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Current theories concerning the cause of autism spectrum disorders (ASDs) have con-
verged on the concept of abnormal development of brain connectivity. This concept is
supported by accumulating evidence from functional imaging, diffusion tensor imaging,
and high definition fiber tracking studies which suggest altered microstructure in the
axonal tracts connecting cortical areas may underly many of the cognitive manifestations
of ASD. Additionally, large-scale genomic studies implicate numerous gene candidates
known or suspected to mediate neuritic outgrowth and axonal guidance in fetal and
perinatal life. Neuropathological observations in postmortem ASD brain samples further
support this model and include subtle disturbances of cortical lamination and subcortical
axonal morphology. Of note is the relatively common finding of poor differentiation of the
gray–white junction associated with an excess superficial white matter or “interstitial”
neurons (INs). INs are thought to be remnants of the fetal subplate, a transient structure
which plays a key role in the guidance and morphogenesis of thalamocortical and cortico-
cortical connections and the organization of cortical columnar architecture. While not
discounting the importance of synaptic dysfunction in the etiology of ASD, this paper
will briefly review the cortical abnormalities and genetic evidence supporting a model of
dysregulated axonal growth and guidance as key developmental processes underlying the
clinical manifestations of ASD.
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INTRODUCTION
Autism spectrum disorders (ASDs) are characterized by deficits
across apparently disparate domains; language, social reci-
procity, sensory integration, and repetitive/restricted behavior
patterns among others. Within each domain, however, function-
ing is often markedly uneven, and the coexistence of significant
impairments with areas of normal or even enhanced perfor-
mance is a long recognized paradox. Cognitive-neurologic testing
(Minshew et al., 1997, Minshew et al., 2002; Williams et al., 2006)
has indicated the common denominator across domains is a nor-
mal or enhanced ability to perform perceptual and simple infor-
mation processing tasks coupled with significant deficits in the
ability to perform tasks requiring complex information process-
ing, even in high-functioning, high-IQ subjects with ASD. Rather
than implicating dysfunction in a particular brain area/structure,
this cognitive profile is most consistent with altered functioning
of the distributed cortical neural network, i.e., how and how well
cortical functional areas, particularly association areas, communi-
cate with each other and their subcortical targets (Minshew and
Payton, 1988). This model of aberrant connectivity in ASD is now
widely accepted, although the details vary (e.g., Belmonte et al.,
2004; Geschwind and Levitt, 2007).

Functional magnetic resonance imaging (fMRI), which allows
for examination at the neural systems level, has been key to
demonstrating the above impairments and modeling altered con-
nectivity in ASD. Numerous fMRI studies have reported decreased

synchronization of critical cortical areas during the performance
of complex tasks (or at rest) in subjects with ASD relative to age
and IQ-matched controls. This appears to be particularly marked
in tasks requiring high functional connectivity between frontal
association (e.g., anterior cingulate and prefrontal cortices), and
more posterior cortical regions (reviewed in Schipul et al., 2011)
such as complex sentence comprehension (Just et al., 2004), social
inference (Just et al., 2007), or inhibition (Kana et al., 2007).

Altered anatomic connectivity is the most likely substrate for
reduced functional connectivity (Figure 1), although the exact
basis of the relationship is not established and much debated. At
the physical level, neural circuitry is comprised of neurons, their
processes (axons and dendrites), and their synapses on neigh-
boring or distant neurons. Wiring the brain, therefore, requires
the coordinated interactions of numerous molecular cascades and
environmental exposures during development so that neurons
proliferate, migrate to the appropriate locations, extend axons with
a high degree of spatial and temporal fidelity, and establish synap-
tic connections with appropriate target neurons. Clearly, one or
more of these developmental processes does not unfold in the
typical fashion in ASD. In recent years, much attention has been
paid to altered synaptic function as the central event explaining
altered brain connectivity in ASD. However, the view of ASD as
predominately an intrinsic synaptopathy is unsatisfying in view of
the cerebral white matter alterations documented in many subjects
and outlined below.
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FIGURE 1 | Sources of evidence for a model of dysregulated axonal

development in ASD. A broad gap exists between the clinical manifestations
of ASD and growing list of genetic candidates; a gap only incompletely
bridged by a general model of altered connectivity. A significant component

of dysregulated axonal development (polarity, outgrowth, and
guidance/targeting should be considered in constructing a model of ASD
etiology that encompasses all of the clinical, functional, structural, and
genetic observations.

ALTERED BRAIN GROWTH TRAJECTORIES: EVIDENCE FROM
STRUCTURAL MRI STUDIES
Structural MRI, morphometric, and neuropathologic studies
provide ample evidence of altered neocortical growth and organi-
zation in ASD. Studies examining head circumference and brain
volume in individuals with ASD have demonstrated altered brain
growth trajectories across the lifespan. While not significantly dif-
ferent from controls at birth, up to 70% of infants later diagnosed
with ASD exhibit abnormally accelerated brain growth in the first
year of life (Courchesne et al., 2003). Approximately 20–25% of
infants in this subset meet formal criteria for macrocephaly in the
first year. Brain volume ascertained by MRI is significantly larger
in 90% of infants with ASD by 2–4 years of life as well (Courchesne
et al., 2003). Many studies note a marked rostral–caudal gradient
in these altered growth trajectories (reviewed in Lainhart, 2006). At
the time of maximal brain growth in very early childhood, cerebral
gray matter and white matter are both increased (by approxi-
mately 20 and 40%, respectively). The frontal cortical gray and

white matter show the most enlargement followed by the tempo-
ral and parietal lobes. The occipital gray and white matter and
parietal gray matter tend not to vary significantly from normal
(Carper et al., 2002). Within the frontal lobes, the gray matter
areas most affected are the dorsolateral and mesial prefrontal cor-
tex. Similarly, the white matter most involved appears to be the
radiate compartment and U-fibers immediately underlying these
cortical areas which represent intrahemispheric, cortico-cortical
connections originating from cortical layers II and III (Herbert
et al., 2003). The corpus callosum, conversely, is often reduced in
autism (e.g., Hardan et al., 2000; Keary et al., 2009). Therefore,
increased brain size in toddlers with ASD appears to be largely
driven by enlargement of the white matter compartment underly-
ing the frontal and temporal cortices (Carper et al., 2002; Herbert
et al., 2004; Carper and Courchesne, 2005).

Following this initial acceleration, growth rates decline sig-
nificantly causing an apparent normalization of brain volume
by adolescence and early adulthood (Courchesne et al., 2001,
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Courchesne et al., 2004; Waiter et al., 2005). This relative decrease
is most marked in the white matter in that children with autism
experience only a 10% increase in cerebral white matter between
the ages of 3 and 12 years (Courchesne et al., 2001). Gray mat-
ter volumes remain elevated into adulthood as does mean head
circumference. Rates of macrocephaly, although lower, remain
increased overall. This pattern stands in stark contrast to the
age related cerebral white matter increase (60%) and gray mat-
ter decrease observed in typically developing individuals between
the ages of 4 and 22 years (Tau and Peterson, 2010) which are
generally thought to be a function of the concurrent processes
of synaptic/collateral pruning and myelination. It must be noted
that the above pattern does not hold true for all individuals with
ASD. Many show typical rates of head and brain growth and a
small subset even meet criteria for microencephaly, although this
is more common in the setting of syndromic ASD (see Activating
Mutations in the mTOR Pathway are Associated with Syndromic
ASD for discussion of this concept).

ALTERED CORTICAL MICROSTRUCTURE: EVIDENCE FROM
POSTMORTEM STUDIES
A number of studies have reported gross and microscopic changes
that may relate to increased gray matter and alterations in relative
compartmental volumes. One recent report of seven autistic chil-
dren with increased brain size (Courchesne et al., 2011) involved
a 67% increase in the numbers of neurons in the prefrontal cor-
tex relative to age-matched controls. Neurogenesis, the birth and
early proliferation of neurons, is largely a prenatal process. At birth,
cortical neurons are typically small, so that an appreciable excess
might not translate into a significant change in head size. However,
in the first years of life, the typical dramatic increase in cytoplasmic
volumes (both of the cell body and axons/dendrites) occurring
in more than the usual complement of frontal neurons, could
account for abnormally accelerated brain growth in the first years
of life. It would also explain why maturational synaptic/neuritic
pruning may not register as an appreciable loss of cerebral gray
matter in these individuals.

Related to this is the finding of subtle microstructural abnor-
malities in cortical architecture, even in the absence of more
obvious dysgenic lesions. Although most of these analyzes are
not rigorously stereologic, the impression is of increased numbers
of narrow minicolumns containing increased densities of neu-
rons (Casanova et al., 2002, 2006; Buxhoeveden et al., 2006) in
the frontal cortex of ASD brains. This trend appears to be most
pronounced in the frontal lobe, particularly the dorsolateral pre-
frontal cortex, and is not seen in more posterior regions such
as the visual cortex. Minicolumns are the vertical cell columns
created by sequential waves of migrating neurons traveling along
radial glial fibers during early corticogenesis. Increased numbers
of such arrays may reflect excess early divisions of radial glial cells
immediately prior to the onset of neurogenesis and migration.
Furthermore, the distribution of minicolumn abnormalities cor-
relates with patterns of accelerated growth and excess neurons in
the early postnatal period.

More than half of all postmortem investigations have uncov-
ered additional features of cortical dysgenesis, presumably caused
by abnormal neurogenesis, neuronal migration or maturation,

in ASD brains. Bailey et al. (1998) observed significant and
widespread cortical dysgenic lesions in four of six subjects with
ASD. Similarly, in a recent large-scale study, Wegiel et al. (2010)
reported a wide variety of dysgenic lesions and heterotopias
in multiple cortical regions in 12 of 13 subjects with ASD.
These included excess subependymal neurons, subcortical and
periventricular heterotopias, and additional minor disruptions of
cytoarchitecture. In the seminal postmortem studies by Kemper
and Bauman (Bauman and Kemper, 1985, 1998; Kemper and Bau-
man, 1993, 2002), the only consistent abnormality in the cerebral
cortex was relatively small neuronal cell size and increased cell
packing in the anterior cingulate cortex. Simms et al. (2009) also
found decreased cell size and decreased cell packing in different
sub-regions of the anterior cingulate. Van Kooten et al. (2008)
conducted a stereologic study on the fusiform gyrus, involved
in face processing, and found significantly lower neuronal den-
sities within layer III and lower total neuron numbers in layers
III, V, and VI, as well as smaller average cell volumes of neurons
in layers V and VI. Hutsler and Zhang (2010) found increased
dendritic spine densities in the temporal lobes of individuals with
ASD and intellectual disability relative to age-matched controls.
Most of the reported cortical microstructural finding in ASD
are very subtle. It must be noted that even the non-subtle dys-
genic lesions reported in the literature are not specific to ASD
and are more often found in non-ASD individuals both with
and without seizures or other neurologic symptoms. Conversely,
the vast majority of ASD brains show relatively normal cortical
cytoarchitecture.

ALTERED CORTICAL WHITE MATTER: EVIDENCE FROM DTI
AND POSTMORTEM STUDIES
It is very possible that an increase in absolute numbers and den-
sities of neurons in the frontal cortex could have an adverse effect
on anterior–posterior connectivity. The mismatch created by rel-
atively too few afferent and/or too many efferent axonal terminals
attempting to form circuits could potentially be disruptive. But
converging lines of evidence also point to microstructural dif-
ferences in white matter. Much of this evidence is indirect and
relatively non-specific, but white matter is notoriously hard to
study. While MRI-based studies allow the direct examination of
the general course and volume of major white matter tracts, they
have lacked the necessary resolution to directly examine even large
axon fascicles or to trace these entering the cortex. Histologic
techniques, conversely, have permitted the direct examination of
axons and their myelin coverings, but are too laborious and time
consuming to feasibly trace connections over large distances in
the brain. Fortunately, recent advances in high definition fiber
tracking (HDFT) promise to soon permit the best (or the best com-
promise) of both worlds. HDFT is a novel tractography method
using high-angular-resolution diffusion imaging and diffusion
spectrum imaging (DSI) techniques in order to track white matter
fibers from cortical origins, through complex fiber crossings, to
cortical and subcortical targets with at least millimeter resolution
(a few hundred axons; Verstynen et al., 2011; Fernandez-Miranda
et al., 2012). Initial reports (only in the popular media for now)
have demonstrated significant alterations in the morphology (i.e.,
wiring plan) of a number of major white matter tracts in a few
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individuals with ASD (e.g., Schneider, 2011, 2012). These highly
preliminary findings indicate the physical alterations of ASD in
the brain may prove to be quite unsubtle, but until now, almost
completely invisible.

Much of the current evidence for altered white matter comes
from studies employing diffusion tensor imaging (DTI). DTI mea-
sures apparent diffusibility of water molecules as a function of
direction over time and is a method to characterize the organi-
zation and microstructural properties of white matter. The most
common DTI measure is fractional anisotropy (FA) which charac-
terizes the directional variation in the apparent diffusions. White
matter, which is arranged in parallel arrays of axonal bundles
(fascicles) tends to have a higher FA than gray matter as dif-
fusion of water in neuropil has less directionality (i.e., is more
isotropic). A complementary measure, radial diffusivity (RD),
describes the tendency of perpendicular water movement and
is, therefore, lower in white matter compared to gray matter
(reviewed in Travers et al., 2012). Numerous studies have found
widespread decreases in FA (and concurrent increases in RD or
similar measures) in children (>4 years of age) and adults with
ASD (reviewed in Travers et al., 2012). This tendency is most pro-
nounced in the corpus callosum (e.g., Shukla et al., 2010; Jeong
et al., 2011), cingulum bundle, and various white matter tracts
involving the temporal and frontal lobes (e.g., Jou et al., 2011;
Shukla et al., 2011) thereby correlating, generally, with both the
fMRI and structural MRI growth trajectory data. These white mat-
ter alterations are attributed to reduced tract coherence and/or loss
of microstructural integrity, but are not specific to a particular eti-
ology as similar effects could potentially be produced by reduced
myelination, increased axonal diameter, alterations of axonal den-
sity, or more complex white matter (i.e., turning or crossing fibers,
or excess branching) or reduced axonal fasciculation (Travers et al.,
2012).

Microscopic tissue studies, although limited by the time nec-
essary to perform, allow a greater degree of resolution and may
potentially being able to resolve these differences. In a rare and
recent study, Zikopoulos and Barbas (2010) stereologically inves-
tigated the fine structure (by light and electron microscopy) of
myelinated axons in the white matter below the anterior cingulate
cortex, orbitofrontal cortex, and lateral prefrontal cortex in indi-
viduals with ASD relative to age-matched controls. They found
similar overall axonal density between groups below all prefrontal
areas. However, the ASD group had significantly fewer large axons
(likely representing the more long-range cortico-cortical connec-
tions) in the deep white matter below the anterior cingulate cortex.
This was associated with the presence of a significantly greater
density of smaller axons (thought to connect more adjacent cor-
tical areas) in the corresponding superficial white matter. There
were no discernible differences in neuronal densities or distri-
butions in the overlying gray matter. The white matter below
the anterior cingulate cortex also exhibited a significantly higher
proportion of branched axons of medium caliber. Axons in the
superficial white matter below the orbitofrontal exhibited signifi-
cantly thinner myelin sheaths when controlled for axon diameter
despite similar numbers of oligodendrocytes (Zikopoulos and Bar-
bas, 2010). Azmitia et al. (2010, 2011) also found a significant
excess of morphologically abnormal serotonin axons in principle

ascending fiber bundles of the medialand lateral forebrain bundles
as well as target areas in the temporal cortex, amygdala, and globus
pallidus.

THE POTENTIAL ROLE OF THE FETAL SUBPLATE IN WIRING
ALTERATIONS IN ASD
Probably the most pervasive cortical finding in ASD, documented
in both neuropathologic and structural MRI studies, is the rela-
tively poor differentiation of the gray–white junction associated
with excess superficial white matter or interstitial neurons (INs;
Bailey et al., 1998; Casanova et al., 2002; Hutsler et al., 2007; Simms
et al., 2009; Wegiel et al., 2010; Avino and Hutsler, 2011). This
is noted particularly in the white matter just below the frontal
association cortices and superior temporal gyrus (e.g., Avino and
Hutsler, 2010). The presence of excess INs in ASD has been long
attributed to abnormalities of cortical migration despite the very
limited findings of gross laminar alterations within the cortex
proper. An alternative theory, however, is that these INs rep-
resent excess remnants of the fetal subplate instead of arrested
neurons destined for the upper layers of the cortical plate (Avino
and Hutsler, 2010). This is an attractive hypothesis as this structure
performs numerous developmental functions related to forma-
tion of neocortical circuits. Interestingly, this finding is also not
specific to autism. Increased numbers of INs, particularly in the
dorsolateral prefrontal and temporal cortices of schizophrenic
patients, have been reported in five of six studies to date, making
it one of the most replicated postmortem finding in this dis-
order as well (Eastwood and Harrison, 2003; Fung et al., 2011;
Yang et al., 2011).

The subplate is a transient cortical compartment which
becomes fully established during the second trimester and mostly
resolves by the sixth postnatal month in humans. Many subplate
neurons are actually born before the appearance of the cortical
plate proper, and are the first cortical neurons to mature func-
tionally, differentiating into diverse subpopulations in terms of
morphology, molecular markers, and neurotransmitter identity
(Kostovic and Rakic, 1990). Throughout fetal development, the
subplate serves as the major, albeit transient, postsynaptic target
for all classes of cortical afferents, both in terms of location of ori-
gin and neurotransmitter system (Kanold and Luhmann, 2010).
This function is reflected by subplate-enriched or specific expres-
sion of numerous extracellular matrix (Chun and Shatz, 1988) and
axon guidance molecules, e.g., cadherins, ephrins, semaphorins,
and Rho-GTPases (Oeschger et al., 2012).

The earliest afferents, which enter the subplate and synapse on
subplate neurons between 8 and 12 gestational weeks, derive from
the brainstem nuclei and basal forebrain (Kostovic et al., 2012).
Thalamocortical afferents then arrive in huge numbers beginning
approximately 13 gestational weeks. All of the above afferents
accumulate and remain within the subplate until approximately
22–24 gestational weeks when they begin to penetrate the cortical
plate roughly in the order in which they arrived in the subplate
(Kostovic and Judas, 2010). At the same time, significant numbers
of cortico-cortical and callosal afferents begin arriving in the sub-
plate where they will wait as well. In the case of thalamocortical
connections, the most studied in this context, it is thought that
the role of the subplate neurons during the “waiting” period is
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to act as an intermediary between the thalamic neuron and the
cortical target thereby relaying thalamic input to layer IV. The
subplate neuron then serves as a pioneer axon to guide the affer-
ent to the target cell. The early thalamocortical synapse is weak,
but by co-activating the target neuron, the subplate neuron assists
in maturing and strengthening the connection (Kanold and Luh-
mann, 2010). Subplate neurons likely play the same role for other
classes of cortical afferents, but this has not been established.

When an adequately strong final synaptic connections are
finally established, it is thought that subplate neurons receive an
unknown signal to undergo developmental apoptosis. During the
perinatal period of subplate dissolution, afferents representing
long associative cortico-cortical pathways are still present in the
diminishing subplate (Vasung et al., 2010; Kostovic et al., 2012).
Subplate dissolution can be seen to begin earlier in primary motor
and sensory cortices and later in association areas (e.g., prefrontal
cortex and operculum) and coincides somewhat with the develop-
ment gyral complexity. The postnatal persistence of the subplate
in frontal association areas has been related to the ongoing growth
of short-range cortico-cortical connections Finally, the subplate
is still present in the early postnatal frontal cortex and contains
developing short cortico-cortical pathways (Kostović and Judas,
2007; Kostovic et al., 2012).

Neurons surviving dissolution of the subplate persist into
adulthood as INs, dispersed among the cortico-cortical “U-fibers”
of the superficial white matter. In humans and other primates
they remain quite numerous in frontal and prefrontal areas rela-
tive to more caudal regions, e.g., visual cortex and are represented
by both excitatory, glutamatergic and inhibitory, GABAergic cells
(reviewed in Suárez-Solá et al., 2009). What role they may play
in adult brain function is unknown, although it is hypothesized
that abnormal axonal connectivity during fetal life may cause, or
be reflected by, abnormalities in the numbers and/or distribution
of INs that persist into adulthood. The presence of excess INs in
ASD could potentially be explained by either abnormal prolifera-
tion early in embryonic life or reduced developmental apoptosis
in the later fetal/perinatal period (Chun and Shatz, 1989; Avino
and Hutsler, 2010). Because the subplate is an early structure, the
same frontal overgrowth causing excess radial glia/minicolumns
and cortical neurons may also be responsible for (or related to)
the production of excess subplate neurons. This could potentially
be tested. Conversely, subplate neurons not capable of “hooking
up” their dependent cortical afferents to the proper targets, for one
reason or another, might not receive or properly process the signal
for programed cell death. This would be much more difficult to
test.

GENETIC MODELS OF ASD
A predominately genetic etiology for ASD is well established and
supported by twin and family studies. An estimated 10–15% of
children evaluated for ASD have a known genetic syndrome (e.g.,
Fragile X or tuberous sclerosis), and an additional 25% or so are
found to have an identifiable chromosomal deletion or duplication
(i.e., copy number variation, CNV; Sebat et al., 2007). However,
despite the recent use of microarray technology to perform CNV
analysis and whole genome expression profiling and association
studies on large samples, the genetic structure underlying most

idiopathic autism is still poorly known. There is considerable
debate concerning this architecture, and arguments may be made
for either effects of single, rare risk alleles, or interactions of
numerous common low-risk alleles. Although these models are
not mutually exclusive, only a few identified genetic lesions are
recurrent to any appreciable extent. Therefore, the majority of
the dozens of candidate loci (and hundreds of associated genes)
currently under investigation are derived from rare Mendelian
mutations, CNVs, and genes/chromosomal regions associated
with syndromic forms of ASD (Marshall and Scherer, 2012). A
number of schemes have been generated to organize this growing
list in order to both identify a common, underlying pathophys-
iology as well as point to new potential candidate genes. Most
of these models group candidates according to (1) participation
in a common signaling pathway, (2) shared molecular or cellu-
lar function, or (3) participation in a common developmental
pathway.

ACTIVATING MUTATIONS IN THE mTOR PATHWAY ARE ASSOCIATED
WITH SYNDROMIC ASD
Approximately 10–15% of children being evaluated for ASD are
found to have a syndromic form, i.e., an ASD or ASD-like behav-
ioral phenotype occurring in the context of a recognized single
gene or chromosomal syndrome and/or associated with one or
more dysmorphic features (e.g., fragile X or tuberous sclerosis).
Many common syndromic disorders with a significant ASD com-
ponent are caused by alterations in genes that directly or indirectly
participate in the mammalian target of rapamycin (mTOR) sig-
naling pathway, i.e., tuberous sclerosis (TSC1/2), fragile X mental
retardation 1 (FMR1), neurofibromatosis type 1 (NF1), PTEN
mutation syndrome, and Rett’s syndrome (MECP2; reviewed in
Levitt and Campbell, 2009). The mTOR signaling pathway serves
to integrate extracellular signals (e.g., growth factors) with down-
stream intracellular activities. In response to upstream tyrosine
kinase signaling, ERK and PI3K activate mTOR which, via further
kinase signaling, activates multiple downstream genes responsi-
ble for cellular proliferation, growth, survival, fate decision, and
motility. PTEN, NF1, and TSC1/2 are all inhibitors of mTOR so
that their pathogenic mutations all have the downstream effect of
increasing mTOR signaling. MECP2 encodes a protein that reg-
ulates the transcription of multiple downstream genes involved
either directly in the ERK/PI3K pathway or the upstream MET
RTK pathway. Again, the net effect of MECP2 mutation is to
increase mTOR signaling.

While the consequences of increased ERK/PI3K/mTOR signal-
ing are consistent with many of the anatomic and neuropathologic
findings in ASD (e.g., excess brain growth and neuronal prolifer-
ation), it must be noted that this pathway is a central cellular
regulator in most organ systems and pathogenic mutations in
key members produce more diverse, severe, and widespread clin-
ical manifestations than is generally seen in non-syndromic or
idiopathic ASD. However, this convergence on a single molecu-
lar pathway is considered a significant clue to the pathogenesis
of idiopathic ASD. It is likely that many ASD mutations occur in
genes further upstream, thereby imparting a more subtle and brain
region specific orientation to the downstream effect of mTOR
activation. Probably the most studied and well known of such
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upstream activators is a receptor tyrosine kinase coded by the
MET gene, located in the 7q31 ASD candidate region. MET is
known to be important in forebrain development and exhibits
altered expression in ASD cortical tissue (Campbell et al., 2007).
A common promoter variant which affects MET function in vitro
(Campbell et al., 2006), as well as a number of MET mutations, has
been found to be associated with a subset of ASD cases (Campbell
et al., 2009).

ALTERATIONS IN SYNAPSE-RELATED GENES ARE ASSOCIATED WITH
ASD
A second model for the pathogenesis of ASD focuses on abnor-
mal formation or function of synaptic connections. This was first
suggested by findings of abnormal dendritic spine morphology in
the above syndromic forms of ASD as well as the high preva-
lence of seizures in both syndromic and idiopathic ASD. This
model was supported by the identification of NLGN3, NLGN4X,
NRXN1, and SHANK3 in ASD candidate loci. These are all synap-
tic cell adhesion molecules (CAMs) which are crucial for the
dendrite development, initial contact between pre- and postsynap-
tic neurons, and/or assembly and anchoring of synaptic scaffolding
proteins (reviewed by Betancur et al., 2009; Bourgeron, 2009).
Overall, alterations in most candidate CAM genes do not appear to
account for an appreciable proportion of ASD individually and are
as likely to be found in association with other conditions or non-
affected individuals alike. Additionally, single gene mouse models
of these synaptic candidates usually have no discernable behavioral
phenotype, although this alone does not exclude any candidate
gene as potentially contributing to risk for ASD in humans.

Numerous other CAMs and synaptic scaffolding proteins are
also under investigation as ASD susceptibility genes. These include
various cadherins and protocadherins, members of the Ig CAM
superfamily (e.g., L1CAM), and the contactins. One functional
grouping (SHANK2/3, SYNGAP1, DLGAP2) converge on the
postsynaptic density. Additionally, recent large-scale molecular
and functional pathway analyses of CNV and association candi-
dates (e.g., Pinto et al., 2010; Gilman et al., 2011; Hussman et al.,
2011) have identified large functional groups converging on regu-
lation of actin filament network dynamics. One group specifically,
the Rho family of small GTPases, is particularly central to this pro-
cess and therefore essential to dendrite morphogenesis and spine
remodeling.

ALTERATIONS IN GENES REGULATING NEURONAL POLARITY, NEURITIC
OUTGROWTH, AND AXONAL
Guidance are associated with ASD
A third model for the pathogenesis of ASD, more recently
advanced, reinterprets many of the above functional groupings
in terms of axon outgrowth, guidance, and targeting. Many of
these proteins can be thought of more generally as providing
positional information and mediating motility and are, therefore,
re-cycled for various developmental processes mechanistically
requiring specific recognition and/or movement (Figure 2). An
axonal model is therefore also supported by the identification
of many of the aforementioned synaptic CAMs (e.g., L1CAM,
SHANKs, and NRXN1), which are often involved in neuritic out-
growth and axon guidance and targeting (Sheng and Kim, 2000;
Gjorlund et al., 2012; Tagliavacca et al., 2013). The Rho-GTPases

FIGURE 2 | Key molecular pathways of axonal development

implicated by genetic studies. Genome-wide association and CNV
studies have implicated numerous molecules and molecular pathways
involved in neuritic outgrowth, neuronal polarity, axonal-dendritic
targeting, and synaptogenesis. Many of these are common to

multiple related developmental processes as they serve the more
general functions of providing positional information. This recycling
phenomenon may explain the link between arealization/proliferation
abnormalities, axonal and dendritic abnormalities, and synaptic
dysfunction in ASD.
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and their regulators also act long before synaptogenesis to induce
neurite formation and differentiation, mediate axonal extension
and branching, and cause growth cone collapse in response to
repulsive axonal guidance cues (Gilman et al., 2011). They do this
by coordinating the interactions between the actin cytoskeleton
of the axonal growth cone which interprets CAM-based guid-
ance cues, and the microtubule network which stabilizes the
growing neurite (Govek et al., 2011). Two recent ASD candi-
dates, cdc42 and CRMP-2 (Gilman et al., 2011) are particularly
important in early neuronal polarization, i.e., the differentia-
tion of early neuritic processes into a single axon and multiple
dendrites. This process forms the basis of directional informa-
tion flow in neuronal circuits (Govek et al., 2011). Alterations
in expression of these candidates in developing neurons causes
either inhibition of axon formation or the production of super-
numerary axons (Govek et al., 2011). No doubt as more “synaptic”
molecules are investigated more closely in terms of develop-
mental expression, axonal functions will continue to come to
light.

The mTOR pathway, while important for synaptic function, it
is also critical for neuritic growth and neuronal polarity. TSC1 and
TSC2, mutated in tuberous sclerosis, form a complex which per-
mits the functioning of a TSC2 GTPase activating protein for Rheb
GTPase which inhibits the mTOR pathway. TSC pathway compo-
nents are expressed in a polarized manner in developing neurons
so that TSC2 is inactivated (and mTOR activity is increased) in
the developing axon (Choi et al., 2008). Choi et al. (2008) found
that overexpression of Tsc1/2 significantly inhibited axon forma-
tion in cultured mouse hippocampal neurons. Knockdown of Tsc2
and knockout of Tsc1 in hippocampal cultures, conversely, caused
developing neurons to have multiple axons. This was born out in
vivo by examinations of cortical sections derived from Tsc1−/−
mice, which have relatively a normal cortical and hippocampal
architecture, but develop seizures at postnatal day 5 and die in a
few weeks. Neurofilament stained sections demonstrated numer-
ous ectopic axons throughout the cortex of these mice, even in the
usually dendrite-rich upper layers (Choi et al., 2008).

The Met receptor, long known to be present (at low levels) and
active in synapses of the mature brain (Tyndall and Walikonis,
2006) has now been found to be more highly expressed, before
most synaptogenesis occurs, in extending forebrain axons of the
developing mouse brain. Judson et al. (2009) demonstrated peak
Met expression by Western blot at birth in the developing mouse
brain; the period at which neurons are finished migrating and
are actively extending axons and dendrites. These levels declined
during synaptogenesis to low, adult baseline levels (Judson et al.,
2009). Strong mRNA expression of Met was visualized in cortical
neurons of layers II/III and V/VI and exhibited a strong caudal
(high) to rostral (low) gradient in the cortical plate but uniform
expression in the subplate. Protein expression by immunohis-
tochemistry was visualized in the callosal, cingulated, anterior
commissure, and internal and external capsule white matter tracts
as well as in axons extending from the hippocampus, septum,
and amygdala (Judson et al., 2009). No appreciable dendritic or
synaptic staining was detected with this method.

Recently published association and CNV studies have also
identified numerous candidate genes coding for canonical axonal

guidance molecules including multiple members of the Slit
(Duvall et al., 2006; Hu et al., 2009), Robo (Anitha et al., 2008),
Ephrin (Sbacchi et al., 2010), and Semaphorin (Melin et al., 2006;
Sbacchi et al., 2010) families. Sbacchi et al. (2010) used gene
ontogeny and pathway analyses to determine common functions
of duplicated or deleted genes lying within CNVs derived from
four large ASD microarray data sets. They identified a substan-
tial number of canonical axonal guidance genes as well as certain
BMP, Wnt, Engrailed morphogens which are also known to partic-
ipate in axon guidance (Charron and Tessier-Lavigne, 2005) and
linked to ASD by previous studies (Kalkman, 2012). Hussman et al.
(2011), similarly identified a substantial group of ASD candidate
genes involved in neurite outgrowth by genome-wide associa-
tion. Specific functions included axonal guidance, Rho-GTPase
signaling, cytoskeletal regulation, and cadherin–catenin function.
Interestingly, while different canonical axonal guidance genes are
implicated in different studies, SEM5A appears to be listed in prac-
tically all of them. Sema5a has also been recently found to be
enriched in the mouse subplate during development along with
other ASD candidates such as Nrxn1, and cadherins 10, 18, and 9
(Hoerder-Suabedissen et al., 2013).

CONCLUSION
Structural studies of brain development indicate a large sub-
set of individuals with ASD experience dramatic overgrowth of
frontal white matter in the first years of life. Excess fetal neuronal
proliferation is likely responsible for much of the added vol-
ume, but may not explain abnormalities of white matter integrity
and microstructure seen by DTI and microscopy. Abnormali-
ties that persist into adult life, even as volumes “normalize.”
Frontal and temporal cortical areas overlying this white matter
are not as functionally integrated with more posterior cortical
regions. Subtle (for the most part) abnormalities of cortical neu-
ronal migration and lamination are variably seen, but there is
little consistency in the findings. An exception to this is a rel-
atively frequent excess of INs, presumed remnants of the fetal
subplate. This excess may be a function of a general over-
proliferation of cortical neurons or a reflection of aberrant axonal
and/or synaptic connectivity during fetal life causing a subsequent
failure of appropriate developmental apoptosis. Certainly, mor-
phologic abnormalities reported in superficial subcortical white
matter axons indicate a possible role for disordered organization
of cortical afferent and/or efferent wiring through the subplate
region.

Recently published association and CNV studies have iden-
tified, not only multiple axonal guidance molecules, but also
numerous ASD candidate genes involved in neuritic outgrowth,
neuronal polarity, and axonal–dendritic targeting. These include
various participants in the mTOR signaling cascade, neuronal
CAMs, Rho-GTPases, and traditional morphogens known to
mediate axonal guidance. Many of these, particularly the CAMs
and morphogens, can be thought of more generally as providing
positional information, cues that may be variously interpreted by
responding cells as division, fate specification, migration, neuritic
sprouting/pathfinding, or synaptogenesis signals. In other words,
they are re-cycled for various developmental processes mechanis-
tically requiring positional information. Other candidates, such

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 671 | 7

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00671” — 2013/10/21 — 10:38 — page 8 — #8

Fadden and Minshew Dysregulation of axonal growth and guidance in ASD

as those involved in mTOR and Rho-GTPase signaling, medi-
ate neuronal interpretation of positional information and direct
the response in a context-dependent manner. This recycling phe-
nomenon may explain the link between arealization/proliferation
abnormalities (frontal overgrowth), axonal and dendritic abnor-
malities, and synaptic dysfunction in ASD. Current interpretations
of the genetic and neuropathologic data are more a matter of
emphasis than mutual exclusion, however, the concept of a sig-
nificant axonal component to the pathogenesis of ASD should be

considered in constructing a model that encompasses all of the
clinical, structural, and functional observations.
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