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What is the purpose of attention? One avenue of research has led to the proposal that
attention might be crucial for gathering information about the environment, while other
lines of study have demonstrated how attention may play a role in guiding behavior to
rewarded options. Many experiments that study attention require participants to make
a decision based on information acquired discretely at one point in time. In real-world
situations, however, we are usually not presented with information about which option
to select in such a manner. Rather we must initially search for information, weighing
up reward values of options before we commit to a decision. Here, we propose that
attention plays a role in both foraging for information and foraging for value. When foraging
for information, attention is guided toward the unknown. When foraging for reward,
attention is guided toward high reward values, allowing decision-making to proceed by
accept-or-reject decisions on the currently attended option. According to this account,
attention can be regarded as a low-cost alternative to moving around and physically
interacting with the environment—“teleforaging”—before a decision is made to interact
physically with the world. To track the timecourse of attention, we asked participants
to seek out and acquire information about two gambles by directing their gaze, before
choosing one of them. Participants often made multiple refixations on items before
making a decision. Their eye movements revealed that early in the trial, attention was
guided toward information, i.e., toward locations that reduced uncertainty about value.
In contrast, late in the trial, attention was guided by expected value of the options. At
the end of the decision period, participants were generally attending to the item they
eventually chose. We suggest that attentional foraging shifts from an uncertainty-driven to
a reward-driven mode during the evolution of a decision, permitting decisions to be made
by an engage-or-search strategy.
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INTRODUCTION
Recent studies have suggested that visual attention might play
a role both in acquiring information and searching for reward.
Several groups have demonstrated that reward can guide atten-
tion (Ding and Hikosaka, 2007; Hickey et al., 2010; Anderson
et al., 2011; Schütz et al., 2012; Camara et al., 2013). Others
have argued that attention needs to be drawn to stimuli that
have a high uncertainty to facilitate acquisition of information
(Yu and Dayan, 2005; Hogarth et al., 2008; Gottlieb and Balan,
2010). Acquiring information by directing attention is an active,
dynamic process (Ballard et al., 1995; Shinoda et al., 2001), where
information is the reduction of uncertainty in our estimate of
world states or future outcomes (Feldman and Friston, 2010).

Which of these two drives, reward or uncertainty, controls the
shifts of attention before a decision? Information integration for
decisions has been the objective of a wealth of neuroscientific
studies (e.g., Platt and Glimcher, 1999; Shadlen and Newsome,
2001; Smith and Ratcliff, 2009; Basten et al., 2010; Hare et al.,
2011), but surprisingly little research has focused on the dynamic
control of attention while searching for information (Reutskaja
et al., 2011; Gottlieb, 2012). In most experimental situations,

observers simply choose between two options at a discrete point
in time, but are not allowed to sample the environment and inte-
grate different types of information as they might naturally, over
time.

Behavioral ecology, by contrast has concerned itself with
how animals sample the environment (forage) before coming
to a decision (Krebs et al., 1978; Stephens, 1987; Stephens and
Krebs, 1987). Here we present a new experimental paradigm
that allows us to compare how attention is directed to reward,
risk, and uncertainty about reward. We then discuss a frame-
work in which attentional guidance shifts during choice, from
information-driven, to reward value driven.

Attention influences decision processes both by selecting
which information is accumulated in decision variables (Einhorn
and Hogarth, 1981; Roe et al., 2001; Krajbich et al., 2010), but
also by biasing choice toward the attended option (Shimojo et al.,
2003; Brandstätter, 2011). But what guides attention itself? Unless
carefully guided, attention would be maladaptive, biasing infor-
mation and choice. When attention biases choice, attending to
the higher expected value (EV) might be beneficial; whereas
when attention determines which information is gathered, then
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attending to uncertainty might be beneficial (Itti and Baldi, 2009).
Although information-seeking may ultimately help to obtain
reward, we distinguish it from “value-driven” guidance in which
attentional is directly attracted toward reward.

Information could drive attention in two possible ways. A
perceptual model of attention predicts that we focus on items
that have greater uncertainty in their identity (Feldman and
Friston, 2010). However, an action-driven model of attention
would require that we focus on items that have greater uncertainty
in their value. In other words, attention’s primary role might be to
provide decision making systems with information about the EV
of the options being considered (Gottlieb and Balan, 2010), and
thereby reduce risk.

Neither of these information-driven models explains the find-
ing that, in choice, we generally choose the item we were last
attending to (Krajbich et al., 2010), at least when the attended
item is more valuable than the alternatives. We suggest that this
tendency, although intuitive, requires explanation, and reveals key
features of the tight link between attention and choice. A parsimo-
nious explanation of this phenomenon is to regard attention as a
form of foraging.

Rather than simply deciding which item is better, we argue
that decisions are made by an “engage or search” strategy.
Unlike classical decision-making models, this captures the intu-
ition that we rarely choose something we are not attending to
(Reutskaja et al., 2011). Attentional shifts, then, can be viewed
as a low-cost alternative to physically moving around an environ-
ment before engaging with the world. In other words, attention
might be a mechanism of “teleforaging”: gathering and evaluat-
ing information at a distance before physically engaging with the
environment.

In such a model, when we are free to search for information,
attention would be considered to be driven both by uncertainty
and EV, to jointly achieve the goals of information acquisition,
and option selection. Option selection is then framed as either
accepting the currently attended option (“engage”) or moving to
the other location (“search”). From this perspective, any progres-
sive reduction of uncertainty by guiding attention can be viewed
as “foraging for information.”

Foraging for food involves deciding, after each movement,
whether to engage a current option, or to move off and continue
the search (e.g., Charnov, 1976; Kolling et al., 2012). Foraging
for information, we propose, might involve deciding at each fixa-
tion whether information is sufficient to support choosing of the
attended option, or not. Critically, over the course of each indi-
vidual fixation, we might expect the amount of information being
acquired to decrease (Figure 1). Thus, attention might shift to a
new location when the information rate drops below a thresh-
old, in parallel with animal models of foraging for reward (Waage,
1979; Stephens and Krebs, 1987).

Viewed as foraging, information acquisition would be
expected to show a characteristic timecourse. Exploration during
foraging is driven by our estimates of uncertainty in a variable
environment (Behrens et al., 2007), so rather than simply attend-
ing to the highest expected value, a systematic exploration of
the options would be envisaged to occur, perhaps described by
an analog to the optimal departure rule developed for animal
foraging (Pyke, 1978). Furthermore, according to this view,

Leaky accumulation of information
Precision of representation of item

TimeItem refixatedItem fixated

FIGURE 1 | Foraging for information. We test the view that foraging for
information involves the leaky accumulation of information about the
fixated item. Information acquisition involves a time-dependent,
location-specific gain in precision. Participants should leave a location when
the information gain rate falls below a threshold, in parallel with classical
foraging for reward (Stephens and Krebs, 1987). The location fixated next is
determined by which location has the greatest estimated information gain
rate. Meanwhile information about the original item decays. This predicts
that participants refixate the first item seen, that dwell times shorten over
the course of a trial, and that longer fixations result in fewer subsequent
refixations of the same item.

options might also be revisited, as needed, to acquire more
information (Waage, 1979; Pyke, 1984; Gill, 1988).

But later during a decision process, the marginal information
yield (reduction in uncertainty) of an attentional shift should
become small (Figure 1) as less information is gained with each
new fixation (Armel and Rangel, 2008). Therefore, according to
this perspective, we would anticipate that attention becomes pro-
gressively more governed by expected value and guided toward
the more valuable option. This schema allows a foraging-type
“accept or reject” decision to be made at each fixation, culminating
in the selection of an option.

An alternative way of putting this hypothesis is that under
conditions of uncertainty, information carries salience, but as
more information is acquired, reward value should become
salient. The allocation of attention during a decision is ini-
tially uncertainty-driven, but as information is “consumed,” and
EV estimates become more precise, EV itself guides attention,
culminating in choice of the attended option. Such dynamic
changes in attentional guidance could resolve a longstanding
rift in the attention literature, between those that demonstrate
attention to uncertainty, vs. those showing that reward guides
attention.

We designed a task specifically to examine the timecourse of
attentional control before a decision is made. In our design, par-
ticipants are allowed to forage for information from a limited set
of risk and reward data for as long as they like before they make
their decision. By tracking their eye movements we can obtain a
measure of where, how and in what order attention is deployed
over time prior to a decision. Participants viewed two gambles,
on the left and right of the screen, each of which was character-
ized by a probability and a monetary stake, displayed numerically
on a vertical axis (Figure 2A). They had to fixate these four num-
bers to acquire information about the two gambles, importantly
without any time limit, before they chose one of the two gambles
by a keypress.
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After choosing, they either won or lost the stake of the chosen
gamble, with the specified probability of winning. Thus, choosing
a probability greater than 50% was likely to win the stake, whereas
below 50% was likely to lose money. A range of expected values
and risks were chosen for each gamble. One gamble was always
more risky than the other, but could have a higher or lower EV
than the safer gamble (Figure 3). This allowed us to describe the
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FIGURE 2 | (A) Our task is a choice between two gambles, presented on
the left and right hand sides of the screen. Participants freely viewed a
display with four numbers, to acquire information about the two gambles.
Without a time limit, they selected the preferred gamble by a keypress.
Each gamble had a probability of winning vs. losing, denoted with a “%”
suffix, and a monetary stake, denoted with a “£” prefix. After selection, a
sound indicating win/lose was played over a loudspeaker, and the bank
balance was displayed centrally. The numbers were small and were
presented close to isoluminance, ensuring that fixation was necessary to
identify numbers. (B–F) Example scan paths of the first four acquisitions
from one participant, aligned so that the first saccade is to the lower left.
Trajectories are classified according to the fixation pattern: each of the three
saccades could either be within an option or across options. Numbers
represent order of acquisition.

trajectory of attention in terms of the relative “pull” of EV and
uncertainty (composed of gamble risk and EV variance).

MATERIALS AND METHODS
PARTICIPANTS
In our task, participants had to make a choice between two gam-
bles, but were given unlimited time to come to a decision. The
gambles were presented on the left and right hand sides of the
screen and participants freely viewed a display with four num-
bers, two on either side of the screen, to acquire information
about the two gambles. Each gamble was given a probability of
winning vs. losing (denoted with a “%” suffix) and a monetary
stake (denoted with a “£” prefix). Both the probability and stake
associated with a gamble were presented separately, one above
the other (location randomized). Participants selected their pre-
ferred gamble by a keypress. After selection, a sound indicating
win/lose was played over a loudspeaker, and the “bank balance”
was displayed centrally, which was either incremented or decre-
mented by the chosen stake. We recruited 17 participants from an
advert, mean age 41. Research was conducted with informed con-
sent, and was approved by the Imperial College Research Ethics
Committee.

STIMULI
Stimuli were displayed in Matlab and PsychToolbox on a CRT
at 1024 × 768 pixels, 100 Hz. Participants had to fixate a central
cross before the start of each trial. Numbers were displayed in the
four quadrants of the display, at an eccentricity of 10◦, with size
0.5◦. Probabilities were indicated with a “%” suffix, and mone-
tary stakes were indicated with a “£” prefix (Figure 2A). In order
to ensure that identifying a number required fixating it, all num-
bers were two digits long, were masked by “#” symbols on all four
sides, and were close to isoluminance with the background.

Fifty percent of the trials were “colour-coded,” such that prob-
abilities were in one color, and stakes in another, with the
code being consistent for each participant (counterbalanced).
Participants were informed of these color contingencies before
the experiment. Thus, in the color-coded trials, they could know
whether each location contained a probability or a stake, in
advance of fixating it. This allowed us to examine whether par-
ticipants could utilize such prior knowledge to strategically fixate
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FIGURE 3 | Trials were chosen to give a spread of expected values

(EV s) and a spread of risks. One gamble always had a high risk, and
the other a low risk. On some trials the choice was easy (small EV

difference), on others it was hard (large EV difference). Colors
demonstrate the choice on each trial for one representative participant,
showing near-optimal choice.
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items of the same “dimension” (stake or probability) when look-
ing between options.

During the decision period, an Eyelink 1000 Hz infrared eye
tracker allowed us to follow the sequence in which numbers were
fixated over the decision period. Participants then made a choice
by pressing a left or right key with the index or middle finger of
their right hand. When the choice was made, an auditory tone of
high or low pitch indicated whether participants had won or lost,
and after 1500 ms the running total (bank balance) amount won
was displayed in the center of the screen for 1 s. Participants had
to fixate a central cross for 500 ms prior to the start of the next
trial. Participants completed two 64-trial blocks over 30 min and
were paid based on their winnings.

We analyzed fixations in the period from display onset to
choice keypress. We removed blinks and discarded fixations
shorter than 50 ms and fixations off the display items. The item
fixated at any time was determined with an 8◦ radius. Blinks
accounted on average for 2.4% of decision time, and off-item fix-
ations accounted for 3.8% of the decision time. Dwell times were
calculated as the time between arriving at an item, and arriving at
the next item.

GAMBLES
The probability and stake for each gamble gives an expected
value (EV) and a risk (R). Here, risk is defined as variance or
uncertainty in the outcome:

EV = S · (2P − 1) (1)

where S is stake and P is probability of winning. Note that the
factor 2P − 1 incorporates the possibility of both winning and
losing the stake. Probabilities under 50% yield a negative EV.
From Equation (1), we can see that a gamble with a 50% prob-
ability of winning or losing has EV = 0. At the start of a trial,
both P and S are uncertain, but after acquiring information, they
will be more precisely known. Therefore, we can consider both S
and P as random variables that must be estimated by the brain.

Of note, knowing only the probability gives information about
the expectation of EV, whereas knowing only the stake does
not: the expectation of EV remains zero. For example, knowing
whether the stake is £10 or £90 makes no difference to partici-
pants’ (mathematical) expectation of reward, because they could
either win or lose it.

Next, we can calculate gamble risk, defined as variance of
reward value:

R = 4S2P(1 − P) (2)

According to this equation, a probability of 50% carries the
highest risk because the outcome is most uncertain, and as prob-
abilities get closer to 0 or 100%, the outcome is more predictable,
so risk falls. Notably, the expectation of risk also changes when
we learn a stake (unlike our expectation of EV)—i.e., after seeing
a £90 stake, the risk estimate is high, since the outcome value is
highly variable: +£90 or −£90.

On each trial, one of the two gambles had a high risk,
and the other had a low risk (Figure 3). Values were chosen

using four trial types, where the risky EV/safe EV were +8/+8,
+8/−8, −8/+8 or −8/−8. Each of the four values (two probabil-
ities and two stakes) was then randomized by adding a uniformly
distributed integer from −10 to +10. This gave a set of trials
which had a spectrum from similar EVs to different EVs, and high
to low EVs. Similarly, risks ranged from high to low, with the dif-
ference in risks ranging from 20 to 70. The risky gamble’s stake
was between 57 and 77, and the safe stake was 10–30.

RESULTS
PRE-CHOICE BEHAVIOR
During the decision period, we traced the order of acquisi-
tion of information (one subject’s first 4 fixations are shown
in Figure 2B–F). “Acquisition” was defined as a period during
which gaze remained on a single number (stake or probability),
before moving to a different quadrant. Each acquisition lasted
between 85 and 1800 ms, and could constitute several consecu-
tive re-fixations around one particular item. Participants visited
all four locations on 89% of trials. An optimal strategy might be
to make only four acquisitions—provided that working memory
can store four items, as some have argued to be the case (Cowan,
2010). However, we found that participants made on average 6.6
acquisitions before coming to a decision, and sometimes required
up to 14 (Figure 4A).

In other words, they frequently refixated items prior to mak-
ing a decision. One might predict that on this task, participants
would visit all four locations before refixating any of them, con-
sistent with “inhibition” of visited locations seen in visual search
(Gilchrist and Harvey, 2000; Weger and Inhoff, 2006). However,
our data showed, surprisingly, that on 49% of trials participants
made refixations to a previously examined location before they
had visited all four locations.

Mean dwell time on each acquisition was 762 ms and this
decreased systematically over the course of a trial (Figure 4B). In
this and subsequent analyses of fixation duration, we excluded the
final acquisition during which the button-press choice was made,
because the duration of this final fixation was presumably not
determined by attentional search processes, but rather by action
initiation. Dwell time on the first item was longer when a high
stake was fixated, compared to a low stake [stake > median of

A B

FIGURE 4 | (A) Average histogram of the number of acquisitions (periods
contiguously fixating one number) on each trial. Participants usually make
four or more acquisitions, but sometimes require 14. (B) Dwell times
decrease during the course of a trial. The final acquisition of each trial was
excluded. Mixed-effects One-Way ANOVA showed a main effect of
acquisition serial position in the trial, and the red bar shows pairs of
significant differences (p < 0.05).
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£41, mean difference 33 ms, t(16) = 2.18, p = 0.045]. The gam-
ble’s probability had no effect on dwell time (p = 0.38). Thus, at
the start of a trial, gaze—and by inference, attention—appeared
initially to be attracted by higher risk (since stake determines the
variance in outcome) but not by higher EV.

CHOICE BEHAVIOR
Participants chose the higher-EV gamble on 69% of trials over-
all. This occurred more often on “easy” trials—i.e., when the
EV-difference between choices was large (absolute EV difference
> median of £11: 77 vs. 61%, main effect of EV difference, p <

0.001). The higher EV was chosen less often when the risk dif-
ference was large (64 vs. 74%, main effect of risk difference, p =
0.03). Participants took less time to choose between the options
when EVs were similar and large. There were strong biases for
participants to choose the first option they fixated (p < 0.001)

B

A

FIGURE 5 | (A) Did attention correlate with choice? The first acquisition
(left) predicts subsequent choice, despite being uncorrelated with any of
the values seen. This demonstrates that participants are reliably biased by
the first information they acquire. The final acquisition (right) strongly
reflects the choice that is about to be made, with an accuracy of close to
80%: participants rarely choose an option they are not attending to. (B)

Which factors influenced choice? An 8-factor model logistic regression
model was fitted to each subject’s choices, i.e., whether they chose the
risky or safe option. We included included a bias term indicating individual
risk preference, EV and risk of each option, and also eye movement factors
from panel 5A—indicating whether the first and last fixations on each trial
were to the risky option. The mean fitted normalized regression coefficients
are shown. Error bars are s.e.m. across subjects. Asterisks indicate a
regressor is significantly different from zero using t-test across subjects
(p < 0.05). The initial fixation regressor was correlated with the final fixation
regressor, and did not significantly contribute to choice on this analysis.

or the last item fixated (p < 0.001, Figure 5A), consistent with
previous reports (Krajbich et al., 2010). This was despite the
first saccade being directed essentially randomly (probability of
25% +/− 2% to each type of item, probabilty or stake, high
or low value, p > 0.5), even when informative color coding (see
Methods and below) was present. Logistic regression revealed
that preference was governed primarily by EV difference but
was also influenced by final fixations [both t(16) > 7, p < 0.001,
Figure 5B]. The preferred option consistently received more fixa-
tions and longer fixations, also consistent with previous findings
(Glöckner and Herbold, 2011).

In our experimental design, 50% of the trials were “colour-
coded,” such that probabilities were consistently in one color, and
stakes in another. Thus, in the color-coded trials, participants
could know whether each location contained a probability or a
stake, in advance of fixating it.

If participants used this color information to guide attention,
we might expect more horizontal saccades compared to diagonal
saccades when corresponding dimensions (probability or stake)
were aligned horizontally, and the converse when they are aligned
diagonally. We found that although horizontal saccades were
always more likely than diagonal saccades, there was no effect of
display alignment (t-test of proportion of between-option sac-
cades that were horizontal, p > 0.05), indicating that participants
did not use color information in attentional guidance.

Choice reaction times were significantly faster when color-
coding was present [4.32 vs. 4.69 s, F(1, 16) = 8.88, p = 0.009],
irrespective of whether the probabilities and stakes were hori-
zontally or diagonally aligned. The advantage of color-coding
was also evidenced by shorter durations of acquisitions (736 vs.
836 ms for the first acquisition).

INFORMATION FORAGING
To analyse the data further we next developed a method to
consider how information about EV is acquired over multiple fix-
ations. A foraging account of attention postulates that the rate of
acquiring new information decreases as participants gain greater
knowledge about the fixated target (Figure 1).

k1
dI

dt
= Imax − I (3)

Rate of gain of information ∝ 1 − information already known

Once the information gain rate drops below the average infor-
mation gain rate in the task, participants would be expected to
direct attention to a new location, according to the marginal value
theorem developed for foraging behavior (Charnov, 1976).

To explain refixations, we further assume that, after atten-
tion has left, the entropy of the posterior gradually rises, as
information is lost. In other words, there would be a natural
decay:

k2
dI

dt
= −I (4)

Rate of loss of information ∝ amount of information
currently known
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With the assumption of decay, refixations can be explained by
a rule that moves attention toward the unknown (toward high
entropy). This information foraging account predicts that:

(P1) Participants are more likely to revisit locations that were
visited longer ago, because as the information decays, that
location attracts more attention.

(P2) Refixations are shorter than new fixations, because infor-
mation is already (relatively) high at the start of fixation.

(P3) Items that were fixated for longer periods are refixated fewer
times, because participants have more information about
those locations, and attention is drawn there less.

All three predictions turned out to be borne out by the results.
One might predict that on this task, participants would visit

all four locations before refixating any of them, consistent with
“inhibition” of visited locations seen in visual search (Gilchrist
and Harvey, 2000; Weger and Inhoff, 2006). However, our data
showed, surprisingly, that on 49% of trials participants made
refixations to a previously examined location before they had
visited all four locations.

Refixations go to locations fixated longer ago (P1)
At each fixation, we calculated the recency with which each
display item was previously seen—i.e., how many items ago it
was last fixated. On acquisitions that were refixations, the recency
of the fixated item was 3.13 (SD 0.29). This compared with
a recency of 2.72 (SD 0.13) for the other two items that were
not selected by that eye movement [F(1, 19) = 16.9, p < 0.001].
Thus, participants preferentially refixated items that had not been
seen recently. The effect can be equally explained by foraging or
inhibition of return.

Refixation durations compared to new fixations (P2)
Refixations were shorter than acquisitions at unvisited locations
even when they occurred at the same serial position in the trial
[Figure 6A, t(16) > 2.8, p < 0.01 at serial positions 3, 4, 5, and 6],
just as might be predicted from a foraging perspective. This

finding suggests that once viewed, an item cannot hold attention
for as long.

Initial fixation time affects subsequent refixation duration (P3)
Initial dwell times were shorter at a location that was later refix-
ated, compared to locations that were not refixated, even for
acquisitions at the same serial position within a trial (Figure 6B,
p < 0.01 for acquisitions at serial positions 1 and 2; p < 0.05 at 3
and 4). Thus, items that were briefly viewed were more likely to be
refixated. This is in keeping with less information being accrued
on shorter acquisitions (Figure 1). Participants who made shorter
fixations on average also made more refixations (regression of
mean dwell time over first four acquisitions against 1/(number
of refixations), transformed to remove positive skew, r2 = 0.26,
p = 0.038), confirming that less time spent on an item leads to its
refixation (Figure 6C).

All these findings support an information-seeking model that
parallels animal models of foraging. An explanation of some of
these results could be that refixations are guided by the strength
of some memory trace. Is there any specific evidence that infor-
mation is in fact the driver of attention? To answer this, we must
examine how information gain depends upon the actual numbers
seen.

BAYESIAN ESTIMATE OF EV AND RISK FOR EARLY FIXATIONS
While information accumulation is described by Equations (3)
and (4), deciding where next to look requires a normative
rule governing attention. Such a rule would specify how atten-
tion is driven by the distributions of the estimated decision
variables, as they evolve over the decision period. We postu-
late that visiting and re-visiting of locations optimizes infor-
mation gain. Similar information-guidance rules for attention
have previously been proposed for low-level feature searches
(Renninger et al., 2007; Hou and Zhang, 2008). In the con-
text of choice, we expect attention to be specifically guided by
uncertainty in EV.

For the first two fixations of a gamble, we follow step-by-step
the best estimate of EV and risk, by tracking the evolution of

A B C

FIGURE 6 | (A) Dwell times on previously unfixated items are longer
than for previously fixated items (ANOVA main effect of previous
refixation, p < 0.01; pairwise t-tests p < 0.01 at acquisitions 3–6).
(B) Dwell times are longer when the item is never fixated again,

compared to when it is fixated again later in the trial (ANOVA main
effect of future refixation, p < 0.05; t-tests p < 0.05 at acquisitions
1–4). (C) Participants who made more refixations had shorter dwell
times on average.

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 711 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Manohar and Husain Attention as foraging for information

the Bayesian density for the EV and risk. We start with a flat
prior, representing the lack of knowledge about the items on
screen (qualitatively similar results apply if the prior is taken over
all actually presented trials). After a single fixation, either the
probability or the stake is known with greater precision, illus-
trated here as a gaussian distribution (Figure 7, heatmap to left
of distribution).

If a stake is seen first, the density over stakes is transformed
from the flat prior, to a peaked posterior (Figure 7, left and
middle columns). We approximate this as

π (S = s | e1) ∝ π(S = s) · N (s − e1, σ) , (5)

Posteriorover stakes = prior over stakes × information gained,

where π(S = s) = 1
100 is the prior and π(S = s | e1) is the poste-

rior over stakes after the stake value e1 is seen.
The intuition is that participants do not know for certain

what number is displayed, but a narrower distribution repre-
sents having more precise knowledge. Similar belief-updating
methods have recently been used for locating targets in machine
vision (Butko and Movellan, 2008) and inferring word identity in
reading (Bicknell and Levy, 2010).

Importantly, participants can now form estimates about the
EV and risk:

π (EV = v | e1) =
∫

π(P = p) · π

(
S = v

2p

∣∣∣∣ e1

)
dp (6)

Posterior probability = probability of S · (2P − 1)

of EV being v being equal to v;

π (R = r | e1) =
∫

π(P = p) · π

(
S = 1

2

√
r

p(1 − p)

∣∣∣∣ e1

)
dp (7)

Posterior probability = probability of 4S2P(1 − P)

of risk being r being equal to r.

These follow from combining Equations (1) and (2) with the pos-
terior of (5). This captures the notion that after seeing a high
or low stake, participants update their expected winnings and
risks.

After a second fixation within the same gamble, par-
ticipants acquire information about the probability e2,
and the new estimated density of the probability P is
given by

π
(
P = p | e2

) ∝ π(P = p) · N (
p − e2, σ

)
, (8)

with the prior π(P = p) = 1
100 . Putting π

(
P = p | e2

)
in place

of π(P = p) in Equations (6) and (7) gives the new posteri-
ors for EV and risk after the second fixation, π (EV | e1, e2)

and π (R | e1, e2) (Figure 7, right column). This posterior now
incorporates the fact that participants have some knowledge
about both the stake and probability to estimate what they
can win.

After the first fixation on the stake, should participants fix-
ate the probability of the same option? We quantify how much
information can be gained by looking at the probability, using
an information metric. The expected information gained about
EV (the gain from a within-option saccade, i.e., vertical saccade)

Evolution of expectations about an option while acquiring information
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FIGURE 7 | Bayesian updating of expectations. What information is
obtained in the first two acquisitions? Heatmaps on the left of each
panel illustrate the participant’s estimated distribution of probability
and stake. From this we calculate the estimated distribution of EV s
and Risks Equations (6) and (7). Far left: the priors give a relatively
flat distribution for EV and risk. First column: after the first

acquisition, either a probability or stake is seen, narrowing the
distribution in that dimension, and altering the density of EV and
risk. Second column: after the first acquisition, the participant shifts
attention to the other value in the same option, and his estimate of
EV and risk improves again. As more information is accrued by
fixations, the distributions become more peaked.
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could be measured in bits as the average over possible values of
e2 of

Information = DKL [π (EV = v | e1, e2) ||π (EV = v | e1)]

=
∫

π (EV = v | e1) · log

(
π (EV = v | e1)

π (EV = v | e2)

)
dv.(9)

Information gain = distance between probability distributions
before and after seeing an item.

Intuitively, if gazing at a location could dramatically change the
distribution of possible EVs, then that location is potentially very
informative. That is, informativeness is defined as the distance
between the current and possible future distributions of EV.

Analogous results are found when a probability is fixated first.
The information gained by remaining within an option is shown
in Figure 8, and is characterized as follows:

(P4) If the first item seen was a stake, more information is gained
by remaining within the same gamble, than if a probability
was seen.

(P5) More information is gained if the stake seen was high,
compared to low.

(P6) If the first item seen was a probability, it is more informa-
tive to remain within the same gamble if the probability was
high or low, than when it is close to 50%.

These features are robust to differing amounts of information
per fixation (changes in σ). We took σ = 15 for the residual
uncertainty about a number after it is fixated once. Note that pre-
dictions P4–P6 (predicting fixation sequence) are independent
of P1–P3 (predicting fixation duration), because the Bayesian
updating in its present form ignores fixation durations and
decay. A composite model incorporating both decay and time-
dependent updating could be used, which would generate all six
predictions P1–P6, but would require fitting of accumulation and
decay rate parameters. Instead, we chose to split the two aspects
of the model to allow for more straightforward testing.

IS THE FIRST SHIFT OF ATTENTION DRIVEN BY EV OR INFORMATION?
After the first acquisition, attention could either be directed
within the gamble to the other number (vertical saccade), or
across to the opposite side gamble (horizontal or diagonal). If
attention were driven by expected value, after the first fixation,
we would expect participants to look within an option after see-
ing a high probability, but not after a low probability, and no effect
of stake size (seeing a high stake indicates a high risk, but without
informing about the expected value). This prediction is illustrated
by the bars in Figure 8B. On the other hand, if information guides
attention, we should expect high stakes to cause more within-
option saccades than low stakes—because the higher the stake,
the more informative is the corresponding probability.

We found that overall participants were generally more likely
to look within the current gamble (60% preponderance). If the
first fixation was on a stake, participants were more likely to
look within the option, compared to when they first fixated a
probability [63 vs. 57%, t(16) = 2.17, p = 0.046, Figure 8B]. This

A

B C

FIGURE 8 | (A) Attention may be guided by EV or by information seeking.
The two drives predict different patterns of fixation in our task. If attention
were EV -seeking, gaze ought to remain within the current option if the
first-seen item was a high probability, but not if it were a low probability. On
the other hand, if attention were information-seeking, gaze ought to remain
within the current option if a high stake was seen, compared to a low stake.
(B) After the first fixation, participants may look vertically within the option,
or across to the other option. Where they look next depends on what they
just saw: within-option saccades are commoner after seeing a stake. This is
predicted when attention is information-driven, rather than EV -driven.
Green bars represent the theoretical information gain from making a
within-option saccade, calculated as

〈
DKL[posterior EV || prior EV]〉prior p,s,

which represents how much information one could expect to learn after
making a particular saccade. Yellow bars represent the Bayesian estimate
of EV of the current option. Both green (information) and yellow (EV ) bars
are arbitrarily scaled. (C) On trials where the first two acquisitions were
within one gamble, participants sometimes refixate the first item seen.
This is more likely when the probability was high (p = 0.047), but there was
no effect of stake (p > 0.05, with no interaction).

is consistent with an information-seeking account of attention,
since stakes initially provide no information about EV, whereas
probabilities do. However, we did not find an effect of the magni-
tude of the probability or stake first fixated (p > 0.2). Comparing
these result with optimal information-seeking (previous sec-
tion) shows that, in our participants, attention seeks information
according to criterion (P4), but not (P5) or (P6), for the first
gaze shift.

WHAT DRIVES REFIXATIONS ON THE SECOND SHIFT OF ATTENTION?
Next, we examined only trials where the first two acquisitions
were both within one option. At this point participants had seen
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both the stake and probability of one option. Subsequent saccades
could either be vertical, refixating the first value seen, or could go
across to the other option.

Equations (5)–(9) describe how informative the next shift of
attention would be, given the estimates at the end of the second
acquisition.

If refixation were driven by EV, we might expect more of these
refixations when a high probability and a high stake were seen,
and fewer when a low probability and high stake was seen. Note
that a pure information-seeking account would always predict
moving to the other option. We found that on average partic-
ipants immediately refixated in 37% of trials, and there were
more refixations when the probability was high than when it was
low [main effect of option probability, F(1, 48) = 4.15, p = 0.047,
Figure 8C]. This is consistent with a pull of the higher EV, and
demonstrates that the second shift of fixation is not simply ran-
dom. As expected there was no effect of the stake size (p = 0.7).
However, we did not find the expected interaction between the
probability and stake (p = 0.49): high stakes did not increase the
drive of probability.

In these analyses of the first and second shifts of attention, we
included color coding as a factor. There was no main effect of
color coding, and no interaction (p > 0.05). Since we had only
expected color coding to be relevant for the first two shifts of
attention, we collapsed across color conditions for the following
analysis of later fixations.

SUBSEQUENT TIMECOURSE OF ATTENTIONAL CONTROL BY EV AND
INFORMATION
Information seeking only partly predicts the first two shifts of
attention. For subsequent fixations, however, it is more effec-
tive. We can follow the acquisition sequence that participants
made, iteratively applying Bayesian updating Equations (5)–(9).
At each fixation, we calculated the online estimate of the option
EVs and risks, assuming a fixed amount of information about
the number is acquired on each acquisition, with no forgetting.
The expectation of information gain Equation (9) gives us the
optimal next saccade to maximize information—either informa-
tion about EV or risk. Figure 9A shows on each fixation, whether
or not participants fixated the “best” item in order to maximize
information about EV, or risk. On the fourth and fifth acqui-
sitions in a trial, attention is strongly drawn toward the higher
information location, but on later acquisitions only weakly so
[compared to chance, t(16) > 2.79, p < 0.05 correcting for 24
multiple comparisons].

What was the timecourse of the attentional pull of EV? Early
acquisitions were equally likely to go to the lower or higher EV
option, whereas later acquisitions (7th and 8th) tended toward the
higher EV option [Figure 9B, t(16) > 2.15, corrected p < 0.05, up
to 58% to higher EV ; qualitatively similar results were obtained
using σ = 5, 15, or 60]. Thus, value had a stronger pull later in
the decision period.

The acquisition immediately after all locations had been visited
was strongly drawn toward the initially fixated item (Figure 10),
despite initial the initial fixation being at chance to each item
type; this is precisely what would be expected from the decay of
information.

A

B

FIGURE 9 | Timecourse of attentional control. (A) Early on in a trial,
attention is drawn by information. There is a strong pull by information
about expected value, as calculated by Bayesian updating. The y-axis shows
how often participants’ saccades coincide with the information-seeking
prediction. This falls to chance (33%) after the sixth acquisition in a trial.
There is a weak effect of information about risk. Asterisks denote
acquisitions when gaze was significantly drawn toward the highest
information, relative to chance (p < 0.05). (B) Participants increasingly tend
to fixate on the option with higher EV through a trial. For both (A,B), EV
and risk estimates for participants’ fixation sequences π(EV | e1, e2 . . . ei )

were calculated using Bayesian updating rules using σ = 15.
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FIGURE 10 | The chance of refixating each displayed item. Line colour
indicates which item was fixated first on a trial. Refixations are strongly
drawn to the very first acquisition of the trial.

To rule out possible bias due to there being more acquisitions
in trials with lower and more similar EVs (see below), we aligned
each trial’s acquisition series to the end of the sequence, such that
all the final, penultimate etc. acquisitions were grouped. Again,
the effect of EV increased monotonically through the trial, to
the final saccade which had a 62% chance of going to the higher
EV. The final saccade correlated with choice on 80% of trials
(Figure 5).
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The results suggest that both uncertainty and EV can drive
attentional shifts, but at different points in a trial. A possible
attention-guiding rule might be to maximize some linear com-
bination of informativeness and estimated expected value, where
the weighting changes through the trial:

Vi = α · Ep, s(Ii) + (1 − α) · Ep, s(EVoption(i)) (10)

value of expected expected
fixating a = α · information gain by + (1 − α) · value of
location fixating item option

over the three possible shifts of attention. Here Vi represents
the intrinsic worth of a given shift of attention, Ii is its informa-
tion gain given by Equation (9), and EVoption(i) is the estimated
reward EV of the corresponding option. The coefficient α(t)
might begin at 1, and decrease to zero through a trial, weighting
first information then value.

AMOUNT OF FORAGING FOR INFORMATION DEPENDS ON EV AND
RISK
We quantified foraging for information by the number of acquisi-
tions (changes of fixation quadrant) before choosing. Participants
made more acquisitions when the expected values of the gam-
bles were both low, than when they are both high [ANOVA,
median split factors: mean EV, EV difference, mean risk, risk
difference; main effect of mean EV, F(1, 16) = 13.4, p = 0.0038].
They also made more acquisitions when the difference in expected
values of the two gambles was small (Figure 11), i.e., harder deci-
sions led to more exploration [main effect of EV difference,
F(1, 16) = 8.96, p = 0.0086]. This would be consistent with esti-
mated distributions of value getting progressively sharper, or
more accurate, with more information: sharper posterior dis-
tributions are required in order to distinguish between options
with similar EVs, as predicted by diffusion and rise-to-threshold
models (Carpenter and Williams, 1995; Ratcliff and Smith, 2004).
When the two risks were similar, the number of acquisitions was
strongly modulated by EV difference. But when the two risks were
very different, EV had little effect [interaction of risk difference
with EV difference, F(1, 16) = 5.53, p = 0.023) (Figure 11).

Are these similarity-driven refixations specifically targeted to
the most informative locations? If refixations were attracted by
information about individual display items, we would expect
participants to refixate probabilities when the probabilities are
similar, and stakes when the stakes are similar. However, this effect
is not seen (Figure 12, left). Participants do make more refixations
when the probability difference is small, but the extra refixations
are not specifically directed to the probabilities [main effects of
mean probability and probability difference, F(1, 112) = 22 and
28, respectively, p < 0.001, but no interaction with which item
was refixated). Similar stakes also increase refixations compared
to different stakes, but again a general increase of refixation is
seen, not specific to the stakes [effect of stake difference F(1, 112) =
0.03, Figure 12 right]. This finding suggests that the compari-
son takes place not in feature-space, but in value-space: both
the probabilities and stakes are counted as informative, when
comparison of either is difficult.
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FIGURE 11 | Participants make more acquisitions on trials where the

mean EV of the two gambles is low, and when the two EV s are

similar (higher difficulty). The presence of a large risk difference reduces
the difficulty effect (interaction p < 0.05). High mean risk increases the
difficulty effect when mean EV s are low, but decreases it when mean EV s
are high (interaction p < 0.05).
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FIGURE 12 | Information about number identity or option EV ? When
probabilities are similar, or stakes are similar, the decision is harder because
more precise information is required to distinguish the options. Accordingly
participants make more acquisitions by refixating. However, if the
probabilities are similar, we do not find increased refixations specifically of
probabilities; likewise when stakes are similar, we do not see increased
refixations specifically of stakes. This suggests that the representational
level that directs attention is not a perceptual or numerical level, but rather,
integrated EV and risk of the options. Asterisks: 3-way ANOVA p < 0.05.

DISCUSSION
We designed a task in which participants could freely acquire
information before making a decision. Two options were
inspected, each of which had a monetary stake and a probability
of winning vs. losing that stake. Unlike standard decision-making
paradigms, we examine the trajectory of attention (indexed by eye
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position) before the choice is made. After freely acquiring infor-
mation, participants made a button press choice. We found that
they frequently refixated items, even before visiting all four loca-
tions. Early in a trial, the trajectory of attention was directed to
locations with the highest information gain. Later on, attention
was guided to the option of higher expected value (Figure 9).

Why would locations be refixated? We interpret the findings
in terms of foraging: choosing an option involves first approach-
ing the option, then deciding whether to accept or reject that
option. Early in the trial, under uncertainty, attention is directed
to high-variance options, in an attempt to resolve their uncer-
tainty by acquiring information. As information accumulates,
however, attention becomes progressively guided by reward value,
such that an “engage/search” strategy could be used to make the
best choice.

The temporal pattern of the attentional trajectory provided
support for an information foraging mechanism:

• First, dwell times were shorter later in a trial. We suggest that
this is because later in a trial, information is sampled in smaller
aliquots. This is predicted by a leaky accumulator (Ratcliff
and Smith, 2004), in which evidence about an item’s identity
increases while it is fixated, but decays when it is unfixated
(Figure 1); fixations are terminated when information reaches
a threshold.

• Second, information foraging also predicts that refixations are
shorter than first-fixations, at the same serial position—a pre-
diction that runs in parallel to predictions of classical foraging
theory (Waage, 1979).

• Third, since the total quantity of information obtained
increases with acquisition duration, the model also predicts
that the chance of refixating an item falls according to its initial
dwell time.

• Fourth, foraging predicts that participants will generally be
looking at the chosen option when they make the button
press—which is true in 80% of trials—since the final choice
is in fact an “accept/reject” decision.

• Finally, assuming that participants choose to look at uncer-
tainty, the model also correctly predicts that the first item
fixated is most likely to be refixated once all items have been
viewed (an effect also predicted by inhibition of return).

But is the assumption of looking toward uncertainty warranted?
If attention were guided solely by information seeking, we would
not observe biases of looking toward reward (Ding and Hikosaka,
2007; Milstein and Dorris, 2007; Hickey et al., 2010). On the other
hand, If attention were guided solely by reward, we would not
learn about our environment (Hogarth et al., 2008).

TWO COMPETING HYPOTHESES FOR GOAL-DRIVEN GUIDANCE OF
ATTENTION: SHARPENING PERCEPTION vs. SHARPENING VALUE
REPRESENTATION
According to a perceptual model, attention should favor objects
whose identity is uncertain. This is the prediction of models in
which attention aims to improve the precision of our internal
representation of causes in the world, e.g., a free energy for-
mulation of perception. A competing model is that attention

favors objects which inform us about expected value (Milstein
and Dorris, 2007). For example, if an object is likely to indicate
what the value of an option is, it should command attention.
Here, attention aims to improve informed choice, and attentional
trajectories are computed in terms of option-value precision, as
opposed to perceptual precision. Perceptual information-seeking
is agnostic of the actual numbers seen. On the other hand,
EV-based information-seeking predicts that revisiting patterns
should depend on the actual numerical values. Such effects are
seen in our data (Figures 8B,C and 12), consistent with the pos-
sibility that the initial trajectory of attention is computed to
reduce uncertainty in option-value space, rather than perceptual
space, using an information-maximizing principle. This could in
principle be implemented using an active inference framework.
This distinction provides a new way to disentangle different lev-
els of “top-down” attentional control: in our task, the eyes are
directed not simply to perceptual uncertainty, but to option value
uncertainty.

Our results thus lead us to consider that value uncertainty is
more likely to be relevant than perceptual uncertainty, in this task.
Numerical values may be subject to similar noisy integration to
qualitative stimuli (Krajbich et al., 2012) Such a proposal would
be consistent with evidence that numerical magnitude representa-
tions in the parietal lobe are limited in their precision, in contrast
to precise symbolic representations present during immediate
perception (Naccache and Dehaene, 2001; Brannon, 2006).

EXPLAINING REFIXATIONS
Refixations, we argue, occur because of incomplete knowledge of
previously visited items. This could be due to poor retention or
poor acquisition. Although retention is generally considered to
have a capacity of 4 or more items (Snyder and Kingstone, 2000;
Gilchrist et al., 2001), a variable-precision account of working
memory retention might predict refixations, particularly when
combined with temporal decay (Bays and Husain, 2008; Zokaei
et al., 2011). A more straightforward explanation of refixation is
that participants only acquire a limited amount of information
about each target as they fixate it. This can be expressed as incre-
mental changes in the estimated probability density over the four
display values (Figure 7). The gain of information may depend
on fixation duration, and subsequently information may decay
(Figure 1).

To explain refixation patterns, we invoke a concept of “info-
mation salience.” The information content of a stimulus can be
quantified as the distance between probability densities over EV
before and after an item is identified. Thus, information content
indicates the reduction in uncertainty that a stimulus might bring
when identified. The concept of information salience is meant
to describe the way in which attention can be captured by this
informativeness, even when other accounts (inhibition of return,
Posner and Cohen, 1984; Itti and Koch, 2001) predict it should
not. Our task allows us to quantify mathematically what has been
called “attention to the unknown” (Gottlieb, 2012), and com-
pare it directly with other attentional biases, including perceptual
salience and reward.

One old candidate for explaining attention to the unknown, is
inhibition of return (Rafal et al., 1989). IOR has long been thought
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of as an aid to foraging in an environment (Klein and MacInnes,
1999; Gilchrist and Harvey, 2000; Klein, 2000; Hooge et al., 2005),
and has inspired dynamic models of sequential attentional selec-
tion (Itti and Koch, 2001; Hou and Zhang, 2008). IOR both slows
and prevents returning saccades (Bays and Husain, 2012), and in
this way, may function as a novelty bias.

Of interest, one study has shown IOR to be contingent upon
the occurrence of reward and dependent upon medial frontal cor-
tex (Hodgson et al., 2002). IOR may persist for up to 5 previously
attended locations (Snyder and Kingstone, 2000); its duration is
increased by amphetamine and may be reduced in Parkinson’s
disease (Filoteo et al., 1997; Poliakoff et al., 2003). It also varies
between individuals according to DAT1 gene polymorphisms
(Colzato et al., 2010). Frontal dopaminergic mechanisms are thus
likely to be crucial in generating the drive of spatial attention
toward reward value or uncertainty.

Although IOR explains why refixations go toward locations
that haven’t been recently fixated, it makes no predictions about
(1) the relationships with fixation durations, (2) the first couple of
acquisitions, nor (3) the effect of the actual numeric values seen.
However, specific predictions are made by information foraging
coupled with Bayesian updating of EVs.

“DECIDING” WHERE TO LOOK
Many authors have considered saccadic control as a surrogate for
decision making (Glimcher, 2001; Gold and Shadlen, 2007). From
our results we argue, in contrast, that deciding where to attend
involves different considerations to deciding upon actions:

• Attention, unlike action, is also guided by bottom up-salience
(Theeuwes, 2010), does not result directly in primary reward
(Maunsell, 2004), does not carry a sense of agency, and has a
different kind of cost than the effort required for actions (Haith
et al., 2012).

• These functional differences may be manifest neurally. Values
for action and values of stimuli appear to be represented in dis-
tinct prefrontal regions (Rangel and Hare, 2010). Orbitofrontal
representations of stimulus value are modulated by attention
(Lim et al., 2011) and by choice selection (Padoa-Schioppa and
Assad, 2006). On the other hand, dorsomedial representations
of action value are modulated by conflict, error monitoring,
and foraging (engage/search) strategies.

Computationally, a critical difference is that “deciding” compares
values, whereas “attending” compares uncertainties. Information
foraging thus requires different mechanisms to classical decision-
making models of winner-takes-all competition between the
option values (Wang, 2002; Wong et al., 2007). So long as more
information is available in the environment, then for guiding
attention, the least certain option needs to win out (Renninger
et al., 2007). One implementation of this would be a neural
map of uncertainty, rather than value, that guides attention—
analogous to maps proposed for reward (Peck et al., 2009) and
salience (Koch and Ullman, 1985).

Even when attention is guided by values, we suggest that the
values are integrated in a fundamentally different way. Rather
than comparing option values in an accumulator (Ratcliff and

McKoon, 2007), we suggest that attention is guided by value via
a spatial map, which may incorporate reward expectation and
history from many sources (Platt and Glimcher, 1999; Ding and
Hikosaka, 2007; Milstein and Dorris, 2007), such as online value
estimates. Such attentional value biases are entirely compatible
with action-choice being subserved by independent comparators
often used in decision models.

CONCERNS AND LIMITATIONS
Although the framework advanced here has some attractions,
there are also some potential concerns or limitations. First, does
EV really carry less weight early in a trial (Figure 9)? At the start
of a trial, participants have no information about EV, so it is not
surprising that early fixations are not directed toward the higher
EV option. If this is the case, perhaps the relative influence of EV
and information do not vary through a trial, i.e., the coefficient
α(t) in Equation (10) might in fact be constant. To address this,
we used the estimated posterior for EV Equation (4) to re-analyse
whether participants fixated the option that had the higher value
according to their online estimates, and obtained results similar to
Figure 9B. Participants looked at the higher EV estimates on fix-
ations 6 and 7 (corrected p < 0.05), but not on earlier fixations.
Thus, we conclude that attention was significantly pulled by EV
later but not earlier in the trial. We cannot rule out, however,
that earlier in the trial EV contributes less because the estimated
EV differences are smaller, or that later in the trial high EVs are
fixated as a by-product of a comparison process.

Second, the first few shifts of attention (indexed by gaze)
did not show true information-guidance. The second acquisition
tended to be within the same gamble as the first fixation, which
contravenes predictions of pure information-seeking: informa-
tion gain is maximized by looking across to the other gamble.
Even more surprisingly, participants refixated recently seen items
before all items have been explored. For example, sometimes both
the second and third acquisitions are “within-option” movements
(Figure 2D, “WWA”). Contrary to this, pure information-seeking
mandates that attention go preferentially to previously unseen
items. Refixations ought not to occur until after all items have
been visited, even accounting for memory limitation or “decay
of information.” The unconstrained decision time in our task
might have favored this suboptimal behavior in the first few sac-
cades. In contrast, an information-seeking policy does explain
later fixations (Figure 9A).

We suggest that more elaborate models of information acqui-
sition may be needed to explain these findings. We suggest three
possible extensions. First, the information-accrual rate [parame-
ter k1 in Equation (1)] may not be constant through the decision
period; in particular, it might be low for the initial acquisitions,
which would also explain the longer initial fixations (Figure 4B).
A second more intriguing possibility is that it is easier to inte-
grate the probability and stake of an option when they are seen
consecutively—perhaps reflecting a cost for shifting the focus of
attention to items within working memory (Oberauer, 2002) or
a cost for switching object files (Treisman et al., 1983). This cost
could appear as an additional term in the shifting rule Equation
(10). Our present data is not sufficient to distinguish these possi-
bilities, but we note that “WW” patterns were commonest when
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fixating a high probability first—indicating that order of acqui-
sition influences ease of integration. A third possibility is that
saccades are not chosen to maximize information at the next
movement, but rather, a whole sequence of subsequent saccades
is chosen, to maximize information gain over several fixations. If
we were to include decay into the updating model, fixation order
would make a difference to information, possibly resulting in a
different optimal strategy. Our current model assumes some form
of bounded rationality, since we ignore the possibility of planning
sequences.

Third, how much of attentional control can be explained by
EV and information? The results showed that attention was sig-
nificantly attracted to information salience early in a trial, and
to high EV later in a trial. However, our maximal prediction
accuracy was only 62% for information-seeking, and 61% for
EV-seeking (Figure 9). Could other factors guide attention in our
task? Of note, participants did not always choose the higher EV,
and the final acquisition went to the chosen option on 80% of tri-
als (Figure 5). It is likely that subjective preferences involve a more
complex notion of utility than simple EV, for example incorpo-
rating risk preference or probability discounting (Kahneman and
Tversky, 1979). These extra factors probably also contribute to
attentional guidance before a choice.

In calculating whether participants fixated the most informa-
tive location, we took σ as constant. That is, we did not include
the effect of fixation durations or decay, which would involve
making assumptions about the information acquisition rate and
forgetting rate. In particular, we did not fit any parameters
to individual participants’ performance. Information acquisition
rate and forgetting rate may well vary from person to person
(Colzato et al., 2010). On top of these factors, attentional guid-
ance might itself be noisy. For example, a softmax rule (Luce,
1977) could be used to determine the next fixation location
given the EVs and information gains. The observed transition
from information salience to reward salience bears similarities
with longer term switches between exploration and exploitation
seen under risk (Daw et al., 2006; Cohen et al., 2007). In cases
where information increases due to learning, the proportion of
“noisy” choices that are not guided by value (i.e., the temperature)
would decrease over time (Sutton, 1991; Carmel and Markovitch,
1999). In our case, rather than switching from random to model-
driven choice, attention switches from uncertainty-seeking to
reward-seeking.

Finally, throughout our analysis, we have made two assump-
tions: saccades are a relatively direct index of how attention is
directed, and attention is focused rather than divided. Attention
dissociates from eye movements in experimental conditions of
enforced fixation (Juan et al., 2004), however, saccades proba-
bly entail movements of attention under most conditions (Sheliga
et al., 1994; Corbetta, 1998; McPeek et al., 1999). In our displays,
participants would be unable to perceive numerals that are not
within a couple of degrees of fixation, as we established in pilot
experiments. This enforced a serial strategy, in which dividing
attention could not have been beneficial. We expect that refixa-
tions would be greatly reduced if this serial constraint were lifted,
because dividing attention could facilitate both integration across
dimensions and comparison within a dimension.

DECISION BIASES DUE TO ATTENTION
Attention influences the decision process in a number of ways.
Selecting stimulus features boosts their contribution in the
stochastic progression of an ongoing decision process (Roe
et al., 2001; Usher and McClelland, 2001; Kim et al., 2012).
Attention may highlight supporting evidence for the favored
option, generating attentional shifts within an option rather than
between options (Glöckner and Herbold, 2011), but also reflect-
ing whether a decision involves component-wise comparison or
integration of value (Arieli et al., 2011). Counterproductively,
attention biases choices in favor of the attended option (Krajbich
et al., 2010; Brandstätter, 2011), and its influence on choice can
be modeled as leaky integration of value over time, with a bias
toward the attended item. These approaches show that attention
powerfully modulates choice, but fail to explain how attention is
itself guided.

Sampling theories make predictions about how we acquire
information from the options available before a choice (Stewart
et al., 2006). According to decision field theory, attention under
risk is drawn in proportion to probabilities (Roe et al., 2001). But
such a scenario would make attention highly inefficient at obtain-
ing information. Optimal information gathering should not sim-
ply attend to the higher probability or expected value; rather,
attention should seek uncertain options whose distribution of
value has a high entropy.

It seems counterintuitive, however, to choose an option that
is not being attended. Indeed participants generally choose the
option they were last attending to unless that option is much
worse than the other one (Shimojo et al., 2003; Krajbich et al.,
2010)—but why should this be? A parsimonious explanation of
this phenomenon is to regard attention as a form of foraging.
Rather than deciding which item is better, decisions are made
by an “engage or search” strategy. During the course of a sin-
gle decision, attentional allocation dynamically switches from
information-seeking to value-seeking (Figure 9). This accounts
for the correlation of final saccades with both EV and choice
(Figure 5). The decision to engage accept or reject the currently
attended option might be subserved by a drift-diffusion model
similar to that of Krajbich et al. (2012), which is driven by the
difference between attended and unattended items.

But can we also explain the bias for choosing the initially-
fixated option (Figure 5)? Information foraging predicts that after
visiting all four locations, participants should refixate the first
item they saw. At the same time, choice-by-foraging suggests that
we choose whether or not to go for the currently fixated item,
at each acquisition. Therefore, if participants begin to choose
too soon—i.e., by engaging, rather than searching—we might
expect the first item seen to be selected. According to this view,
the first-viewed bias might be explained by premature engage-
ment with the currently viewed option, perhaps linking reflection
impulsivity to motor impulsivity (Evenden, 1999).

PREDICTIONS OF THE INFORMATION FORAGING ACCOUNT
The foraging view of decisions suggests that as information is
“depleted from the environment”—or rather, the precision of
our internal estimates approaches that of the environment—
information salience no longer drives attention. At this point
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attention becomes driven by the estimated values. This makes
two strong neurophysiological predictions. First, reward signals
should propagate from stimulus-value regions early in a trial,
to attentional regions later in the trial. Thus, one prediction
might be that value-sensitive brain regions, such as OFC (Padoa-
Schioppa and Assad, 2006; Kennerley and Wallis, 2009) encode
the decision variables for each option as information is accrued,
but once information acquisition begins to saturate (Figure 1)
value signals propagate to parietal and oculomotor regions, bias-
ing attention (Bisley and Goldberg, 2010). This permits a decision
to accept or reject the currently fixated option, perhaps involving
dorsomedial prefrontal cortex (Hayden et al., 2011; Kolling et al.,
2012).

Second, in order to support information foraging, the most
uncertain items in a display must compete for attention. Neural
signals proportional to the lack of information or uncertainty
should compete spatially, weighted by expectations of what infor-
mation is available in the environment. Importantly, such com-
petition would require not simply representation of a probability
density, but rather an explicit representation of the uncertainty
signal (Fiorillo et al., 2003; Knill and Pouget, 2004). Although
uncertainty signals have been found in medial prefrontal regions
(Grinband et al., 2006), as well as OFC (Hsu et al., 2005; Tobler
et al., 2007; Kepecs et al., 2008; Schultz et al., 2008), the cellular

representation of uncertainty remains unclear. We expect that
during a decision, competition between such signals guides atten-
tional selection.

CONCLUSION
We used a freely-viewed choice between two gambles to examine
the effects of risk and EV on the guidance of attention. We found
that attention was initially drawn to uncertainty, and specifi-
cally depended on how the numbers seen determined uncertainty
about EV. Toward the end of the trial, attention was drawn
toward the higher EV, and eventually predicted choice. This sug-
gests that attention is drawn by information-salience early in
trials, and by reward-salience later in trials. We hypothesize that
this reflects that choices are in fact made by a foraging mecha-
nism of successively rejecting or accepting the currently attended
option—a process which converges on the highest valued
option.
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