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The lateral habenula (LHb) plays an important role in motivational decision making.
Neurons in the primate LHb signal negative ‘reward prediction errors’ and inhibit midbrain
dopamine (DA) neurons. These negative reward prediction error signals in the LHb are,
at least partly, provided by a distinct group of neurons in the border region of the globus
pallidus internal segment (GPb). However, it is still unclear whether other basal ganglia
nuclei provide the LHb with reward signals, either through the GPb or through different
circuits. As a first step to answer this question, we electrically stimulated various parts of
the basal ganglia and monitored the neural activity in the LHb in the awake monkey. First,
we found that low intensity stimulations in the GPb and the internal segment of the globus
pallidus (GPi) evoked a short latency (5 ms) excitatory response in LHb neurons. Second,
LHb neurons were inhibited by stimulations in the ventral pallidum (VP). These results
suggest that reward-related signals are transmitted to the LHb mainly through excitatory
connections from the GPb and inhibitory connections from the VP Finally, excitations or
inhibitions are induced in LHb neurons from diverse but patchy regions in the striatum.
These effects have considerably longer latencies, suggesting that they may be mediated
by the GPb or the VP The patchy nature of the stimulation effect raises the possibility that
the striosomes are the source of reward-related signals transmitted to the LHb.
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INTRODUCTION

The lateral habenula (LHb) is involved in fundamental aspects
of animal behavior (Hikosaka, 2010). In particular, its role in
motivational and emotional processes, as well as their disor-
ders, has been a focus of recent research (e.g., Matsumoto and
Hikosaka, 2007; Brown et al., 2010; Sartorius et al., 2010; James
et al.,, 2011; Li et al., 2011; Shabel et al.,, 2012; Stamatakis
and Stuber, 2012). Neurons in the primate lateral LHb are
excited by visual stimuli that predict the absence of reward and
are inhibited by stimuli that predict the presence of reward
(Matsumoto and Hikosaka, 2007), and inhibit dopamine (DA)
neurons in the midbrain (Lisoprawski et al., 1980; Christoph
et al., 1986; Ji and Shepard, 2007; Matsumoto and Hikosaka,
2007), mainly through the rostromedial tegmental nucleus
(RMTg; Jhou et al., 2009; Hong et al, 2011; Barrot et al,
2012).

In our previous study (Hong and Hikosaka, 2008a) we showed
that, (1) neurons in the border region of the globus pallidus
internal segment (GPb) projected their axons to the LHb, (2) most
of the LHb-projecting GPb neurons encoded negative reward
prediction errors similar to LHb neurons, and (3) their reward-
related activity started earlier than the activity of LHb neurons.
These results suggest that the GPb-LHb connection is excitatory,
although a minority of GPb neurons encoding positive reward
prediction errors may have inhibitory connections to the LHb

(Hong and Hikosaka, 2008a). This hypothesis was supported by
studies using rats (Shabel et al., 2012) and lampreys (Stephenson-
Jones et al., 2013).

How then does the GPb-LHb circuit acquire the signals that are
necessary to create reward prediction error signals? One candidate
for the source of such signals is the striatum. Physiologically,
it is known that many striatal neurons show sensory responses
that are modulated by expected reward values (Kawagoe et al.,
1998; Oyama et al.,, 2010; Ambroggi et al., 2011), or exhibit
sustained activity predicting sensory stimuli, actions, or reward
itself (Hikosaka et al., 1989; Tremblay et al., 1998; Lauwereyns
et al., 2002; Lau and Glimcher, 2008; Hori et al., 2009). Anatomi-
cally, some studies have suggested that the striatum sends signals
to the LHb through indirect connections. In rats, Rajakumar
et al. (1993) reported that the rostral part of the entopeduncular
nucleus (EPN), which showed strong connections to the LHb,
received projections from the striatum, particularly from the
striosome (Graybiel and Ragsdale, 1978). In monkeys, using a
manganese tracer method, Saleem et al. (2002) found that the
striatum had indirect but strong projections to the LHb. However,
it was unknown whether the striataum-LHb connection was
mediated by the GPb. There may be other routes for the striatum
to influence the LHb.

To examine the hypothesis that the striatum is the origin of
the input to the LHb, we electrically stimulated various parts
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of the basal ganglia while recording from the LHb. The spatial
distribution of the effective stimulation sites as well as the latency
and the direction of modulation of the LHb activity provide
suggestions for the functional circuits connecting the basal ganglia
to the LHb. An initial result of this study was presented in the SIN
abstract (Hong and Hikosaka, 2008b).

MATERIALS AND METHODS

Three rhesus monkeys (Macaca mulatta), B, C and D, were
used as subjects in this study. All animal care and experimental
procedures were approved by the National Eye Institute and
Institutional Animal Care and Use Committee and complied with
the Public Health Service Policy on the humane care and use of
laboratory animals.

ELECTROPHYSIOLOGY

One recording chamber was placed over the midline of the
occipital cortex, tilted posteriorly by 40°, and was aimed at the
LHb; another chamber for the stimulating electrode was placed
over the frontoparietal cortex, tilted laterally by 35°, and was
aimed at the GPi. Recordings and electrical stimulations were
performed using tungsten electrodes (Frederick Haer) that were
advanced by an oil-driven micromanipulator (MO-97A, Nar-
ishige). The recording and stimulation sites were determined
using a grid system, which allowed recordings at every 1 mm
between penetrations. An electrode was introduced into the brain
through a stainless steel guide tube, which was inserted into
one of the grid holes and then to the brain via the dura. We
preferentially recorded multi-unit activity in the LHb using elec-
trodes with low impedances (about 0.5 M Ohm). The signal was
amplified with a band-pass filter (200 Hz—5 kHz; BAK, Mount
Airy, MD) and collected at 40 kHz via a custom-made window
discriminator (MEX). Single neurons were isolated online using
a custom voltage-time window discrimination software (MEX,
LSR/NEI/NTH).

To record LHD activity, the position of the LHb was mapped
first by MRI. The electrophysiological features of the LHb
(Matsumoto and Hikosaka, 2007) were also used to locate the
LHDb. To examine the basal ganglia’s influence on the LHb,
electric stimulations were applied to the basal ganglia while
recording multi-unit activity from the LHb (Figure 1). In most
cases we used 1 biphasic pulse of 100 pwA lasting 0.2 ms.
We chose these parameters because it was shown previously
that stimulation with similar parameters in the CN in awake
monkeys produced significant effects on single neurons in the
substantia nigra pars reticulata (Hikosaka et al., 1993). How-
ever, single pulse stimulation in the striatum often elicited only
weak effects on LHb neurons. For this reason, we used three
biphasic pulses of 133 WA each lasting 0.2 ms at 300 Hz (for
the striatum only). The inter-stimulation interval was about
1 sec with some variability. The stimulation-triggered LHb activ-
ity was stored and analyzed offline. To see the effect of stimulation
at different structures of the basal ganglia, stimulations were
applied 100 times at every 200 pm along the electrode pene-
tration. To minimize stimulation-induced electrical artifacts, we
used a commercially available artifact remover (Artifact Zapper-1,
Riverband Instrument).

Stimulation
onset

LHb PSTH

(Dmb

7

FIGURE 1 | To examine the influence of the basal ganglia on the LHb,
electrical stimulation was applied in the basal ganglia (left) while
recording multiunit activity from the LHb (right). Stimulation was
applied every 200 um along the track of the stimulating electrode (left), 100
times at each depth. The stimulation was either 1 biphasic pulse of 100 pA
(for all structures of basal ganglia) or 3 biphasic pulses of 133 WA each (only
for striatum).

DATA ANALYSIS

At the end of each penetration, a map of effective stimulation
sites was made by averaging the 100 times of stimulating effect at
every 200 pum along the whole tract. At each depth of stimulation,
LHb neuron activity during the 200 ms period preceding the
stimulation onset was analyzed to generate a 95% confidence
threshold. The threshold was used to determine the significant
deviation of LHb activity after stimulation. In the center figures
of Figures 2 and 3, significant excitations are shown in white and
significant inhibitions are shown in black.

To determine the latency of the stimulation-induced response
of LHb neurons, we used a Poisson distribution test (Hong et al.,
2011). For this, we first counted the number of accumulated
spikes across the trials within a 1 ms bin along the 500 ms period
before stimulation. Using these data, a histogram was constructed,
with the abscissa representing the number of spikes and the
ordinate representing the number of bins that had the number of
spikes corresponding to the values on the abscissa. The histogram
was fitted with a Poisson distribution curve. Using the Poisson
curve, the threshold value of spikes per bin was determined that
matched the p value of 0.01. Then, the number of spikes of each
bin during the post-stimulation period was examined. The point
in time when the histogram exceeded the significance level was
taken to be the time of significant modulation by the stimulation.

RESULTS

To examine the basal ganglia’s influence on the LHD, electric stim-
ulation was applied in the basal ganglia while recording multi-unit
activity from the LHb. Across the experiments, the stimulating
electrode was aimed at different positions of the striatum, while
the recording electrode was aimed at the LHb on the same side.
We monitored multi-unit activity, rather than single-unit activity,
for two reasons. First, LHb neurons show very similar activity in
relation to changes in reward values (Matsumoto and Hikosaka,
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FIGURE 2 | Effects of electrical stimulation along electrode tracks
through the putamen-pallidal region. (A) Stimulations along the
putamen-globus pallidus external segment (GPe)-GPi track. Left: The location
of the stimulating electrode track. The red line indicates where the stimulation
data were collected. Center: Significant effects (white: excitation, black:
inhibition) shown in depth (ordinate) and time (abscissa). At each depth of
stimulation, the LHb neuron activity in a pre-stimulation period (duration: 200
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ms) was analyzed to generate a 95% confidence threshold. This threshold
was used to determine a significant post-stimulation deviation of the LHb
activity. The anatomical landmarks are indicated on the left side of the figure
(WM: white matter; Cl: claustrum). The vertical blue bar indicates 1 mm.
Right: Average LHb activity (baseline subtracted peri-stimulus time histogram
(PSTH)) in the structure corresponding to the bracket next to each PSTH. (B)
Stimulations along the putamen-VP track. The same convention as in (A).

2007). Second, multi-unit activity remained more stable even
when the recording lasted several hours.

Figure 2A shows the effects of electrical stimulations (one bi-
phasic 100 pA pulse of 0.2 ms duration) along the electrode track
traveling through the putamen, GPe, and GPi. The stimulation
effect changed dramatically with the depth of the stimulating
electrode. Stimulations in the putamen induced little effect. As
the stimulating position moved closer to the border part between
the putamen and GPe, a small excitatory effect appeared about
35 ms after the stimulation. As the stimulating electrode
approached the GPe, inhibitory and then excitatory effects
appeared with shorter latencies (about 25 ms). In the dorsal part
of the GPe, however, there was little stimulation effect. In the
ventral GPe, an excitatory effect appeared at about 20 ms. Interest-

ingly, as soon as the electrode came out of the GPe and entered the
GPe-GPiborder region (GPb), a strong phasic excitatory response
occurred with a short latency (5 ms), which was followed by an
inhibition. The phasic excitation continued throughout the GPi
and further into a region ventral to the GPi (which may also
belong to the GPb). The data suggest that LHb neurons receive
excitatory or inhibitory inputs from different regions in the basal
ganglia and that their sources were distributed in a patchy manner.

Another source of short latency responses was found in the
VP (Figure 2B). The stimulating electrode passed along the lateral
edge of the putamen, the anterior part of the GPe, the anterior
commissure (AC), and reached the VP. The stimulation effect was
mostly confined in the VP and was an inhibitory response that
started about 15 ms after the stimulation and lasted about 40 ms.
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FIGURE 3 | Effects of stimulation along the electrode tracks through the striatum. Electric stimulations of 1 biphasic pulse of 100 pA were used in (A).
Three pulse stimulations (3 biphasic pulses, 133 LA each) were used for (B) and (C). The same convention as in Figure 2.
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Stimulation in the striatum elicited diverse effects in the
multi-unit LHb activity (Figure 3). Excitatory responses were
evoked from patchy areas in the putamen, in its rostral por-
tion (Figure 3A) and central portion (Figure 3B) (latencies:
30—40 ms). Inhibitory responses with shorter latencies (15-25 ms)
were evoked from the ventral portion of the central putamen,
close to the transition to the GPe (Figures 2A, 3B). Stimulations
in the ventral striatum, including the nucleus accumbens (NAc),
evoked inhibitory responses (latencies: 50-70 ms) followed by an
excitation (Figure 3A, center). Stimulations in the rostral portion
of the caudate nucleus (CN) evoked excitatory responses with
different latencies (dorsal CN: 60 ms, ventral CN: 3040 ms).
Overall, the effective sites of stimulation were distributed in a
patchy manner in the striatum. Their effects (i.e., combination
of excitatory and inhibitory effects) and latencies were variable
across the patches.

DISCUSSION

GPb-LHb CONNECTION

The data in Figure 2A suggest that LHb neurons receive exci-
tatory and inhibitory inputs from different regions in the basal
ganglia. The short latency response evoked from the GPb-GPi
region may be explained by the connection from the GPb to the
LHb (Parent et al., 1981). We previously found that many GPb
neurons projected their axons to the LHb and a majority of them
showed negative reward modulations of their responses to visual
saccade targets (Hong and Hikosaka, 2008a). Since LHb neurons
also showed similar negative reward modulations, the GPb-LHb
connection was considered to be excitatory. Our present data
(Figure 2A) are consistent with this hypothesis. The excitatory
nature of the GPb-LHb connection was supported by recent
studies in rats (Barroso-Chinea et al., 2008; Shabel et al., 2012)
and lampreys (Stephenson-Jones et al., 2013).
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The results in Figure 2A reflect the functional anatomy
reported in the literature. The short latency excitatory effect was
observed not only from the GPb but also from the underlying
areas including the GPi and an area below it. This may be due
to the anatomical structure of the GPb. Neurons that project
to the LHb are located not only in the GPb but also in the
middle of the GPi (close to the accessory medullary lamina, AML)
and, occasionally, below the border area of the GPi (Hong and
Hikosaka, 2008a). If the GPb is defined as the area that connects
to the LHD, it has a complex 3D layered structure (see also Parent
et al., 2001). We also speculate that the axons of the GPb neurons
travel across these layers (i.e., top layer: GPe-GPi border, middle
layer: AML, bottom layer: ventral to GPi) before heading toward
the LHb. Stimulation at the areas ventromedial to the GPe-GPi
border would activate efferent axons of GPb neurons and induce
strong effects on LHb neurons.

VP-LHb CONNECTION

The VP was another structure from which short latency effects
were evoked in LHb neurons (Figure 2B). Anatomically, the VP is
known to project to the LHb among several other areas (Haber
and Knutson, 2010). Berridge and colleagues have suggested
that the VP may serve as a ‘limbic final common pathway’ for
processing of reward (Smith et al., 2009), a conclusion based on
studies using various methods: lesions (Cromwell and Berridge,
1993), inactivations (Farrar et al., 2008), chemical manipulations
(Stratford et al., 1999; Shimura et al., 2006), neuronal recordings
(Wheeler and Carelli, 2006; Tindell et al., 2006). Human imaging
studies are largely consistent with this conclusion (Simmons et al.,
2013). A recent study from our lab (Tachibana and Hikosaka,
2012) showed that primate VP neurons encoded expected reward
values and costs by changing the level of tonic activity in a
stepwise manner. Importantly, a majority of VP neurons were
excited by the expectation of a large reward (i.e., positive value
coding). Since some VP neurons projecting to the mediodorsal
thalamus (Zahm et al., 1987) and the substantia nigra (Bevan
et al., 1996) are GABAergic and inhibitory, the VP-LHb connec-
tion may also be inhibitory. If so, their positive value coding would
be converted to negative value coding in LHb neurons, which
is consistent with how LHb neurons behave (Matsumoto and
Hikosaka, 2007). However, there is a crucial difference in infor-
mation processing between VP neurons and LHb neurons: VP
neurons represent the expected reward value per se, whereas LHb
neurons represent a difference between the actual and expected
rewards (i.e., reward prediction error). How the conversion of
the information occurs via the VP-LHb connection remains to be
solved.

STRIATUM-LHb CONNECTIONS

We found that stimulations in the striatum induced diverse
responses in LHb neurons. The effect of striatal stimulation was
excitatory or inhibitory, depending on where the stimulation was
applied in the striatum (Figures 2, 3). Inhibitory effects were
evoked from the ventral part of the putamen (Figure 3B) and
the ventral striatum (Figure 3A). Excitatory effects were evoked
from the dorsal part of the putamen (Figures 3A, B) and the CN
(Figure 3C). How can we explain these different effects?

The latencies of these effects are longer than those from the
GPb or VP, consistent with anatomical findings indicating the
striatum-LHb connection is indirect (Saleem et al., 2002). It is
conceivable that the effects were mediated by the GPb (Rajakumar
etal., 1993) or the VP (Haber et al., 1993; Figure 4). Whether the
net effect is excitatory or inhibitory would thus depend on the
nature of the disynaptic (or multi-synaptic) connections.

Medium spiny neurons comprise the only class of output
neurons in the striatum and are GABAergic inhibitory neurons
(Tepper and Bolam, 2004). It is then expected that striatal stim-
ulations induce inhibitory responses in GPb and VP neurons.
Indeed, Tremblay and Filion (1989) found in the monkey that
the ordinary types of GPe and GPi neurons were first inhibited
by striatal stimulations. On the other hand, what they called
‘border neurons’ were often (but not always) excited by striatal
stimulations, possibly because the signals were mediated through
inhibitory axon collaterals within the striatum (Tremblay and
Filion, 1989) or GPe (Sadek et al., 2007). The border neurons were
distributed in the border regions that surround the GPi as well as
the GPe, and showed tonic firing whose frequency was lower than
the common types of GPi or GPe neurons (DeLong, 1971). Some
of the border neurons may correspond to GPb neurons projecting
the LHb (Parent et al., 2001). Assuming that the GPb-LHb con-
nection is excitatory (Hong and Hikosaka, 2008a; Shabel et al.,
2012; Stephenson-Jones et al., 2013), the net effect of the striatal
stimulation would be excitatory (if GPb neurons are excited) or
inhibitory (if GPb neurons are inhibited). Therefore, both the
excitatory and inhibitory effects caused by striatal stimulations
(Figures 2, 3) could be mediated by GPb neurons.

Compared with the striatum-GPb-LHb circuit, the signifi-
cance of the striatum-VP-LHb circuit is less clear. Anatomically,
the VP is known to receive inputs mainly from the ventral portion
of the striatum (Heimer et al., 1987; Usuda et al., 1998) and
projects to the LHb (Haber et al., 1993). Although it is com-
monly thought that the striatum-VP connection is GABAergic
and inhibitory (Walaas and Fonnum, 1979), it might not apply

Striatum

GPb

O/ Negative > positie \
LHb
\ /
‘ Negative
\ O/’/ Positive > Negative
A 4

FIGURE 4 | Striatum-LHb connections: possible circuits through GPb or
VP. Our results suggest that the GPb-LHb connection is excitatory while the
VP-LHb connection is inhibitory. A majority of GPb and LHb neurons encode
negative reward prediction errors (e.g., excited by the unpredicted omission
of reward), whereas a majority of VP neurons encode positive reward
values (e.g., excited by the prediction of reward), The excitatory-inhibitory
nature is unknown for the striatum-GPb and the striatum-VP connections;
the sources of these connections might be the striosomes.
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to VP neurons that project to the LHb. Therefore, it is unclear
which part of the striatum modulates the activity of LHb neurons
through the VP or through the GPb.

A remarkable feature of the effects of the striatum stimulation,
regardless of the underlying synaptic mechanisms, is that the
effective sites are distributed in a patchy manner. It has long
been known that the striatum is composed of two chemically
defined regions, forming patchy structures (called “striosome”)
and surrounding areas (called “matrix”) (Graybiel and Ragsdale,
1978; Gerfen, 1984). We speculate that the patchy effective sites
in the striatum (Figure 3) may correspond to striosomes, as
suggested by Rajakumar et al. (1993). Striosomes receive inputs
from limbic areas, such as the amygdala (Gerfen, 1984; Ragsdale
and Graybiel, 1988) and the orbitofrontal-insular cortices (Eblen
and Graybiel, 1995), suggesting that they carry emotional or
motivational signals. Consistent with this idea, rats quickly learn
to self-stimulate the striosomal regions, but not matrix regions
(White and Hiroi, 1998). Considering this reinforcing effect of the
striosome, and the patchy distribution of the striatal stimulation
effects on LHb neurons described above, we speculate that the
strisome-GPb-LHDb circuit contributes to the formation of neg-
ative reward prediction error signals in the LHb.
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