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The occurrence of dynamic changes in spontaneous electroencephalogram (EEG) rhythms
in the awake state or sleep is highly variable. These rhythms can be externally modulated
during transcranial magnetic stimulation (TMS) with a perturbation method to trigger
oscillatory brain activity. EEG-TMS co-registration was performed during standard wake,
during wake after sleep deprivation and in sleep in six healthy subjects. Dynamic changes
in the regional neural oscillatory activity of the cortical areas were characterized using
time-frequency analysis based on the wavelet method, and the modulation of induced oscil-
lations were related to different vigilance states. A reciprocal synchronizing/desynchronizing
effect on slow and fast oscillatory activity was observed in response to focal TMS after
sleep deprivation and sleep. We observed a sleep-related slight desynchronization of alpha
mainly over the frontal areas, and a widespread increase in theta synchronization. These
findings could be interpreted as proof of the interference external brain stimulation can
exert on the cortex, and how this could be modulated by the vigilance state. Potential
clinical applications may include evaluation of hyperexcitable states such as epilepsy or
disturbed states of consciousness such as minimal consciousness.
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INTRODUCTION
Oscillatory human brain activity occurs at different frequencies
(Niedermeyer, 1999) and can be rapidly modulated over the occip-
ital regions by eyes opening and over the central parietal regions by
movement and sensory stimulation. The occurrence of dynamic
changes in spontaneous electroencephalogram (EEG) rhythms in
the awake state or sleep is highly variable. These rhythms can be
externally modulated with a perturbation method to trigger oscil-
latory brain activity. The method involves delivering an external
stimulus by transcranial magnetic stimulation (TMS) and record-
ing its effects on cortical activity by EEG. Advanced EEG systems
compatible with TMS (EEG-TMS co-registration) offer the ability
to study EEG reactivity in humans in the awake state.

Most studies to date have focused on slow EEG responses
evoked by a single magnetic stimulus in the time domain
(Ilmoniemi et al., 1997; Izumi et al., 1997; Paus et al., 1998, 2001;
Komssi et al., 2002; Thut et al., 2003; Bonato et al., 2006; Thut
and Pascual-Leone, 2010; Del Felice et al., 2011) by investigating
more complex and widespread brain oscillatory activity induced
by external stimulation (Thut and Miniussi, 2009). The applica-
tion of EEG-TMS co-registration to high frequencies instead of
low frequencies (i.e., cortical evoked potentials) has opened new
and intriguing lines of research, yielding a wealth of data on rhyth-
mic brain activities (Fuggetta et al., 2008; Thut and Miniussi, 2009;
Manganotti et al., 2012) and on the connectivity of brain areas
during the wake state or sleep (Massimini et al., 2005, 2007, 2009).
Indeed, single-pulse TMS (Paus et al., 2001; Fuggetta et al., 2005;

Van Der Werf et al., 2006; Rosanova et al., 2009; Manganotti et al.,
2012) or a TMS pulse train (Brignani et al., 2008; Fuggetta et al.,
2008; Plewnia et al., 2008; Noh et al., 2012) induce synchronous
rhythmic rapid brain activity that preferably oscillates in the nat-
ural frequency of the target site. Such an experimental paradigm
was proposed by Johnson et al. as a way to clarify the behavioral
effects of TMS, e.g., by studying TMS-induced oscillatory activity
modifications (Johnson et al., 2010).

Although the real meaning and site of rapid oscillatory syn-
chronization evoked by TMS remain to be elucidated, cortical
and subcortical sources have been suggested (Van Der Werf et al.,
2006; Rosanova et al., 2009). In a previous work (Manganotti et al.,
2012), we documented the different and dynamic time course of
all frequencies, defined as slow (delta and theta) and fast (alpha
and beta) activities, after single, paired and transcallosal TMS
using wavelet time-frequency analysis, where we suggested possi-
ble inhibitory network activation by brain stimulation in the rest
awake state for these synchronized evoked rhythms. This method is
appealing for studying different states of the brain and it is feasible
with different EEG systems.

Recent research into the effects of sleep and sleep depriva-
tion has largely focused on standard TMS parameters, so-called
transcranial evoked potentials (TEPs), which are the slow, early
components recorded on EEG after a TMS pulse. Standard TMS
studies have shown decreased motor excitability in normal subjects
during sleep (Manganotti et al., 2001; Grosse et al., 2002; Avesani
et al., 2008), while a discordant effect on motor evoked potentials
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(MEPs), with a mild amplitude decrease according to Manganotti
et al. (2001) or an increase according to Civardi et al. (2001), was
described in normal subjects after sleep deprivation. Conversely,
sleep deprivation in epileptic patients results in a marked increase
in cortical excitability (Manganotti et al., 2006). TEP modula-
tion by vigilance states appears to be more nuanced. While the
reproducible slow components evoked by TMS during wake and
sleep have been identified (Komssi et al., 2004; Bonato et al., 2006;
Massimini et al., 2007), the main difference with standard TMS
parameters lies in the marked increase in the amplitude of evoked
potentials during NREM sleep (Massimini et al., 2009; Del Felice
et al., 2011) and during anesthesia (Ferrarelli et al., 2010), with a
pronounced increase seen after sleep deprivation (Del Felice et al.,
2011). Indeed, Huber et al. (2013) observed that the excitability of
the human frontal cortex, measured as the immediate (0–20 ms)
EEG reaction to TMS, progressively increases with time awake,
from morning to evening and after one night of total sleep depri-
vation, and that it decreases after recovery sleep. Finally, in an
altered hyperexcitable cortex, as in epilepsy, TEPs reflect this state,
showing an impressive augmentation in amplitude during sleep
and particularly after sleep deprivation (Del Felice et al., 2011).

The aim of this study was to investigate slow and fast oscillatory
activities synchronized by single-pulse TMS delivered over the pri-
mary motor area (M1) in the time-frequency domain during wake,
NREM sleep, and sleep deprivation. The time-frequency approach
was applied to detect dynamic changes in the regional neural oscil-
latory activity of cortical areas and to relate the modulation of these
induced oscillations to the different brain states.

MATERIALS AND METHODS
SUBJECTS
The study sample was 6 healthy subjects (3 men and 3 women;
mean age, 28.6 years ± standard deviation 4.7 years), right-handed
as assessed by the Edinburgh Handedness Inventory (Oldfield,
1971). None of the subjects had a medical history of neurologi-
cal disease or was taking any medications. Basal EEG was normal
in all subjects. Sleep was scored according to American Academy
of Sleep Medicine (AASM) guidelines on monopolar montage,
considering frontal, central and occipital leads, with additional
electro-oculogram and electromyogram derivations on a 30 s
basis (Silber et al., 2007). Continuous EEG recordings showed
unmistakable N1 and N2 sleep stages in all subjects. Only brief
lapses of N3 sleep stage were scored in the majority subjects.
None of the EEG recordings showed REM sleep (see Table 1
for polysomnographic data). All subjects initially experienced
difficulty in falling asleep owing to the effect of TMS before enter-
ing a distinct sleep stage. In accordance with the Declaration of
Helsinki, written informed consent to participate in the study was
obtained. The study design and protocol were approved by the
Local Ethics Committee of the Verona University Department and
Hospital.

EEG RECORDINGS
Electroencephalogram data were acquired using a magnetic res-
onance (MR)-compatible EEG amplifier (BrainAmp 32MRplus,
BrainProducts GmbH, Munich, Germany) and a cap providing
30 TMS-compatible coated-electrodes positioned according to a

10/20 system. Additional electrodes were used as ground (AFz)
and reference (FCz). The EEG data were bandpass-filtered at
0.1–500 Hz and digitized at a sampling rate of 5 KHz.

TMS STIMULATION
Transcranial magnetic stimulation was performed using a
Magstim-Rapid Stimulator in biphasic pulse configuration
(Magstim Company Ltd, London, UK) which generates a max-
imum magnetic field of 1.5 T. TMS was delivered through a
figure-of-eight focal coil oriented so that the induced electric cur-
rent flowed in a posterior-anterior direction over the left M1. MEPs
were recorded from the right thenar eminence (TE) muscle with
Ag/AgCl surface electrodes fixed to the skin with a belly tendon
montage. The coil was placed tangentially to the scalp, with the
handle pointing backwards and laterally at a 45◦ angle away from
the midline. The stimulation coil was positioned with the han-
dle pointing backwards and over the optimal scalp position to
obtain the highest MEP, corresponding approximately to between
C3 and P3 in all subjects. Induced currents were directed postero-
anteriorly. Stimulus intensity was set at 110% of motor threshold
(MT) intensity. MT intensity was approached from individual
suprathreshold levels by reducing the stimulus intensity in 1%
steps. MT intensity was defined as the lowest stimulator output
intensity capable of inducing MEPs of at least 50 μV peak-to-peak
amplitude in relaxed right TE muscles in at least half of 10 tri-
als over the optimal scalp position (Rossini et al., 1994). Stimulus
intensities are expressed as a percentage of maximum stimulator
output.

The click associated with the coil discharge propagates through
air and bone and can elicit an auditory N1–P2 complex at latencies
of 100–200 ms (Nikouline et al., 1999; Tiitinen et al., 1999). In this
study, we inserted earphones to mask the coil-generated click in all
subjects to avoid any effect of clicks in the modulation of cortical
oscillatory activities. A white noise (90 dB) was played through the
inserted earphones to mask the coil-generated click (Fuggetta et al.,
2005). All subjects confirmed that the white noise was sufficient
to mask the auditory input.

Table 1 | Polysomnographic parameters. Mean and standard deviation.

PSG parameters

Total sleep time 53.4 (±10.7) min

Total recording time 103 (±18.8) min

Sleep onset latency 27.2 (±10.8) min

WASO 12.4 (±9.6) min

NREM 100%

REM 0%

N1 37 (±4.1) min

N2 49 (±6.5) min

N3 14 (±3.2) min

WASO, wakefulness after sleep onset, NREM, non-rapid eye movement, REM,
rapid eye movement, N1, N2, N3, NREM sleep stages.
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EXPERIMENTAL DESIGN
The subjects were asked to maintain a regular sleep schedule for
at least 5 days prior to the beginning of the study. The first TMS
recording was performed between 1 p.m. and 3 p.m. in basal con-
ditions (T0), and the second TMS recording from 1 p.m. to 3 p.m.
the day after partial sleep deprivation (T1). Partial sleep depriva-
tion was achieved by having the subject stay awake from 3 a.m.
until morning; no napping was permitted. Sleep was recorded in
the same session as the sleep deprivation recording, immediately
after the latter (T2). Subjects were asked to refrain from taking
any stimulating substances (e.g., coffee, cola, smoking). The EEG
recording was performed before, during and after each TMS stim-
ulation. An EEG baseline acquisition in resting state condition was
also performed before the beginning of each stimulation (before
T0, T1, and T2), with eyes open at T0 and T1 and with eyes closed
at T2. Although the eyes open condition produced a higher num-
ber of trials that had to be discarded due to blinking artifacts, it
ensured the subjects did not fall asleep during the experiment.
During the awake and sleep deprivation recordings, the subjects
were seated in an armchair with the elbow semi-flexed; the fore-
arm was pronated, fully relaxed and supported by the arm of the
chair. During the sleep recordings, the subjects lay in bed in a
dark, sound proof laboratory room; the head was reclined over
an ad hoc tailored foam-rubber pillow to allow correct position-
ing of the coil over the scalp (Del Felice et al., 2011). To ensure
that masking would be effective, the subjects had the earphones
inserted with the white noise turned on for the entire duration of
the experiment.

Transcranial magnetic stimulation single-pulse stimuli were
delivered at random, with a minimum inter-trial interval (ITI)
of 0.8 s and a maximum of 3 s (Figure 1). During the awake and
sleep deprivation sessions, at least 150 stimuli were administered;
during the sleep session, stimulation continued throughout the
entire sleep period.

WAVELET ANALYSIS
The EEG data were analyzed using a time-frequency procedure to
characterize TMS-induced oscillations (Manganotti et al., 2012).

The EEG data were downsampled to 250 Hz and all recordings
were visually inspected; trials with artifacts produced by envi-
ronmental noise, muscle activity or eye movement were rejected.
Only trials recorded during N1–N2 stages were included in the
analysis, whereas trials recorded during N3 stage were excluded
in order to ensure the maximum possible homogeneity. Epochs
with interstimulus interval greater than 2.2 s were selected for the
analysis, to ensure the results were comparable with the previous
study (Manganotti et al., 2012). Since magnetic artifacts were con-
tained in the first 130 ms, the EEG traces were analyzed 130 ms
after magnetic stimulation. In this way the early, slow TEP was
excluded from the analysis, focusing on the time-course of the
power of all frequency ranges during the relative long-term. Trials
of 2 s were selected from 130 to 2130 ms after the stimulus by
visual inspection.

Time-frequency analysis was performed on the most repre-
sentative channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4)
with continuous Morlet wavelet transform, which provides a time
course after magnetic stimulation of the relative power in the main
frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (7–12 Hz),
and beta (15–22 Hz). A family of Morlet wavelets was constructed
at 1 Hz frequency intervals ranging from 1 to 30 Hz. Each wavelet
function has a Gaussian distribution in the time (SD: σt) and
frequency domains (SD: σf ) around the center frequency f0 and
it depends on a parameter, the number of oscillations (f0/σf ),
which has to be chosen by the user. The number of oscillations
in each data window can be critical. There is no rule for deter-
mining this parameter. After several attempts, we choose these
parameters because we could best investigate power changes as
the optimal compromise in time-frequency using a 1–30 Hz fre-
quency range and a temporal window of 2 s. Our wavelet family
was computed using a ratio of 4 oscillations for delta, 8 for theta,
12 for alpha and 22 for beta bands (coinciding with the high-
est frequency). 20 epochs of 2 s of basal EEG devoid of artifacts
were selected for each subject and for each condition. The refer-
ence baseline spectra was calculated by averaging wavelet spectra
across time and frequency, obtaining one value for each band.
The mean and the standard deviation of relative power for each

FIGURE 1 |Time schedule for measuring EEG data during the stimulation (left). Topographic distribution of the nine electrodes analyzed with the site of
stimulation (in red; right).

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 767 | 3

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00767” — 2013/11/18 — 11:00 — page 4 — #4

Manganotti et al. EEG modulation by TMS

channel were computed. Profiles for each subject were averaged
from the post-stimulus trials (a mean of 86 epochs of 2 s at T0,
94 at T1 and 455 at T2; Figure 2) and normalized to the baseline
value (expressed as 1) after the grand-average. The EEG baseline
acquisition was performed in a resting state condition, differently
from TEP study paradigms, where the evoked high amplitude EEG
deflections are compared to a very short epoch of some ms preced-
ing the stimulus. Nevertheless, our aim was to compare changes
of oscillatory activity induced on EEG by a series of stimulation
during the three vigilance states to a reference value, devoid of
any pre-planned external perturbation, in a 2 s interval, thus eval-
uating the long term effect of the stimulation and not the early
short-lasting TEP.

ANOVA for repeated measures was applied to relative pow-
ers with the factors “condition” (T0, T1, T2) and “time point”
(number of time point in 2 s: 500). Post-hoc paired t-test
adjusted for multiple comparisons with Bonferroni method was
used. Statistical significance was set at p < 0.05. In order
to check whether post-stimulus activity differed significantly
from the basal level, a paired samples t-test was performed
at each sampling time (p < 0.05) to evidence the intervals
during which the relative power differed significantly from base-
line.

RESULTS
The times/latencies below mentioned, in which EEG modifications
were observed, refer to the time in the processed epochs and not

latency with respect to TMS. Trials of 2 s were indeed selected from
130 to 2130 ms after the stimulus.

ALPHA BAND
In the alpha band, TMS induced a decrease of power in proximity
of the stimulation site, followed by progressive synchronization
in time, especially over the frontal and central electrodes. Basal
conditions returned about 1 s or more after the stimulation
(Figure 3).

The power of the frontal electrodes (F3-Fz-F4) decreased (by
about 20%) in the 1-s period during the wake state and sleep
deprivation (time limited significant decrease in F4 at T0, T1 , and
T2), followed by a more evident increase lasting from 1 to 2 s; the
decrease was less clear over Fz. During sleep, the power decrease
was more evident (significant decrease in F3) (40% in F3 and
F4). An asterisk above the bars indicates a statistically significant
difference between the post-stimulus activity and the basal value.
A similar pattern was observed over the central electrodes (C3-
Cz-C4): during the wake state and after sleep deprivation, the
power decreased (by 50% at T0 and 30% at T1in C3) over baseline
during the first 1-s period, followed by an increase lasting from 1
to 2 s, which was clearly visible over C3. The power during sleep
decreased significantly by about 30% only in C3. This pattern,
though also observable over the parietal electrodes (P3-Pz-P4), was
not significant.

ANOVA testing the alpha power for each electrode disclosed a
significant main effect for the factor “condition” (T0, T1, and T2)

FIGURE 2 | Schematic representation of the different steps of the

analysis at single subject level. For each EEG channel trials with
intervals greater than 2.2 s were selected for the analysis. Time-
frequency analysis was performed on each trial with continuous Morlet
wavelet transform in the main frequency bands: delta (1–4 Hz), theta

(4–8 Hz), alpha (7–12 Hz), and beta (15–22 Hz). The power was then
averaged in the frequency ranges of interest, producing a power time
course for each trial. Finally, profiles for each trial were averaged and
normalized to the baseline value. This procedure was applied for each
condition (wake state, sleep deprivation and sleep).

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 767 | 4

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00767” — 2013/11/18 — 11:00 — page 5 — #5

Manganotti et al. EEG modulation by TMS

FIGURE 3 | Average (N = 6) relative wavelet power and standard error in alpha range (7–12 Hz), after single-pulseTMS, during wake (green), sleep

deprivation (red), and sleep (black). Asterisk (*) above the bars indicates values significantly different from basal level. Data are analyzed from 130 to 2130 ms
after the stimulus onset.

in Fz (F(2,10) = 4.192, p < 0.05). No significant differences were
observed between the conditions.

BETA BAND
We observed a more rapid initial decrease in power in the beta
band than in the alpha band, followed by an increase in power
again more marked in proximity of the stimulation site and
the homolateral frontal regions, but also over the parietal areas
(Figure 4).

The power of the frontal electrodes (F3-Fz-F4) decreased sig-
nificantly in F3 and F4 by about 40% after sleep and by more
than 40% during all three conditions in F4. The power over
the F4 electrode remained below the baseline value during the
entire post-stimulus interval. An increase lasting from 1 to 2 s
was observed in the three frontal electrodes during all the condi-
tions. During sleep, the power of the central electrodes (C3-Cz-C4)
decreased (significant decrease of 50% in C3 and C4) from the
baseline value and lasted 0.3 s, followed by an evident rebound.
In Cz the power at T0 and T2 remained below the baseline value
during the entire post-stimulus interval, even if no significant
change was noted. After stimulation, the power of the parietal elec-
trodes (P3-Pz-P4) decreased significantly from the baseline value
in Pz and in P4 at T1. A significant power modification from

the baseline was also observed in Pz during sleep from 0.2 to
0.7 s.

ANOVA testing the beta power for each electrode disclosed a
significant main effect for the factor “condition” (T0, T1, and T2)
only in Cz (F(2,10) = 6.778, p < 0.05). No significant differences
were observed between conditions.

THETA BAND
An increase in amplitude of theta relative power was observed in
the first 0.3 s (Figure 5).

During the wake state and after sleep deprivation, the power
of the frontal electrodes (F3-Fz-F4) increased markedly but not
significantly from the baseline value, with a maximum at 0.2 s and
lasting 0.5 s; while the power increased significantly during sleep
in F3 and F4. A significant decrease was also observed in F3 from
0.5 to 2 s at T0, from 0.5 to 1 at T1 and from 0.7 to 1 s at T2; in
Fz from 0.5 to 1.5 s at T2; in F4 from 0.5 to 1 s at T2 and from
1.3 to 1.5 s at T1. A similar pattern was observed in the central
electrodes (C3-Cz-C4), but the increase was significant only after
sleep deprivation in Cz and C4 and during sleep in C4. During
the wake state, the power remained below the baseline value for
the entire interval of 2 s, and this trend was significant for C3 and
C4. The same pattern was also observed in the parietal electrodes
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FIGURE 4 | Average (N = 6) relative wavelet power and standard error in beta range (15–22 Hz), after single-pulseTMS, during wake (green), sleep

deprivation (red), and sleep (black). Asterisk (*) above the bars indicates values significantly different from basal level. Data are analyzed from 130 to 2130 ms
after the stimulus onset.

(P3-Pz-P4), but the power increased significantly (by about 40%)
only in P3 and in P4 during sleep deprivation and in Pz and in P4
during sleep. The decrease in power after 0.5 s was significant in
P3 during sleep, and in P4 during the wake state.

ANOVA testing the theta power for each electrode disclosed a
significant main effect for the factor “condition” (T0, T1 and T2)
in P4 (F(2,10) = 3.956, p < 0.05). A t-test disclosed a signifi-
cant difference between wake state and sleep (p < 0.05) from 0 to
0.08 s and between sleep deprivation and sleep (p < 0.05) from
1.6 to 2 s.

DELTA BAND
The delta rhythm was characterized by synchronization, with a
peak at about 0.3 s, followed by a gradual reduction in power until
returning to the basal condition (Figure 6).

During the wake state and after sleep deprivation, the power of
the frontal electrodes (F3-Fz-F4) increased significantly by about
40% in F4 over the baseline value, with a maximum at 0.3 s and
lasting 1 s. This pattern was also observed in F3 and Fz. During
sleep, the power increased significantly in F3, Fz and F4, peaking
after 0.3 s. In Fz a significant difference from the baseline value
was observed from 1.8 to 2 s during T1. During T0, T1 and T2,
the power of the central electrodes (C3-Cz-C4) increased from the
baseline value, with a maximum at 0.3 s and lasting less than 1 s.

There was a significant increase only in C3 during sleep. After
sleep deprivation, the power remained below the baseline value
in Cz and C4. The pattern, though also observable in the parietal
electrodes (P3-Pz-P4), was significant only in P3, where the power
increased from the baseline with a maximum at 0.3 s during sleep,
and in Pz where the power remained below the baseline from 1.8
to 2 s during sleep.

ANOVA testing the delta power for each electrode disclosed
a significant main effect for the factor “condition” (T0, T1,
and T2) in F3 (F(2,10) = 34.626, p < 0.05) and in C4
(F(2,10) = 3.849, p < 0.05). A t-test disclosed a significant dif-
ference only in F3 between wake state and sleep from 0.8 to 1.2 s
(p < 0.05).

DISCUSSION
This study investigated the time course of different patterns of
the main brain oscillatory activities after brain stimulation dur-
ing different states of vigilance: wake, sleep deprivation and sleep.
Insight on externally modulated brain rhythm patterns can be
gained from the effects of single-pulse TMS on brain oscilla-
tions. Single-pulse TMS can induce synchronization of rapid brain
rhythms (Paus et al., 2001; Fuggetta et al., 2005; Van Der Werf
et al., 2006; Rosanova et al., 2009; Manganotti et al., 2012), and
the behavioral correlates of such oscillatory modulations have
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FIGURE 5 | Average (N = 6) relative wavelet power and standard error in theta range (4–8 Hz), after single-pulseTMS, during wake (green), sleep

deprivation (red), and sleep (black). Asterisk (*) above the bars indicates values significantly different from basal level. Data are analyzed from 130 to 2130 ms
after the stimulus onset.

been identified in the phase locking of ongoing brain oscilla-
tions (Dugué et al., 2011), the encoding of different aspects of
the stimulus by different frequencies (“multiplexing;” Siegel et al.,
2009; Panzeri et al., 2010), or by aligning two oscillatory neural
populations to their high excitability phase (“communication-
through-coherence” Fries, 2005). The novelty of the present
method stands in the application of a time-frequency analysis
to the time course of different rapid and slow brain oscillations
induced by TMS not only in an awake state, but also in sleep
deprivation and sleep.

The dynamic and short-time modulation of brain activity
is confirmed by the fact that low-intensity single-pulse TMS,
applied on the sensorimotor areas in the awake state, induces
early desynchronization over the frontal and central-parietal elec-
trodes, followed by a rebound of synchronization in the alpha
and beta bands, paralleled by early synchronization in delta and
theta activities and subsequent desynchronization. This pattern
reveals the distinct behavior of oscillations after an external per-
turbation, (TMS), and suggests the possibility to differentiate each
brain rhythm solely on the basis of a single shock of depolarization
by TMS (Manganotti et al., 2012). In the awake state, this pattern
of EEG reactivity to TMS was consistent in our group of subjects.

The main study finding was that this pattern can be also slightly
affected by brain intrinsic states: during light NREM sleep (N1

and N2) there was slight precocious desynchronization of alpha
over the stimulated areas, with a minimal contralateral effect, as
well as a similar desynchronization of beta band rhythms over the
antero-central cortex, whereas an early, not well localized increase
in theta synchronization, and a more anterior and site-related
synchronization of delta emerged again in sleep. Given that the
stimulation site was over the primary motor area, this peculiar
localization of rhythms responses bears an important physiologi-
cal meaning that will be discussed below. Indeed, these results are
of interest also because they seem to be maintained throughout
the trials, where a potential bias could have been generated by the
very short ITI intervals. The very short ITI might influence the
findings, since we reported results obtained analyzing epochs with
ITI greater than 2.2 s, discarding the epochs shorter. Differences
found in oscillatory activity could possibly not completely depend
on stimulation itself, but also to some spurious state-dependent
differences between the two EEG states (resting state/baseline con-
dition and stimulation conditions). Indeed, the reproducibility of
the results throughout states and subjects hints to the major effect
of TMS, that could nonetheless be endowed with endogenous pro-
cesses, the course of which were beyond the aim of our study. Since
not all stimulations were delivered in exactly the same condition,
the persistence of analogous responses adds robustness to our data
and possibly points to a strong modulating effect of vigilance states,

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 767 | 7

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00767” — 2013/11/18 — 11:00 — page 8 — #8

Manganotti et al. EEG modulation by TMS

FIGURE 6 | Average (N = 6) relative wavelet power and standard error in delta range (1–4 Hz), after single-pulseTMS, during wake (green), sleep

deprivation (red), and sleep (black). Asterisk (*) above the bars indicates values significantly different from basal level. Data are analyzed from 130 to 2130 ms
after the stimulus onset.

in which the neurotransmitters balance is distinct in each condi-
tion, on brain rhythms. Interestingly, partial sleep deprivation was
not responsible for any clear-cut modulating effect, except for a
minor desynchronization of theta over the frontal bilateral leads
and a precocious synchronization over the posterior areas, in con-
trast with our previous data (Del Felice et al., 2011) on the massive
impact of sleep deprivation on cortical excitability.

WAKE OSCILLATORY ACTIVITY
Early research on EEG-TMS co-registration reported only syn-
chronization in beta activity after single magnetic stimulation and
linked it to a sort of resetting or disruption of the ongoing oscilla-
tory activity of M1 produced by external magnetic stimulation of
the brain (Paus et al., 2001). Fuggetta et al. observed that single-
pulse TMS produces an increase in power in both the beta and
alpha bands, unlike the self motor finger movement which pro-
duces a well-known decrease in alpha and beta powers. Also, using
MT and minimal intensity stimulation, they noted a significant
effect on brain modifications, which suggests an effect of magnetic
stimulation on the cortical sources (Fuggetta et al., 2005).

An increase in beta power has been observed by other authors
(Van Der Werf et al., 2006; Rosanova et al., 2009). However, in
most of these studies, spectral estimation was performed using
fast Fourier transform which does not detect dynamic changes.

To overcome this limitation, methods that can monitor the tem-
poral variation of EEG power are needed. In this study we used
a wavelet-based method to detect the temporal modulation of
brain oscillations in the main frequency bands. This approach
has already been applied to experiments with single, paired-pulse
and transcallosal TMS (Manganotti et al., 2012). Single pulse,
paired-pulse and transcallosal TMS, which investigate intra- and
transcortical inhibition, induce similar patterns. Specifically, sin-
gle pulse TMS provokes an initial mainly anterior decrease of
power in the alpha and beta bands, followed by a more promi-
nent increase of power in beta activity over the ipsilateral and
contralateral M1. Similar results are observed also on our data,
although the significance is not robust as in our previous study,
with a minimal precocious desynchronization of the anterior alpha
and a slow desynchronization of beta mainly over the contralat-
eral motor area, as well as the late desynchronization of theta over
the frontal and central areas, mainly on the stimulated site. These
results, in line with the previous ones (Manganotti et al., 2012),
differ from other literature data on the basis of the innovative
analysis approach that defines the time course of the oscillation
and does not rely on an averaged analysis.

Finally, the spontaneous EEG signal is the indistinguishable
summation of the activation of both fast and slow excitatory post-
synaptic potentials (fEPSPs and sEPSPs, respectively) as well as
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fast and slow inhibitory postsynaptic potentials (fIPSPs and sIP-
SPs, respectively) (Rosenthal et al., 1967). fIPSPs are mediated
by γ-aminobutyric acid (GABAA) postsynaptic receptors lasting
approximately 20–30 ms (Davies et al., 1990). TMS can explore
the inhibitory system of motor areas. Short intracortical inhibi-
tion ([SICI] as evaluated by means of MEP amplitude modulation
at ISI 3 ms) is thought to explore the net effect of the activation of
inhibitory GABAA circuits in M1. We can hypothetically exclude
that single TMS, which induces patterns similar to paired TMS
on brain oscillations, can investigate similar inhibitory circuits in
sleep and sleep deprivation.

SLEEP DEPRIVATION, BRAIN EXCITABILITY AND OSCILLATORY
RHYTHMS
The homeostatic process regulates the propensity to sleep in
relation to the length of prior wakefulness (Borbély and Acher-
mann, 1999), and the amount slow-wave sleep (SWS) during
subsequent NREM sleep has been proposed as a measurement
for sleep homeostasis, equated to sleep intensity or sleep depth
(Steriade, 2005). Sleep deprivation impairs cognition and per-
formance, as measured on verbal and non-verbal memory tasks
(Smith and MacNeill, 1994; Walker et al., 2002a,b), and cognitive
and attentional abilities (Linde and Bergstrom, 1992; Harrison
and Horne, 1999; Doran et al., 2001; Belenky et al., 2003; Drum-
mond et al., 2006; Kendall et al., 2006), and primarily affects frontal
executive functions. In clinical practice, sleep deprivation is an
established method to provoke EEG epileptiform abnormalities
(Bennett, 1963; Pratt et al., 1968; Jovanovic, 1991; King et al., 1998)
and seizures in most types of epilepsy (Dinner, 2002). Neuro-
physiologically, sleep deprivation modulates the frequency power
of EEG rhythms, enhancing the frontal predominance of delta
(Kattler et al., 1994; Achermann et al., 2001), with a main effect
over the left hemisphere, increasing theta rhythms (Cajochen
et al., 1995; Dumont et al., 1999) predominantly over the frontal
(Cajochen et al., 1995) and temporal sites (Forest and Godbout,
2000), and increasing alpha in an eyes-open condition (Stampi
et al., 1995; Corsi-Cabrera et al., 1996) while decreasing it in an
eyes-closed state (Drapeau and Carrier, 2004).

A brain stimulation paradigm has rarely been applied to inves-
tigate sleep deprivation. A recent study by Del Felice et al. (2011)
looked into its effects on TEPs in a group of healthy volunteers and
patients with generalized epilepsy (juvenile myoclonic epilepsy,
JME). The authors found that sleep deprivation enhanced corti-
cal excitability, as measured by TEP amplitude, more markedly
over the frontal areas in the epileptics, possibly due to involve-
ment of the frontal cortex in the pathogenesis of JME. EEG-TMS
was also used to monitor cortical excitability in healthy individu-
als as a function of time awake (Huber et al., 2013). The authors
observed that the immediate cortical response to direct stimulation
progressively increases with time awake.

Our data detected a possible theta synchronizing effect of
sleep deprivation over the posterior cortical areas, whereas a
not significant phenomenon was observed over the frontal elec-
trodes. The almost negligible effect that sleep deprivation exerts
on late-response brain oscillation contrasts with the strong effect
it demonstrates on TEP. Although we do not have an explanation
for this observation, we could suppose a different susceptibility

to sleep deprivation effects of the superficial TEPs generators
that rely on short interconnections in contrast to the long-
loop, deep structures that reverberate in the long-term aftermath
of the TMS.

Nonetheless, the reaction we were able to demonstrate seems to
bear a physiological meaning. Since theta rhythm is the signature
of sleepiness – the so called theta of drowsiness – the response
to an external perturbation of a sleepy brain appears to reflect its
physiological state: a disturbed brain increments these oscillations
in the frequency range more abundant in the stage it is in and over
the areas where it is usually represented – i.e., theta over the tempo-
ral and parietal. An experimental paradigm aiming at simulating
a higher sleep pressure proved an analogous brain reaction: Kirov
et al. (2009) applied transcranial slow oscillation stimulation at a
frequency of 0.75 Hz during the wake state observing a diffuse
theta increase. Although in their experiment a rhythmic entrain-
ing effect might have artificially boosted slow brain oscillations, in
our view a physiological state of increased slowed rhythms, such
as sleep deprivation, has the intrinsic capacity to reverberate at the
frequency that is more consistent with its state – theta rhythm in
the specific case.

SLEEP AND OSCILLATORY RHYTHMS
No general consensus exists on the generation of ongoing EEG
rhythms in wake and in sleep. The prevailing model according
to Steriade sees corticofugal slow oscillations (<1 Hz) that group
thalamic-generated delta rhythms (1–4 Hz) and spindling activ-
ity (7–14 Hz), with delta dominating the EEG and low amplitude
alpha (8–12 Hz; Steriade, 2003). When arousing stimuli, either
exogenous or endogenous, are delivered, spindling, slow and ultra-
slow oscillations are blocked by inhibition of the reticulothalamic
(7–14 Hz), thalamocortical (1–4 Hz) and intracortical (<1 Hz)
generators. They are replaced by beta (12–18 Hz) and gamma (up
to 40 Hz) rhythms paced by the basal forebrain (Steriade, 2003).
Instead, during the wake state, alpha is the dominant rhythm, with
a low amplitude delta (Steriade and Llinás, 1988; Pfurtscheller and
Lopes da Silva, 1999), suggesting a reciprocal inhibition between
their generators.

Our data seem to provide the experimental setting to repli-
cate the aforementioned rhythms alternation: during sleep, the
brain response to TMS consisted of an early alpha desynchro-
nization over the stimulation site, with a minimal effect over the
contralateral omologous areas (possibly due to the transcallosal
spread) coupled with an early delta synchronization over the ante-
rior areas and over the stimulation site. Of interest is the main
anterior effect on the slow rhythm: the frontal cortex is the main
source of the so-called slow traveling wave of sleep (Massimini
et al., 2004; Ferri et al., 2005; Murphy et al., 2009) over which there
is a higher chance of eliciting, through TMS pulses, waves resem-
bling the physiological oscillation of SWS (Massimini et al., 2004).
This mechanism, associated with a recently demonstrated entrain-
ment phenomenon, could contribute to the observed higher delta
power over the frontal brain area. As demonstrated by Veniero
et al. (2011), stimulating at the frequency of the underlying brain
rhythms (alpha in that case) leads to a progressively enhanced
oscillatory response in the same frequency band. In our experi-
ment, this seems to hold true over the anterior areas, where the
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slow wave is physiologically generated, and over the stimulated
hemisphere, which is thus the more solicited.

To sum up, our results hint to the change of tagging the brain
physiological state by its reaction to external perturbations: the
coupled desynchronization of faster, wake-like rhythms, and the
rise of slow ones induced by an external perturbation during sleep
could indicate that the brain reacts accordingly to its actual state.

CONCLUSION
Our results show a reciprocal synchronizing/desynchronizing
effect on slow and fast oscillatory activity in response to focal,
standardized TMS after sleep deprivation and sleep, as detected by
time-frequency analysis. Nevertheless, this preliminary study has
some limitations. Well-designed studies with larger sample size
and more detailed data are needed to confirm these conclusions.
However, these findings highlight the pronounced interference
that external brain stimulation can exert on the cortex modulated
by the vigilance state and open up new perspectives regarding
automated detection systems of brain state modifications, as well
as giving a more detailed insight in the functional modifica-
tion in pathological conditions. This holds true, for example,
in the evaluation of hyperexcitable states, as epilepsy, or states
of disturbed consciousness, as in minimal consciousness: the
detection of rhythmicity patterns modification could point to a
forthcoming clinical manifestation – either a seizure developing
or the consciousness level modification, with a potential clinical
application.
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