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A commentary on

Association among clinical response,
hippocampal volume, and FKBP5 gene
expression in individuals with posttrau-
matic stress disorder receiving cognitive
behavioral therapy

by Levy-Gigi, E., Szabo, C., Kelemen, O.,
and Keri, S. (2013). Biol. Psychiatry. doi:
10.1016/j.biopsych.2013.05.017

In a recent study in Biological Psychiatry,
Levy-Gigi et al. found that a 12 weekly 90-
mins cognitive behavioral therapy (CBT)
treatment in individuals with posttrau-
matic stress disorder (PTSD) is associated
with an increase in hippocampal volume
and expression of glucocorticoid recep-
tor genes, known as FKBP5 (Levy-Gigi
et al., 2013). This is one of the few stud-
ies that have investigated the effects of
CBT on changes in brain volumes as well
as gene expression in individuals with
PTSD. The Levy-Gigi et al. study comple-
ments prior studies showing that antide-
pressant treatment is also associated with
increased hippocampal volume in psychi-
atric patients, including PTSD and depres-
sion (Vermetten et al, 2003). Despite
the positive effect of psychopharmaco-
logical and behavioral therapy in PTSD,
it is not known whether CBT and psy-
chopharmacological treatments are associ-
ated with dissociable effects on the brain
and behavior.

Interestingly, Levy-Gigi et al. found
that CBT ameliorates all aspects of PTSD,
including avoidance, re-experiencing, and
hyperarousal symptoms. However, it is
not clear from the Levy-Gigi et al.
study whether changes to the hippocam-
pal volume are associated with amelio-
ration to which PTSD symptoms. Prior

studies show that there is a trend for a
negative correlation between higher re-
experiencing symptoms and hippocampal
volume (Shucard et al.,, 2012), perhaps
suggesting that re-experiencing symptoms
are more ameliorated than other PTSD
symptoms following CBT treatment.

At the neural level, several studies show
that PTSD is associated with abnormalities
to various brain areas, including reduced
activity and volume of the hippocam-
pus (Gilbertson et al., 2002; Smith, 2005),
reduced activity of the ventromedial pre-
frontal cortex (Shin et al., 2005; Phan et al.,
2006), increased activity of the dorsal ante-
rior cingulate cortex (Shin et al., 2011),
and increased activity of the amygdala
(Armony et al., 2005; Shin et al., 2005).
However, why would CBT lead to changes
to the volume of the hippocampus but not
the amygdala or other cortical structures,
as found in the Levy-Gigi et al. study?
Prior studies have shown the hippocampal
volume is a risk factor for the develop-
ment of PTSD (Gilbertson et al., 2002),
while changes to amygdala, the ventrome-
dial prefrontal cortex, and dorsal anterior
cingulate cortex are acquired following
trauma exposure. This perhaps suggests
that changes to hippocampal volume fol-
lowing CBT can help protect against future
occurrences of PTSD symptoms.

How can hippocampal dysfunction be
related to PTSD symptoms? As noted by
Levy-Gigi et al., the ventral hippocampus-
amygdala pathway has been shown to
be related to increased stress and anxi-
ety (Fanselow and Dong, 2010). Further,
many animal and human studies show that
the hippocampus is involved in contextual
fear responses (Anagnostaras et al., 1999;
Corcoran and Maren, 2001; Ji and Maren,
2007; Acheson et al., 2012), such that

hippocampal damage leads to increased
fear response regardless of the context.
fMRI studies have also reported greater
hippocampus activation during contextual
than cue conditioning (Marschner et al.,
2008). In a prior computational model,
Moustafa et al. (2013) show that the
hippocampal region processes contextual
information and sends representations of
context to the basolateral amygdala and
ventromedial prefrontal cortex for fear
acquisition and extinction learning [for a
review, see Rudy et al. (2004); Goosens
(2011)], which help decrease and increase
fear responses within that context. It is also
not clear in the Levi-Gigi et al. study how
changes to the hippocampal volume ame-
liorate PTSD symptoms. Moustafa et al.
(2013) suggest that hippocampal projec-
tions to the ventromedial prefrontal cor-
tex and/or basolateral amygdala could be
enhanced by CBT treatment, which then
lead to a decrease in fear responses when
faced with a reminder of the trauma. This
hypothesis can be confirmed or discon-
firmed using diffusion tensor imaging in
both individuals and animal models of
PTSD [see for example Ding et al. (2013)].

The Levy-Gigi et al. study also
showed that CBT alters the expression
of genes, including the FKBP5 gene.
FKBP5 regulates glucocorticoid recep-
tor sensitivity, and reduce the efficacy of
cortisol in the brain (Mahon et al., 2013).
Polymorphisms in the FKBP5 gene relate
to differences in glucocorticoid receptor
sensitivity and stress hormone system reg-
ulation (Menke et al., 2013) as well as
recovery from stress disorders (Ising et al.,
2008) and rapid response to antidepres-
sant treatment (Binder et al., 2004). As
noted by Levy-Gigi et al., individual dif-
ferences in the FKBP5 gene are associated
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with anxiety disorders, including PTSD
(Xie et al., 2010; Boscarino et al., 2012).

Along these lines, Felmingham et al.
(2013) found that individual differences
in the brain-derived neurotrophic factor
(BDNF) gene predicts the efficacy of expo-
sure therapy in individuals with PTSD. It
remains to be shown whether BDNF gene
expression also undergoes changes follow-
ing either CBT or exposure therapy, and
whether exposure therapy affects the hip-
pocampal volume.

Future computational modeling work
is needed to explain how changes to the
hippocampal volume and gene expression
can ameliorate PTSD symptoms [see for
example Krasne et al. (2011); Li et al
(2011); Moustafa et al. (2013)]. These
computational models should also tie
together brain volume and gene expression
data in one framework to explain how clin-
ical treatments can ameliorate symptoms
in PTSD.

In summary, Levy-Gigi et al. (2013)
have extended prior studies and shown
that the hippocampus is a key brain struc-
ture that benefits from CBT. Future work
should focus on network changes of hip-
pocampus projections to the amygdala
and ventromedial prefrontal cortex dur-
ing behavioral and psychopharmacologi-
cal treatments in PTSD.

REFERENCES

Acheson, D. T., Gresack, J. E., and Risbrough, V. B.
(2012). Hippocampal dysfunction effects on con-
text memory: possible etiology for posttraumatic
stress disorder. Neuropharmacology 62, 674—685.
doi: 10.1016/j.neuropharm.2011.04.029

Anagnostaras, S. G., Maren, S., and Fanselow, M.
S. (1999). Temporally graded retrograde amnesia
of contextual fear after hippocampal damage in
rats: within-subjects examination. J. Neurosci. 19,
1106-1114.

Armony, J. L., Corbo, V., Clement, M. H., and
Brunet, A. (2005). Amygdala response in patients
with acute PTSD to masked and unmasked emo-
tional facial expressions. Am. J. Psychiatry 162,
1961-1963. doi: 10.1176/appi.ajp.162.10.1961

Binder, E. B., Salyakina, D., Lichtner, P., Wochnik,
G. M, Ising, M., Putz, B, et al. (2004).
Polymorphisms in FKBP5 are associated with
increased recurrence of depressive episodes and
rapid response to antidepressant treatment. Nat.
Genet. 36, 1319-1325. doi: 10.1038/ng1479

Boscarino, J. A., Erlich, P. M., Hoffman, S. N.,
and Zhang, X. (2012). Higher FKBP5, COMT,
CHRNAS5, and CRHRI allele burdens are associ-
ated with PTSD and interact with trauma expo-
sure: implications for neuropsychiatric research
and treatment. Neuropsychiatr. Dis. Treat. 8,
131-139. doi: 10.2147/NDT.S29508

Corcoran, K. A., and Maren, S. (2001). Hippocampal

inactivation disrupts contextual retrieval of

fear memory after extinction. J. Neurosci. 21,
1720-1726.

Ding, A. Y, Li, Q., Zhou, L. Y,, Ma, S. J,, Tong,
G., McAlonan, G. M,, et al. (2013). MR diffu-
sion tensor imaging detects rapid microstructural
changes in amygdala and hippocampus following
fear conditioning in mice. PLoS ONE 8:¢51704.
doi: 10.1371/journal.pone.0051704

Fanselow, M. S., and Dong, H. W. (2010). Are
the dorsal and ventral hippocampus function-
ally distinct structures? Neuron 65, 7-19. doi:
10.1016/j.neuron.2009.11.031

Felmingham, K. L., Dobson-Stone, C., Schofield, P. R.,
Quirk, G. J., and Bryant, R. A. (2013). The brain-
derived neurotrophic factor Val66Met polymor-
phism predicts response to exposure therapy in
posttraumatic stress disorder. Biol. Psychiatry 73,
1059-1063. doi: 10.1016/j.biopsych.2012.10.033

Gilbertson, M. W., Shenton, M. E., Ciszewski, A.,
Kasai, K., Lasko, N. B, Orr, S. P, et al. (2002).
Smaller hippocampal volume predicts patho-
logic vulnerability to psychological trauma. Nat.
Neurosci. 5, 1242—1247. doi: 10.1038/nn958

Goosens, K. A. (2011). Hippocampal regulation of
aversive memories. Curr. Opin. Neurobiol. 21,
460-466. doi: 10.1016/j.conb.2011.04.003

Ising, M., Depping, A. M., Siebertz, A., Lucae,
S., Unschuld, P. G., Kloiber, S., et al. (2008).
Polymorphisms in the FKBP5 gene region mod-
ulate recovery from psychosocial stress in healthy
controls. Eur. J. Neurosci. 28, 389-398. doi:
10.1111/.1460-9568.2008.06332.x

Ji, J, and Maren, S. (2007). Hippocampal
involvement in contextual modulation of fear
extinction.  Hippocampus 17, 749-758. doi:
10.1002/hipo.20331

Krasne, F B., Fanselow, M. S., and Zelikowsky, M.
(2011). Design of a neurally plausible model of
fear learning. Front. Behav. Neurosci. 5:41. doi:
10.3389/fnbeh.2011.00041

Levy-Gigi, E., Szabo, C., Kelemen, O., and Keri, S.
(2013). Association among clinical response, hip-
pocampal volume, and FKBP5 gene expression
in individuals with posttraumatic stress disor-
der receiving cognitive behavioral therapy. Biol.
Psychiatry. doi: 10.1016/j.biopsych.2013.05.017.
[Epub ahead of print].

Li, G., Amano, T., Pare, D., and Nair, S. S. (2011).
Impact of infralimbic inputs on intercalated amyg-
dala neurons: a biophysical modeling study. Learn.
Mem. 18, 226-240. doi: 10.1101/lm.1938011

Mahon, P. B, Zandi, P. P, Potash, J. B., Nestadt,
G., and Wand, G. S. (2013). Genetic asso-
ciation of FKBP5 and CRHRI1 with cortisol
response to acute psychosocial stress in healthy
adults. Psychopharmacology 227, 231-241. doi:
10.1007/500213-012-2956-x

Marschner, A, Kalisch, R., Vervliet, B,
Vansteenwegen, D., and Buchel, C. (2008).
Dissociable roles for the hippocampus and the
amygdala in human cued versus context fear
conditioning. J. Neurosci. 28, 9030-9036. doi:
10.1523/JNEUROSCI.1651-08.2008

Menke, A., Klengel, T., Rubel, J., Bruckl, T., Pfister, H.,
Lucae, S., et al. (2013). Genetic variation in FKBP5
associated with the extent of stress hormone dys-
regulation in major depression. Genes Brain Behav.
12, 289-296. doi: 10.1111/gbb.12026

Moustafa, A. A., Gilbertson, M. W, Orr,
S. P, Herzallah, M. M., Servatius, R. ],

and Myers, C. E. (2013). A model of
amygdala-hippocampal-prefrontal interaction in
fear conditioning and extinction in animals. Brain
Cogn. 81, 29-43. doi: 10.1016/j.bandc.2012.10.005

Phan, K. L., Britton, J. C., Taylor, S. E, Fig, L. M., and
Liberzon, 1. (2006). Corticolimbic blood flow dur-
ing nontraumatic emotional processing in post-
traumatic stress disorder. Arch. Gen. Psychiatry 63,
184-192. doi: 10.1001/archpsyc.63.2.184

Rudy, J. W.,, Huff, N. C, and Matus-Amat, P.
(2004). Understanding contextual fear condi-
tioning: insights from a two-process model.
Neurosci. Biobehav. Rev. 28, 675-685. doi:
10.1016/j.neubiorev.2004.09.004

Shin, L. M., Bush, G., Milad, M. R., Lasko, N. B.,
Brohawn, K. H., Hughes, K. C, et al. (2011).
Exaggerated activation of dorsal anterior cin-
gulate cortex during cognitive interference: a
monozygotic twin study of posttraumatic stress
disorder. Am. J. Psychiatry 168, 979-985. doi:
10.1176/appi.ajp.2011.09121812

Shin, L. M., Wright, C. L, Cannistraro, P. A., Wedig,
M. M., McMullin, K., Martis, B., et al. (2005). A
functional magnetic resonance imaging study of
amygdala and medial prefrontal cortex responses
to overtly presented fearful faces in posttraumatic
stress disorder. Arch. Gen. Psychiatry 62, 273-281.
doi: 10.1001/archpsyc.62.3.273

Shucard, J. L., Cox, J., Shucard, D. W., Fetter, H.,
Chung, C., Ramasamy, D., et al. (2012). Symptoms
of posttraumatic stress disorder and exposure to
traumatic stressors are related to brain structural
volumes and behavioral measures of affective stim-
ulus processing in police officers. Psychiatry Res.
204, 25-31. doi: 10.1016/j.pscychresns.2012.04.006

Smith, M. E. (2005). Bilateral hippocampal vol-
ume reduction in adults with post-traumatic
stress disorder: a meta-analysis of structural
MRI studies. Hippocampus 15, 798-807. doi:
10.1002/hipo.20102

Vermetten, E., Vythilingam, M., Southwick, S. M.,
Charney, D. S., and Bremner, J. D. (2003). Long-
term treatment with paroxetine increases verbal
declarative memory and hippocampal volume in
posttraumatic stress disorder. Biol. Psychiatry 54,
693-702. doi: 10.1016/S0006-3223(03)00634-6

Xie, P., Kranzler, H. R., Poling, J., Stein, M. B,
Anton, R. F, Farrer, L. A, et al. (2010).
Interaction of FKBP5 with childhood adver-
sity on risk for post-traumatic stress disorder.
Neuropsychopharmacology 35, 1684-1692. doi:
10.1038/npp.2010.37

Received: 07 August 2013; accepted: 18 October 2013;
published online: 07 November 2013.

Citation: Moustafa AA (2013) Increased hippocampal
volume and gene expression following cognitive behav-
ioral therapy in PTSD. Front. Hum. Neurosci. 7:747.
doi: 10.3389/fnhum.2013.00747

This article was submitted to the journal Frontiers in
Human Neuroscience.

Copyright © 2013 Moustafa. This is an open-access
article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited
and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Human Neuroscience

www.frontiersin.org

November 2013 | Volume 7 | Article 747 | 2


http://dx.doi.org/10.3389/fnhum.2013.00747
http://dx.doi.org/10.3389/fnhum.2013.00747
http://dx.doi.org/10.3389/fnhum.2013.00747
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Increased hippocampal volume and gene expression following cognitive behavioral therapy in PTSD
	References


