resolution by reducing the influ-
ences from volume conduction (see Methods). Our results suggest
that CSD transformation (and potentially other spatial-resolution
enhancing transformations) may be crucial for characterizing
electrophysiological activity that distinguishes good from poor
comprehenders.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-eight right-handed college and graduate students (18–29
years; 17 female) gave their written informed consent to par-
ticipate in the study following the procedures approved by
Northwestern University’s Institutional Review Board. All had
normal or corrected-to-normal vision and normal hearing with
no history of neurological disorders. We required normal hearing
because individuals who have had lifelong hearing disorders may
process words differently than do typically hearing individuals
(e.g., Kutas et al., 1987).

SCRAMBLED AND COMPREHENSION CONDITIONS
The text consisted of the first 1182 words of the first chap-
ter of Doctor Pascal by Emile Zola (Lexile score 1170; see
Appendix). No participant had previously read this text. The
words were presented one at a time with accompanying punctu-
ation marks on a monitor for 300 ms, each with an inter-word
interval of 200 ms. Note that we used a relatively fast presen-
tation of the words to approach the average speed of prose
reading for college students (one word per ∼200–250 ms; Carver,
1992) while leaving time after word presentation to record EEG
responses to each word. Visual angles ranged from 0.49 to
0.73◦ (vertical; range due to variable letter height) and 0.61–
3.64◦ (horizontal; range due to word length). The words were
white (76.8 cd/m2) and presented centrally on a black back-
ground (4.9 cd/m2). Participants performed a scrambled and a
comprehension condition, each of which lasted about 10 min.
The order of the conditions was counter-balanced across par-
ticipants. We used Presentation software (version 11.0, Build
04.25.07, www.neurobs.com) running on a Dell Optiplex Gx620
(Intel processor running Windows XP Professional 2002) to
present stimuli (on a 21′′ color monitor with 1024 by 768 res-
olution at a refresh rate of 60 Hz) and to record behavioral
responses.

In the scrambled condition, participants viewed the words
from the story in a randomized order and were asked to press a

mouse button with their right hand as soon as they saw the word
“and” in the text. This target word appeared 28 times. Each par-
ticipant received a different randomized order, making it unlikely
that any specific feature of a randomized order contributed to
our results. Nonetheless, we took measures to ensure that rare
accidental repetitions of the target word in the scrambled con-
dition did not contribute to our results (see Electrophysiological
Recordings).

In the comprehension condition, the words were presented in
the order of the original text and participants were asked to per-
form the target-word detection task while also comprehending
the story. Immediately after the comprehension condition, par-
ticipants took a multiple-choice comprehension test consisting of
four questions, each with four possible answers (See Appendix).
Participants were told that any number of the four answers could
be correct for each question, that they should circle all correct
answers, and that for each question at least one answer was cor-
rect. Questions were answerable by reading and comprehending
the text; no general knowledge questions were included (Keenan
and Betjemann, 2006; Keenan et al., 2008). Each question was
scored as correct if and only if all of the correct answers and
none of the incorrect answers were selected out of the four
choices. Thus, the maximum possible comprehension score was
4, the minimum possible comprehension score was 0, and the
score expected by chance was less than 1 (expectation value =
0.27 questions correct by chance). Across our participants, the
mean number of correctly answered questions was 2.6 and the
median was 3. Poor comprehenders were defined as individu-
als who received scores of 0–2 on the test (N = 13), and good
comprehenders were defined as individuals who received scores
of 3–4 (N = 15). It is important to note that based on our scoring
method, the probability of getting two or more questions cor-
rect by chance was 0.024 (1–4C0[1–1/15]4–4C1[1/15][1–1/15]3;
each denominator is 15 rather than 16 because participants were
told that at least one of the four choices was correct for each
question; i.e., not selecting any choice was not an option) and
the probability of getting three or more questions correct by
chance was 0.0011 (4C3[1/15]3[1–1/15]+4C4[1/15]4). In other
words, it was more than 20 times as difficult (probabilistically)
to score 3 or higher as to score 2 or higher. Thus, our division
of good and poor comprehenders reflected a large difference in
comprehension performance.

Classical music (Beethoven’s Moonlight Sonata) was played
quietly in the background in both conditions, a practice that is
often used during EEG recording to help participants relax and
to reduce muscle activity artifacts (Luck, 2005). Because the same
background music was played in both conditions, it is unlikely
that the music would have confounded comparisons between
conditions.

ELECTROPHYSIOLOGICAL RECORDINGS
We recorded EEG with a 64 + 8 active-electrode Biosemi system
at a 1024-Hz sampling rate, and data were re-referenced offline to
an external electrode at the nose using standard recording proce-
dures, including rejection of blinks. Electrooculographic (EOG)
activity was monitored using three facial electrodes, one placed
lateral to each eye and one placed beneath the left eye. EEG and
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EOG data were band-pass filtered from 0.1 to 100 Hz. Each epoch
was baselined by subtracting the mean of the first 50 ms of activ-
ity after the onset of the target word “and” from each time point
in the 500-ms epoch. We used a post- rather than pre-stimulus-
onset baseline because the relatively rapid word presentation rate
that we used to approximate normal reading speed meant that
the response to the previous word was not complete before the
presentation of the next word. For similar reasons, post-stimulus-
onset baselines have been used in other ERP studies of language
processing (e.g., Friederici et al., 1999; Phillips et al., 2005).
Note that although post-stimulus-onset baselines could poten-
tially change the amplitudes of the resulting ERP components if
the baseline is taken during a positive or negative peak, inspec-
tion of raw ERPs (data prior to baseline correction, not shown)
suggested that use of the 0–50 ms post-stimulus-onset baseline
did not substantially alter any components, as there was minimal
activity during this time period.

For each condition (comprehension condition and scrambled
condition) we averaged ERPs to the target word “and” for the tri-
als on which it was correctly detected. To reduce potential effects
of repetition priming (though such effects should be negligible
with very rare targets), we excluded a target trial if any of the four
previous trials was also a target trial. Across participants, 3.7% of
the target trials in the comprehension condition and 4% of the
target trials in the scrambled condition were removed based on
these constraints.

CSD TRANSFORMATION OF ERPs
For each participant in each condition, we averaged the remaining
artifact-free EEG response waveforms across trials to obtain ERPs,
and these ERPs were transformed into CSDs using CSDtoolbox
Version 1.1 (Kayser, 2009). We used a CSD transformation for
two reasons. First, it provides a reference-independent measure
of radial current flow at the scalp (Kayser and Tenke, 2006),
making it straightforward to compare our results to future exper-
iments that could potentially use different reference locations.
Second, by performing a Laplacian operation (taking the second
spatial derivative), CSD transformation minimizes the influence
of volume conduction on the recorded signal, thereby sharp-
ening spatial resolution (Hjorth, 1980; Kayser and Tenke, 2006;
Tenke and Kayser, 2012). For comparison to traditional ERPs, we
also present data from nose-referenced ERPs that are not CSD
transformed in the Appendix. Potential relationships between
our CSD-based electrophysiological index of extended-text com-
prehension and two traditional ERP components, the P300 and
N400, are also discussed in the Appendix.

PATTERN CLASSIFICATION
We used the Matlab 2011b “treebagger” implementation of
the non-linear random-forest algorithm to classify good vs.
poor reading comprehenders based on their difference-CSDs
between the scrambled and comprehension conditions. To obtain
the difference-CSDs, we computed the time-point-by-time-
point difference between the CSD-transformed ERPs obtained
in the scrambled and comprehension conditions (scrambled
minus comprehension) for each of the 64 scalp sites and for
each participant. We binned these difference-CSDs into eight

100-ms averages overlapping by 50 ms (e.g., 50–150, 100–200,
150–200 ms, etc.). Note that some temporal binning is always
necessary; even classification based on “non-binned” time points
assumes a bin size equal to the sampling rate. As for any analysis
relying on binned data, if the bin is too large, important fea-
tures may be missed and aliasing can occur. Conversely, if the
bin is too small, it is difficult to isolate neural processes that
operate at a longer time scale or that are less time-locked to a
stimulus. We selected a bin size of 100 ms because we made the
assumptions that ERP components attributed to high-level com-
prehension processes are not as time-locked to stimulus onset
as sensory components are, and therefore may be apparent only
when using a relatively large bin size. It has also been shown
that the sampling rate of visual attention is about 10–15 Hz (e.g.,
Simpson et al., 2005; VanRullen et al., 2005; Mathewson et al.,
2011), commensurate with our 100-ms bin size.

We applied the pattern-classification algorithm (henceforth
called the classifier) separately for each time bin to determine how
well participants could be classified into good vs. poor reading
comprehenders based on the electrophysiological information in
each time bin. We ran the classifier in two stages to identify the
scalp site(s) most relevant to reading comprehension. In the first
stage, we fed difference-CSDs (for the primary analysis, but also
fed other features of the ERPs in additional analyses; see below)
from all 64 scalp sites to the classifier to allow it to develop an
ensemble of 300 decision trees, each of which accurately classified
a randomly selected 65% of the participants into good vs. poor
reading comprehenders based on different subsets of the 64 scalp
sites (for details on the classification algorithm, see for instance
(Breiman, 2001; Liaw and Wiener, 2002; Goldstein et al., 2010).
This process yielded the “weight” of each of the 64 scalp sites,
indicating how substantially each site contributed to classifica-
tion. In the second stage, we re-ran the classifier, but using data
from only the 10 scalp sites with the highest weights. We used
this “titration” process to look for the critical electrophysiological
information that is localized within a relatively small number of
scalp sites. We again allowed the classifier to develop an ensemble
of 300 decision trees each of which classified a randomly selected
65% of the participants into good and poor reading comprehen-
ders based on different subsets of the 10 scalp sites. Success of
this process indicated that the 10 sites provided sufficient elec-
trophysiological information for classification. However, it is not
surprising for the classifier to develop an optimum ensemble of
decision trees for a given set of data. If the classifier captures a
reliable electrophysiological pattern that generally discriminates
good from poor reading comprehenders, it should be able to
classify the remaining 35% of participants whose data were not
included in the development of each of the decision trees.

Note that the classification accuracy on “untrained” partici-
pants is slightly different each time the classifier is run through
these two stages. This variability stems from factors that are ran-
domized each time the classifier is run, such as which subsets of
scalp sites and participants are sampled by different decision trees.
In order to obtain a reliable measure of classification accuracy and
weights for the top-10 scalp sites, we ran the classifier 1000 times
and averaged the results to find the overall classification accuracy
and the top-10 scalp sites that were consistently highly weighted.
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To evaluate the statistical significance of classification, we ran
the classifier 1000 additional times with the class labels (good
vs. poor reading comprehenders) randomly scrambled each time.
This yielded an estimate of the baseline accuracy of classifica-
tion based on aspects of the electrophysiological data unrelated to
reading comprehension performance, utilizing the same number
of degrees of freedom of the original classification. Classification
would be deemed statistically significant when the distribution of
1000 accuracy values for the correct-label classification was sub-
stantially shifted to higher accuracy relative to the distribution
for the scrambled-label classification. We quantified this shift in
three ways: (1) independent-groups t-test with individual accu-
racy values as the random effect, (2) effect size (the mean accuracy
difference divided by the pooled standard deviation), and (3)
proportions of hits and false positives for deciding whether a
given accuracy derives from the correct-label or scrambled-label
distribution based on an unbiased criterion.

As described earlier, we fed to the classifier the difference-
CSDs at each 100-ms time bin baselined to the activity during
the first 50 ms after target onset. CSD transformation was used
to provide some advantages over raw ERPs in terms of reference
independence and greater spatial resolution, the difference-CSDs
were used to isolate comprehension specific processes over and
above word-level processes, and baselining to the post-stimulus-
onset activity was reasonable in the context of relatively rapid
word presentation and prior ERP research in language processing.
Nevertheless, to determine whether these particular data pre-
processing choices were important, in several control runs of the
classifier we fed the classifier the electrophysiological informa-
tion in additional formats. To determine the relevance of CSD
transformation, we fed the classifier the difference-ERPs without
CSD transformation. To determine whether the use of difference
waves was critical for isolating comprehension-specific processes,
we attempted to classify good vs. poor reading comprehenders
using CSD-transformed ERPs from either the scrambled condi-
tion or the comprehension condition. To determine whether the
use of the ERPs to the target word was important, we attempted
to classify good vs. poor comprehenders using difference-CSDs
to non-target words. Finally, to determine the influence of the
method of baselining on the extraction of electrophysiological

signals relevant to comprehension, we fed the classifier CSD-
transformed ERPs baselined to the entire epoch (including the
100 ms pre-stimulus period) as well as non-baselined data, while
also including three additional time bins: −100 to 0, −50 to 50,
and 0 to 100 ms.

It is possible that the entire ERP waveform might produce
superior classification of good vs. poor comprehenders as com-
pared to the values of the waveform at each time bin. We
examined this possibility by entering difference waves at the
eight 100-ms time bins into a single classifier to take into
account the temporal profile of the waveform. This procedure
did not improve classification performance for either the CSD-
transformed or non-CSD-transformed data. We will thus report
only the results of the time-bin-by-time-bin classification analysis.

RESULTS
BEHAVIORAL RESULTS
Patterns of target-word detection across conditions (Figure 2)
verified that our good and poor reading comprehenders made
equivalent effort at comprehending the extended text. If this
were not the case, our electrophysiological analysis might provide
a neural correlate of the amount of effort made to compre-
hend rather than individual differences in language processing
associated with the ability to comprehend an extended text.
Participants in both the good and poor comprehension groups
slowed their responses [F(1, 26) = 27.898, p < 10−4] and made
more errors [F(1, 26) = 9.373, p < 0.006] on target-word detec-
tion in the comprehension condition than in the scrambled
condition. Importantly, there was neither a condition-by-group
interaction nor a main effect of group for either response times
[F(1, 26) = 0.089, n.s. for interaction and F(1, 26) = 0.168, n.s. for
group effect] or error rates [F(1, 26) = 2.691, n.s. for interaction
and F(1, 26) = 0.476, n.s. for group effect]. The lack of an inter-
action for both response times and error rates demonstrates that
target-word detection performance was similarly degraded in the
comprehension condition for both the good and poor compre-
henders, suggesting that participants in both groups made an
equivalent effort to perform the additional task of comprehend-
ing the story in the comprehension condition. Further, the lack of
an interaction and the main effect for response times (i.e., similar

FIGURE 2 | Performance on the target-word detection task in the

scrambled and comprehension conditions. Response times (A) and
error rates (B) on the target-word detection task in the scrambled
condition (white bars) and the comprehension condition (gray bars)
for individuals with good (N = 15; left bars) and poor (N = 13; right

bars) reading comprehension. Note that target-detection performance
is degraded in the comprehension condition relative to the scrambled
condition for the poor comprehenders at least as much as for the
good comprehenders. Error bars represent ±1 SEM (standard error
of the mean). Data discussed in Mossbridge et al. (2013).
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response times in both conditions for the two groups) rules out
the possibility that our electrophysiological analysis might reflect
differences in motor preparation times instead of comprehension
processes.

ELECTROPHYSIOLOGICAL RESULTS
We reasoned that neural activity specifically associated with
comprehension processes should be reflected in the difference
between CSD-transformed ERPs to the same target word in the
scrambledandcomprehensionconditions(differenceCSDs).CSD-
transformed ERPs averaged across participants (N = 28) showed
that the scrambled condition was marked by an increased current
source at multiple sites relative to the comprehension condi-
tion (Figures 3A,B; Figure A1 gives the corresponding figure for
non-CSD-transformed ERPs). When the mean CSD-transformed
ERPs are plotted separately for the good and poor comprehenders,
one can see that in the frontal sites for the good comprehen-
ders, the positive-going wave for the scrambled condition diverges
from the negative going wave for the comprehension condition
(Figure 3C), whereas the two waves are less differentiated for
the poor comprehenders (Figure 3E). This distinction between
the comprehension groups is pronounced at AFz (Figures 3D,F),
the site that was identified as critically informative in distinguishing
good from poor comprehenders by our classification algorithm
(see below). The divergence of the two waves appears to become
maximal during 400–500 ms. Strong evoked activity is also seen
in the posterior scalp sites, consistent with the fact that we used
visually presented words as stimuli, but the posterior activity
was not identified by our classification algorithm as informative
for distinguishing good from poor comprehenders (see below).

The topographic maps of CSD-transformed ERPs averaged
over 400–500 ms confirm these observations (Figure 4); they
show general posterior activity that is relatively undifferentiated
with respect to condition (scrambled or comprehension) or com-
prehension performance (good or poor) (Figure A2 gives the cor-
responding figure for non-CSD-transformed ERPs). In contrast,
the topographic map for the good comprehenders shows frontal
activity indicating a current source (positive) in the scrambled
condition turning into a current sink (negative) in the com-
prehension condition (Figure 4A), but the topographic map for
the poor comprehenders reveals comparatively undifferentiated
activity (Figure 4B). Although these CSD-transformed wave-
forms and topographic maps (Figures 3, 4) provide information
about the time interval and scalp sites that may distinguish good
from poor comprehenders, we used a pattern-classification algo-
rithm to objectively determine the critical time interval and scalp
sites for predicting individual differences in reading comprehen-
sion from these electrophysiological data.

Our classification algorithm identified the difference-CSDs to
the target word from the 400–500 ms portion to be the most
informative in predicting individual differences in reading com-
prehension, correctly classifying the participants as good or poor
comprehenders with 88.3% accuracy [Figure 5A; t(1998) = 85.2,
p < 10−30, d = 4.35, proportions of hits and false-positives are
1.000 and 0.028, respectively; see Methods for explanation of
these statistics]. Importantly, equivalent classification analyses
using non-CSD transformed difference-ERPs, CSD-transformed

ERPs from either the scrambled or comprehension condition
alone (without taking the difference), difference-CSDs to the
non-target words, and difference-CSDs with alternative baselin-
ing methods with the inclusion of pre-stimulus data, all failed
to produce significant classification for any time period (see
Methods). This suggests that CSD transformation, subtracting
out the activity associated with word-level processing, and eval-
uating ERP signals to the target word relative to the initial
50 ms post-stimulus-onset period all contributed to the extrac-
tion of electrophysiological signals that distinguish good from
poor reading comprehenders.

Interestingly, the classification algorithm virtually exclusively
identified the difference-CSD at AFz (Figure 5B) as the critical
activity related to reading comprehension. This result indicates
a remarkable topographic specificity for the neural source of
individual differences in extended-text comprehension, as our
non-linear pattern classification algorithm could have identified
any combination of the 64 scalp sites as being informative. To ver-
ify that the CSD index that the classifier identified based on binary
classification of good vs. poor comprehenders (i.e., the difference-
CSD from AFz averaged during 400–500 ms from target onset)
indeed predicts individual differences, we computed the corre-
lation between this CSD index and the reading comprehension
test score. The correlation was robust, r = 0.803, t(23) = 6.46,
p < 10−5 [after removing 3 participants falling outside the 95%
confidence ellipse, and r = 0.538, t(26) = 3.25, p < 0.004 with
the outliers included] (Figure 5C).

To gain insights into how electrophysiological signatures asso-
ciated with reading comprehension differ between good and
poor comprehenders, we unpacked the CSD index based on ERP
difference waves to examine how the critical CSD-transformed
ERPs (from AFz at 400–500 ms) for the scrambled and com-
prehension conditions differed between good and poor com-
prehenders (Figure 6). For good comprehenders, the critical
CSD-transformed ERPs differed dramatically between condi-
tions, reflecting a current source in the scrambled condition and a
current sink in the comprehension condition, t(14) = 6.422, p <

10−4. In contrast, for the poor comprehenders the critical CSD-
transformed ERPs did not differ between conditions, reflecting
a current source in both conditions, t(12) = 0.862, n.s. This pat-
tern of results was confirmed by a significant condition-by-group
interaction, F(1, 26) = 16.471, p < 0.0005. Thus, superior ability
in extended-text comprehension may be associated with under-
lying neural processes that flexibly turn a frontal-midline current
source into a current sink when words need to be processed for
comprehension as opposed to simple identification.

POTENTIAL CONFOUND OF EYE MOVEMENTS
It is possible that individual differences in the stability of eye
fixation might have contributed to the individual differences in
comprehension performance if a systematic difference in eye
movements contaminated our EEG signals (e.g., Dimigen et al.,
2009). To verify that fixation stability did not systematically differ
between our good and poor comprehenders, for each presen-
tation of the target word for each participant, we determined
the number of saccades during the corresponding 500-ms epoch
based on the EOG activity. In the comprehension condition, the

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 655 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Mossbridge et al. Predicting extended-text comprehension from neural activity

FIGURE 3 | Mean CSD-transformed ERP waveforms in the scrambled

and comprehension conditions. (A) CSD-transformed ERP waveforms
(in µV/cm2) at each of 64 scalp sites time-locked to the onset of the
target word (“and”) in the scrambled condition (blue) and the
comprehension condition (red) for all participants (N = 28). Current
sources are plotted as positive values, and current sinks as negative

values. (B) CSD-transformed ERP waveforms at scalp site AFz for all
participants. (C,D) CSD-transformed ERP waveforms for good
comprehenders (N = 15) at all scalp sites (C) and at AFz (D). (E,F)

CSD-transformed ERP waveforms for poor comprehenders (N = 13) at all
scalp sites (E) and at AFz (F). The corresponding waveforms without
CSD transformation are shown in Figure A1.
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FIGURE 4 | Topographic maps of mean CSD-transformed ERPs

during 400–500 ms post-target-word-onset in the scrambled and

comprehension conditions. (A) For good comprehenders. (B) For
poor comprehenders. Warm and cool colors indicate current sources
and sinks, respectively (see the color bar to the right of the

figure). Left column: scrambled condition. Middle column:
comprehension condition. Right column: difference map (scrambled
condition minus comprehension condition). The corresponding
topographic maps without CSD transformation are shown in
Figure A2.

average numbers of saccades (per epoch) were M = 0.11 with
SD = 0.12 (good comprehenders) vs. M = 0.12 with SD = 0.11
(poor comprehenders), and in the scrambled condition they were
M = 0.09 with SD = 0.11 (good comprehenders) vs. M = 0.13
with SD = 0.11 (poor comprehenders), with no significant main
effects or interaction (F’s < 1.342).

POTENTIAL CONFOUND OF CONDITION ORDER
Half of the participants performed the comprehension condi-
tion first, while the other half performed the scrambled condition
first. Those who performed the scrambled condition first had a
slight advantage when attempting to comprehend the story in the
comprehension condition [t(26) = 2.32, p < 0.04] likely because
they had seen all the words of the story previously. We verified
that the CSD index predicted reading comprehension over and
above this order effect in two ways. We computed the correlation
between the CSD index and comprehension score separately for
participants who received each order. Both correlations were pos-
itive and relatively large, r = 0.922 for participants who received
the scrambled condition first [t(12) = 8.28, p < 0.000003, with
no outliers beyond the 95% confidence ellipse], and r = 0.509
for participants who received the comprehension condition first
[t(9) = 1.78, p < 0.11, after removing outliers beyond the 95%
confidence ellipse]. It is interesting to note that the CSD index
was especially effective in predicting comprehension score (r >

0.90) when the comprehension condition was given after the
scrambled condition. Although additional research is necessary
to understand the source of this difference, a potential reason
why the correlation was reduced for the participants who were
given the comprehension condition first is that performing the
comprehension condition might have made them engage some
comprehension-related processes in the subsequent scrambled

condition because the words reminded them of the story. Any
engagement of comprehension-related processes in the scram-
bled condition would dilute the effectiveness of the CSD index
that isolates comprehension-related processes by taking the dif-
ference between the scrambled and comprehension conditions.
Importantly, we further verified that the CSD index predicted
reading comprehension over and above the order effect by enter-
ing both the CSD index and order in a multiple regression
model to predict comprehension score. As expected, the CSD
index made a significant contribution [t(26) = 3.59, p < 0.002]
separately from order [t(26) = 2.62, p < 0.02].

DISCUSSION
Electrophysiological signatures of word decoding and passage-
level comprehension have been identified (Kutas and Hillyard,
1980, 1984; King and Kutas, 1995; VanPetten et al., 1997; Kutas
and Federmeier, 2000; Maurer et al., 2007; Lau et al., 2008;
Maurer and McCandliss, 2008; Coch and Mitra, 2010). Here we
sought to identify a pattern of electrophysiological activity that
predicted individual differences in extended-text comprehension.
We compared ERPs to a function word “and” between a scram-
bled condition in which the words from a novel were presented
in a random order and a comprehension condition in which
the same words were presented in order and participants were
asked to comprehend the story; a comprehension test was given
at the end to assess the level of story comprehension. We rea-
soned that, whereas in the scrambled condition the ERP to “and”
would only reflect the decoding and semantic processing of the
word “and,” in the comprehension condition the ERP to “and”
would additionally reflect comprehension-related processes such
as reactivating the preceding concepts in anticipation of relat-
ing them to the upcoming concepts. We thus hypothesized that
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FIGURE 5 | Temporal and spatial profiles of difference-CSDs

(CSD-transformed ERPs in the scrambled condition minus those in the

comprehension condition) that predict individual differences in reading

comprehension performance. (A) Proportion of successful classification of
participants into good and poor comprehenders based on difference-CSDs
from eight overlapping 100-ms time bins. Solid green line shows the mean of
1000 classification results using the original data, and dotted gray line shows
the mean of 1000 control classification results using the same data but with
randomized labeling of good and poor comprehenders (see Methods). Error
bars represent ±1 SD (standard deviation). It is apparent that the

difference-CSDs during 400–500 ms following the onset of the target word
are crucial for distinguishing good from poor comprehenders. (B) Topographic
map showing the recording sites that were imporant for classifying good vs.
poor comprehenders (warmer colors indicate greater importance). AFz is
clearly the uniquely important scalp site. (C) Correlation between
comprehension test scores and difference-CSDs at AFz during 400–500 ms
following target word onset. The rectangles indicate the poor (left) and good
(right) reading comprehenders, the ellipse indicates the boundary of the 95%
confidence ellipse, and the line indicates the regression line without the
three outliers.

a spatiotemporal difference in ERPs between the two conditions
would predict an individual’s score on the comprehension test.
We chose to analyze CSD-transformed ERPs because they pro-
vide reference-independent estimates of current sources and sinks
with increased spatial sensitivity due to reduced influences from
volume conduction (Hjorth, 1980; Kayser and Tenke, 2006; Tenke
and Kayser, 2012).

Using a non-biased, data-driven pattern classification
approach, we determined the spatiotemporal profile of
difference-CSDs (the difference between CSD-transformed
ERPs from the scrambled and comprehension conditions) that
most reliably distinguished good from poor comprehenders.
The identified critical spatiotemporal profile was surprisingly
specific, focused at the frontal-midline scalp site, AFz, during
the 400–500 ms period following the target word onset. Analyses
of behavioral results suggested that this CSD index reflected
the functioning of comprehension-related processes rather
than reflecting amount of effort devoted to target detection,
decision processing, or response preparation. Additional analyses
showed that good comprehenders effectively turned the critical

frontal-midline current from a source to a sink when compre-
hension was required, whereas poor comprehenders did not.

What comprehension processing does our CSD index reflect?
Because single-word retrieval is necessary in both the scrambled
and comprehension conditions in order to perform the target-
word detection task, potential group differences in these processes
are unlikely to have had a major influence on the CSD index.
According to the simple model of reading (Gough and Tunmer,
1986), the other components of effective reading include integrat-
ing and maintaining word meanings over time. It is reasonable
to assume that both integration and working memory processes
were more strongly engaged in the comprehension condition than
in the scrambled condition.

The CSD index may reflect the effectiveness of integration
processes that generate expectations regarding upcoming words.
These expectations would differ between the predictable compre-
hension condition and the unpredictable scrambled condition.
To this point, we note that, although the CSD index base-
lined to the activity during the 50-ms post-stimulus-onset period
strongly predicted comprehension performance, neither the CSD
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FIGURE 6 | Characteristics of CSD-transformed ERPs that distinguish

good from poor reading comprehenders. Mean CSD-transformed ERPs
at scalp site AFz during the time period 400–500 ms after target word onset
in the scrambled (white bars) and comprehension (gray bars) conditions for
individuals with good (N = 15; left bars) and poor (N = 13; right bars)
reading comprehension. Note that good comprehenders turned the
frontal-midline current source into a current sink in the comprehension
condition, whereas poor comprehenders did not. Error bars represent ±1
SEM (standard error of the mean).

index baselined to the activity during the entire epoch nor the
non-baselined CSD index predicted comprehension performance
based on any time period including a 100-ms pre-stimulus
period. Thus, our results could suggest that effective reading
comprehension is associated with how expectations influence the
unfolding of electrophysiological activity from initial (0–50 ms)
to later (400–500 ms) processing of the target word.

Because working memory is necessary for semantic integration
across words, the CSD index might also reflect the effectiveness of
working memory processes. Various independent lines of research
are consistent with this idea. Working-memory capacity is cor-
related with individual differences in reading comprehension
(Daneman and Carpenter, 1980; Daneman and Merikle, 1996;
Cain et al., 2004), individuals with comprehension-selective read-
ing deficits have reduced working-memory capacity (Swanson
et al., 2006; Cutting et al., 2009), training on working-memory
tasks can improve reading comprehension (Chein and Morrison,
2010; Dahlin, 2011), and processing linguistic meaning at the level
of sentences demands working-memory resources (VanPetten
et al., 1997). Further, ERP components at frontal regions
obtained while participants read sentences that imposed dif-
ferent working-memory loads partially distinguished how well-
participants inferred the correct subject-verb relationship in each
sentence (King and Kutas, 1995). It is thus possible that our CSD
index might capture the electrophysiological signature of working
memory processes that are particularly relevant to extended-text
comprehension.

Note that the P300 and the N400 are two well-known ERP
components (derived from non-CSD-transformed ERPs) that are
present in the 300–700 ms time interval following visual stim-
uli, and that are influenced by expectation and working memory
load (for reviews, see Kutas and Federmeier, 2000; Polich, 2007;
Lau et al., 2008). The analyses of ERPs shown in the Appendix,

however, indicate that the N400 was not apparent in our data,
and while the P300 was apparent, it was neither associated with
the CSD index nor predictive of comprehension performance. It
is thus likely that our CSD index reflects integration and/or work-
ing memory processes that are different from, though potentially
related to, those probed by the P300 or the N400.

What makes our CSD index sensitive to individual differences
in extended-text comprehension? Our CSD index is based on the
ERPs to the target word, “and.” Interestingly, when we similarly
computed a CSD index but based on the ERPs to non-target
words, the index no longer predicted comprehension perfor-
mance. This suggests that either responding to a function word
(such as “and”), responding to any target word, responding to
a target word that is probabilistically rare in a text, or read-
ing the word “and” irrespective of behavioral response, engages
electrophysiological activity that is especially revealing of the
effectiveness of comprehension-related processes. For example, it
is possible that having participants respond to the target word
might have helped to differentiate more effective vs. less effective
comprehension processes by taxing the comprehension processes
with a concurrent word-detection task. If this were the case our
CSD index might provide a neural signature of interference-
resistant language processing. However, any interference would
have been minimal because the target word “and” was a highly
familiar function word, it occurred only 2.4% of the time, and
neither response times nor error rates to the target word sig-
nificantly differed between our good and poor comprehenders.
Future research needs to investigate these possibilities by manip-
ulating the linguistic category of target words and their frequency
(including having no target task).

It is important to point out that without CSD transformation,
a similarly computed ERP index does not predict comprehension
performance (see Appendix). Thus, the increased spatial reso-
lution (via reduced influence of volume conduction) achieved
by CSD transformation helped to localize the comprehension-
specific electrophysiological activity on the scalp. It is possible
that taking the second spatial derivative of scalp potentials is par-
ticularly effective because the electrophysiological activity that
distinguishes good from poor reading comprehenders is most
effectively distinguished as current sources and sinks. However,
CSD transformation is not the only method for identifying ERP
scalp topographies with enhanced spatial resolution. For exam-
ple, the method of second-order blind source separation (Tang
et al., 2005) might have produced equivalently or more effec-
tive spatiotemporal components. Alternatively, a method called
“topographic ERP analysis” enhances spatial resolution by trans-
forming scalp potentials to electric field configurations, and it
further facilitates the identification of behaviorally relevant field
configurations by identifying “microstates” that are stable for
about 20–500 ms, allowing for comparison of those microstates
between experimental conditions (for review, see Murray et al.,
2008). It is possible that if microstates distinguishing between
the scrambled and comprehension conditions are fed to the
classifier, we might obtain a field configuration that predicts
comprehension performance with greater accuracy. However,
substantial improvement is unlikely because our CSD index is
already strongly correlated with comprehension scores (r = 0.803
when three outliers are removed) and the critical scalp site is
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surprisingly focal, suggesting that CSD transformation effectively
isolated comprehension-related electrophysiological activity in
our experimental paradigm.

In summary, our results demonstrate that the modula-
tion of frontal-midline electrophysiological responses to target
words due to attempting to comprehend a story distin-
guishes good from poor comprehenders with a high degree
of accuracy. This robust electrophysiological signature of
comprehension-specific processing may lead to a new means

to investigate the neural substrates of comprehension, to
continuously track comprehension while reading, and may
potentially aid the remediation of disabilities that compro-
mise comprehension.
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APPENDIX
SUPPLEMENTAL ANALYSES
The predictability of the upcoming word was much higher in
the comprehension than the scrambled condition, and the com-
prehension condition required more attention and/or working
memory resources (to understand the story for the later compre-
hension test) than the scrambled condition. Thus, our CSD index
of extended-text comprehension may reflect expectation and/or
working memory processes. The P300 and the N400 are two well-
known ERP components (derived from non-CSD-transformed
ERP analyses) that have been shown to reflect electrophysiological
responses to variations in expectation and working memory load.
The N400 typically peaks in response to target stimuli around
400–500 ms, while the peak of the P300 varies between 300 and
700 ms, depending on the time necessary for stimulus evaluation
(for reviews, see Kutas and Federmeier, 2000; Polich, 2007; Lau
et al., 2008). The P300 becomes more positive when rare or unex-
pected events occur and when working-memory load is lower
(Watter et al., 2001); thus, the P300 would be expected to be more
positive in the scrambled than the comprehension condition. In
line with this idea, the ERP activity during 400–500 ms is more
positive in the scrambled than the comprehension condition at
the posterior scalp electrodes relevant to the P300 (see Figure A1
for ERP waveforms and Figure A2 for the ERPs averaged for the
400–500 ms period).

As for the N400, the ERPs were positively trending (positively
sloped as a function of time) during 300-500 ms with no clear
indication of negatively trending potentials in that interval (see
Figure A1). Large P300 effects during this interval are likely, given
the low probability of target events (2.4% of the words). Thus, the
paradigm we used does not allow the isolation of the N400, so
that a relationship between our CSD index and the N400 may be
possible, though it is not apparent here.

It may seem plausible that our frontal-midline CSD
comprehension index reflects differences in the P300 between
the scrambled and comprehension conditions, but upon fur-
ther examination the data do not support this interpretation.
The P300 is conventionally revealed as the late positive peak in
the difference wave obtained by subtracting ERPs to non-target
stimuli (here, all words other than “and”) from ERPs to tar-
get stimuli (here, “and”). Applying this analysis to the present
data reveals posterior positive peaks indicative of the P300 in
both the scrambled and comprehension conditions for both good
and poor comprehenders during 400–500 ms post-word-onset
(Figure A3).

To examine the relationship between the P300 and compre-
hension performance as well as between the P300 and our CSD
comprehension index, we averaged the P300 difference wave
across its peak scalp site (Pz) and four surrounding electrodes
(CPz, P1, P2, and POz) separately for both the scrambled and
comprehension conditions, then performed a correlation anal-
ysis. None of the correlations was significant (comprehension
condition P300 vs. comprehension performance: r = −0.245,
n.s.; comprehension condition P300 vs. CSD comprehension
index: r = 0.234, n.s.; scrambled condition P300 vs. comprehen-
sion performance: r = −0.268, n.s.; scrambled condition P300
vs. CSD comprehension index: r = 0.056, n.s.). Further, after

creating a condition-difference P300 measure by subtracting the
P300 difference wave for the comprehension condition from
the P300 difference wave for the scrambled condition (at the
same five posterior electrodes), there were no significant cor-
relations between this condition-difference P300 measure with
either reading comprehension performance or our CSD com-
prehension index (condition-difference P300 vs. comprehension
performance: r = −0.110, n.s.; condition-difference P300 vs.
CSD comprehension index: r = −0.156, n.s.). Finally, there is
some frontal activity accompanying the P300 that appears to
be different between good and poor reading comprehenders.
This P300-related activity is especially apparent in good but not
poor comprehenders at scalp sites F2 and FC4 (warmest colors
in Figure A3, right column). However, this frontal condition-
difference P300-related activity, averaged across scalp sites F2
and FC4, is again not significantly correlated with either read-
ing comprehension performance or our CSD comprehension
index (frontal condition-difference P300-related activity vs. com-
prehension performance: r = −0.057, n.s.; frontal condition-
difference P300-related activity at vs. CSD comprehension index:
r = −0.041, n.s.).

Taken together, it is plausible that our CSD index of extended-
text comprehension may be influenced by condition differences
in expectancy and/or working-memory load, as are the P300
and N400. However, we found no evidence of any reliable rela-
tionship between our CSD comprehension index and the P300
or N400, and only the CSD comprehension index was reliably
correlated with extended-text comprehension performance.

TEXT USED IN THE COMPREHENSION AND SCRAMBLED CONDITIONS
The text below (starting with “This text is taken . . . ”) was
presented one word at a time in a randomized order (in the
single-task condition) or in the correct order (in the dual-task
condition).

This text is taken from “Doctor Pascal” by Emile Zola
In the heat of the glowing July afternoon, the room, with blinds

carefully closed, was full of a great calm. From the three windows,
through the cracks of the old wooden shutters, came only a few
scattered sunbeams which, in the midst of the obscurity, made a
soft brightness that bathed surrounding objects in a diffused and
tender light. It was cool here in comparison with the overpower-
ing heat that was felt outside, under the fierce rays of the sun that
blazed upon the front of the house.

Standing before the press which faced the windows, Dr. Pascal
was looking for a paper that he had come in search of. With doors
wide open, this immense press of carved oak, adorned with strong
and handsome mountings of metal, dating from the last century,
displayed within its capacious depths an extraordinary collection
of papers and manuscripts of all sorts, piled up in confusion and
filling every shelf to overflowing. For more than 30 years the doc-
tor had thrown into it every page he wrote, from brief notes to the
complete texts of his great works on heredity. Thus, it was that
his searches here were not always easy. He rummaged patiently
among the papers, and when he at last found the one he was
looking for, he smiled.

For an instant longer he remained near the bookcase, reading
the note by a golden sunbeam that came to him from the middle
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FIGURE A1 | Mean ERP (non-CSD-transformed) waveforms in the

scrambled and comprehension conditions. (A) ERP waveforms (nose
referenced) at each of 64 scalp sites time-locked to the onset of the target
word (“and”) in the scrambled condition (blue) and the comprehension
condition (red) for all participants (N = 28). On the Y-axis, the voltages (in µV)

are plotted as positive values upward and negative values downward. (B) ERP
waveforms at scalp site AFz for all subjects. (C,D) ERP waveforms for good
comprehenders (N = 15) at all scalp sites (C) and at AFz (D). (E,F) ERP
waveforms for poor comprehenders (N = 13) at all scalp sites (E) and at
AFz (F).
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FIGURE A2 | Topographic maps of mean ERPs (non-CSD-

transformed) during 400–500 ms post-target-word-onset in the

scrambled and comprehension conditions. (A) For good
comprehenders. (B) For poor comprehenders. Warmer colors

indicate greater positive voltages (see color bar to the right of
the figure). Left column: scrambled condition. Middle column:
comprehension condition. Right column: difference map (scrambled
condition minus comprehension condition).

FIGURE A3 | Topographic maps of mean P300 difference waves

(non-CSD-transformed ERPs to targets minus those to non-targets)

during 400–500 ms in the scrambled and comprehension conditions.

(A) For good comprehenders. (B) For poor comprehenders. Warmer colors

indicate more positive voltage differences, cooler colors indicate more negative
voltage differences (see color bar to the right of the figure). Left column:
scrambled condition. Middle column: comprehension condition. Right column:
difference map (scrambled condition minus comprehension condition).

window. He himself, in this dawnlike light, appeared, with his
snow-white hair and beard, strong and vigorous; although he was
near sixty, his color was so fresh, his features were so finely cut,
his eyes were still so clear, and he had so youthful an air that one
might have taken him, in his close-fitting, maroon velvet jacket,
for a young man with powdered hair.

“Here, Clotilde,” he said at last, “you will copy this note.
Ramond would never be able to decipher my diabolical
writing.”

And he crossed the room and laid the paper beside the young
girl, who stood working at a high desk in the embrasure of the
window to the right.

“Very well, master,” she answered.
She did not even turn round, so engrossed was her attention

with the pastel which she was at the moment rapidly sketching
in with broad strokes of the crayon. Near her in a vase bloomed
a stalk of hollyhocks of a singular shade of violet, striped with
yellow. But the profile of her small round head, with its short,
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fair hair, was clearly distinguishable; an exquisite and serious pro-
file, the straight forehead contracted in a frown of attention, the
eyes of an azure blue, the nose delicately molded, the chin firm.
Her bent neck, especially, of a milky whiteness, looked adorably
youthful under the gold of the clustering curls. In her long black
blouse she seemed very tall, with her slight figure, slender throat,
and flexible form, the flexible slenderness of the divine figures
of the Renaissance. In spite of her 25 years, she still retained a
childlike air and looked hardly eighteen.

“And,” resumed the doctor, “you will arrange the press a little.
Nothing can be found there any longer.”

“Very well, master,” she repeated, without raising her head;
“presently.”

Pascal had turned round to seat himself at his desk, at the other
end of the room, before the window to the left. It was a plain black
wooden table, and was littered also with papers and pamphlets of
all sorts. And silence again reigned in the peaceful semi-obscurity,
contrasting with the overpowering glare outside. The vast apart-
ment, a dozen meters long and six wide, had, in addition to the
press, only two bookcases, filled with books. Antique chairs of
various kinds stood around in disorder, while for sole adornment,
along the walls, hung with an old salon Empire paper of a rose
pattern, were nailed pastels of flowers of strange coloring dimly
visible. The woodwork of three folding-doors, the door opening
on the hall and two others at opposite ends of the apartment, the
one leading to the doctor’s room, the other to that of the young
girl, as well as the cornice of the smoke-darkened ceiling, dated
from the time of Louis XV.

An hour passed without a sound, without a breath. Then
Pascal, who, as a diversion from his work, had opened a
newspaper–Le Temps–which had lain forgotten on the table,
uttered a slight exclamation:

“Why! your father has been appointed editor of the Epoque,
the prosperous republican journal which has the publishing of the
papers of the Tuileries.”

This news must have been unexpected by him, for he laughed
frankly, at once pleased and saddened, and in an undertone he
continued:

“My word! If things had been invented, they could not have
been finer. Life is a strange thing. This is a very interesting article.”

Clotilde made no answer, as if her thoughts were a hundred
leagues away from what her uncle was saying. And he did not
speak again, but taking his scissors after he had read the article,
he cut it out and pasted it on a sheet of paper, on which he made
some marginal notes in his large, irregular handwriting. Then he
went back to the press to classify this new document in it. But he
was obliged to take a chair, the shelf being so high that he could
not reach it notwithstanding his tall stature.

On this high shelf a whole series of enormous bundles of
papers were arranged in order, methodically classified. Here were
papers of all sorts: sheets of manuscript, documents on stamped
paper, articles cut out of newspapers, arranged in envelopes of
strong blue paper, each of which bore on the outside a name writ-
ten in large characters. One felt that these documents were ten-
derly kept in view, taken out continually, and carefully replaced;
for of the whole press, this corner was the only one kept in order.

When Pascal, mounted on the chair, had found the pack-
age he was looking for, one of the bulkiest of the envelopes, on
which was written the name “Saccard,” he added to it the new
document, and then replaced the whole under its corresponding
alphabetical letter. A moment later he had forgotten the subject,
and was complacently straightening a pile of papers that were
falling down. And when he at last jumped down off the chair,
he said:

“When you are arranging the press, Clotilde, don’t touch the
packages at the top; do you hear?”

“Very well, master,” she responded, for the third time, docilely.
He laughed again, with the gaiety that was natural to him.
“That is forbidden.”
“I know it, master.”
And he closed the press with a vigorous turn of the key, which

he then threw into a drawer of his writing table.

COMPREHENSION TEST
Each question was scored as correct if all correct answers were
circled and all incorrect answers were not circled, and incorrect
otherwise. Thus, the maximum possible comprehension score
was 4, the minimum possible comprehension score was 0, and
the score expected by chance was less than 1 (0.27 correct). The
correct answers are bolded below.

Please circle the answer that is most appropriate, given your
understanding of the text you just read on the screen. More than
one answer can be appropriate for each question.

(1) What is the relationship between Dr. Pascal and Clotilde?
(please circle all that apply)

(a) She is his wife.
(b) She is his niece.
(c) She is his secretary.
(d) She is a lover.

(2) What is the occupation of Dr. Pascal? (please circle all that
apply)

(a) He is a scientist or doctor.
(b) He is a mathematician.
(c) He studies heredity.
(d) He is a hunter.

(3) How does the room they are in differ from outside? (please
circle all that apply)

(a) It is hotter than outside.
(b) It is colder than outside.
(c) It is brighter than outside.
(d) It is darker than outside.

(4) Why can’t Dr. Pascal reach the top shelf? (please circle all that
apply)

(a) He is too short.
(b) It’s really high.
(c) The glasses and knick-knacks get in his way.
(d) He has a broken leg.
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