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Listening to music engages the whole brain, thus stimulating cognitive performance in
a range of non-purely musical activities such as language and memory tasks. This article
addresses an ongoing debate on the link between music and memory for words. While
evidence on healthy and clinical populations suggests that music listening can improve
verbal memory in a variety of situations, it is still unclear what specific memory process is
affected and how.This study was designed to explore the hypothesis that music specifically
benefits the encoding part of verbal memory tasks, by providing a richer context for
encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC).Twenty-
two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS)
imaging of their bilateral DLPFC while encoding words in the presence of either a music or
a silent background. Behavioral data confirmed the facilitating effect of music background
during encoding on subsequent item recognition. fNIRS results revealed significantly
greater activation of the left hemisphere during encoding (in line with the HERA model
of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the
music condition compared to silence. These findings suggest that music modulates the
role played by the DLPFC during verbal encoding, and open perspectives for applications
to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s
patients.
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INTRODUCTION
Listening to music engages the whole brain through a diverse set
of perceptive and cognitive operations, and equally diverse neural
substrates (Altenmüller, 2003). As most of these neural substrates
also intervene in other activities, it is increasingly believed that
music can benefit non-musical abilities, and most notably lan-
guage (Abbott and Avins, 2006; Patel, 2011). In particular, there
is an ongoing debate in the field of music and cognitive stimu-
lation on whether music can be used to enhance verbal memory.
On the one hand, music is a complex auditory stimulus which
evolves through time and which has a strong emotional impact
(Blood and Zatorre, 2001; Salimpoor et al., 2013). As such, music
can provide considerable additional cues which are likely to enrich
the encoding of an event. On the other hand, musical information
was also claimed to negatively affect memory by attracting par-
ticipants’ attention away from the information to be remembered,
generating a dual task situation with poorer memory performance
than in a silent situation (Racette and Peretz, 2007; Moussard et al.,
2012). In the last 20 years, several studies were conducted in order
to understand when and how music can have a positive effect on
memory. Research on western music indicates that musical train-
ing (Chan et al., 1998; Ho et al., 2003; Franklin et al., 2008) and also
simple exposure to music leads to benefits on short- and long-term
verbal memory in healthy and clinical populations (Balch et al.,
1992; Balch and Lewis, 1996). In 1994, Wallace showed that text is

better recalled when heard as a song rather than speech, suggesting
that musical context can assist in learning and retrieving words.
In clinical settings, short (i.e., music played as a background in a
memory task) and long-lasting (i.e., in a music-therapy program)
auditory stimulations with music were both shown to improve cat-
egory fluency in a verbal fluency task in both healthy elderly and
Alzheimer’s patients (Thompson et al., 2005), speech content and
fluency in patients with dementia (Brotons and Koger, 2000), and
verbal memory in stroke patients (Särkämö et al., 2008). Addi-
tionally, verbal material is more efficiently retrieved when sung
than spoken in multiple sclerosis (Thaut et al., 2005), aphasics
(Racette et al., 2006), and Alzheimer’s patients (Simmons-Stern
et al., 2010).

Such evidence suggests that music provides contextual cues
that contribute to episodic memory processes. Episodic memory
(Tulving, 1972) enables conscious recollection of personal expe-
riences and events from the past (Wheeler et al., 1997). Encoding
is a crucial aspect of episodic memory and it is tightly related
to the contribution of contextual factors such as location, time,
prevailing conditions, and converging multisensory and emo-
tional stimuli (Eich, 1985; Hamann, 2001; Kensinger and Corkin,
2003; Hupbach et al., 2008). Neuroimaging and behavioral data
have clearly shown that the capacity to retrieve correct informa-
tion depends on its successful encoding (e.g., Prince et al., 2005;
Hertzog et al., 2010). Furthermore, richer contexts enhance the
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encoding of contextual information associated to an item and can
be subsequently used as mnemonic cues during retrieval, facili-
tating the access to the target item (Lövdén et al., 2002; Kroneisen
and Erdfelder, 2011). It has been shown that enriching the context
of encoding through, e.g., enacted encoding (Lövdén et al., 2002)
or with emotional valence stimuli (see Hamann, 2001 for a review)
can enhance memory performance at retrieval. It is therefore pos-
sible that the greatest value of music for memory is to provide
mnemonic processes with a particularly rich and helpful context
during the encoding phase of episodic memory.

Memory encoding and retrieval processes are supported by a
broad brain network that involves the medio-temporal and pos-
terior parietal areas, the hippocampus, and the prefrontal cortex
(PFC), the latter being particularly important for episodic memory
(Spaniol et al., 2009; Manenti et al., 2012). Different sub-regions
of the PFC are recruited by different mnemonic processes: accord-
ing to the hemispheric encoding/retrieval asymmetry (HERA)
model (Tulving et al., 1994), left PFC activation is greater for
encoding than retrieval, while right PFC activation is greater
for retrieval than encoding. Although the PFC sub-region most
constantly associated with memory in neuroimaging studies is
the ventrolateral prefrontal cortex (VLPFC – BA 44-45-47), the
dorsolateral-prefrontal cortex (DLPFC – BA 9 and 46) has recently
gained importance for the specific investigation of memory encod-
ing processes. In particular, it has been shown that the DLPFC,
mainly in the left hemisphere, plays a crucial role for organi-
zational, associative (Murray and Ranganath, 2007; Ranganath,
2010) and semantic (Innocenti et al., 2010) memory encoding. As
discussed by Blumenfeld and Ranganath (2007), DLPFC activation
seems to be more specifically sensitive to demands for organi-
zational processing and it may support long term memory by
building associations among items that are active in memory.

Functional near-infrared spectroscopy (fNIRS) is an optical
neuroimaging technique that can non-invasively monitor corti-
cal tissue oxygenation (oxygenated-O2Hb and deoxygenated-HHb
hemoglobin concentration changes) during cognitive, motor, and
sensory stimulation (Jobsis, 1977; Ferrari and Quaresima, 2012).
In the last 20 years, the use of fNIRS in cognitive neuroscience has
constantly increased (Ferrari and Quaresima, 2012). In the field
of memory research in particular, fNIRS studies have revealed an
increase in PFC oxygenation patterns (i.e., an increase in O2Hb
and concomitant decrease in HHb concentrations) during work-
ing memory and attention tasks in healthy and clinical populations
(see Cutini et al., 2012 for a review). However, the current literature
only has a limited number of fNIRS studies (Kubota et al., 2006;
Matsui et al., 2007; Okamoto et al., 2011) investigating episodic
encoding-retrieval processes. In the field of music cognition, a few
fNIRS studies were recently conducted in order to investigate the
emotional response to music (Moghimi et al., 2012a; Moghimi S
et al., 2012b). However, no fNIRS study has yet looked at a possible
role of music in memory encoding.

The previous fNIRS studies that have documented facilitat-
ing factors on memory encoding, e.g., strategies to memorize
words (Matsui et al., 2007), or pharmacological stimulants such as
methylphenidate (Ramasubbu et al., 2012), have repeatedly shown
that such factors deactivate, rather than more greatly activate,
regions of the PFC – as if they were “less-demanding” (Matsuda

and Hiraki, 2004, 2006). Similar reductions of PFC activation were
shown using fMRI when there were strong semantic associations
between words (Addis and McAndrews, 2006). These evidence
suggest that facilitatory cues (e.g., strategies, pharmacological
stimulant, strong semantic associations) during verbal encoding
could result in less involvement of high cognitive functions medi-
ated by PFC regions (such as DLPFC) known to be usually crucial
during memory encoding processes.

The present study addresses the music and memory debate
using a source memory paradigm: participants were asked to
memorize both lists of words and the context/source (either music
or silence) in which words were encoded. The critical new point of
the present study was to assess whether the presence of background
music during the encoding of verbal material results in differ-
ent memory-specific cortical patterns of activations than episodic
encoding in silence. We used fNIRS to monitor the DLPFC bilat-
erally during the encoding of verbal material with or without
background music context. Our hypothesis is that music may
enhance verbal encoding by providing a helpful context which can
facilitate organizational, associative, and semantic processes. If so,
such an effect of music on memory encoding processes should
be linked to both behavioral performance and PFC activity. More
specifically, we consider a facilitatory effect of music during ver-
bal encoding should result in a better recognition performance
and deactivation of DLPFC activity during the music encoding
condition compared to the silent condition.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-two young healthy students at University of Burgundy (11
female, mean age 23.5 ± 4.3 years) took part in the experiment in
exchange of course credits. All the participants were right-handed,
non-musicians, French-native speakers, and reported having nor-
mal or corrected-to-normal vision. None were taking medication
known to affect the central nervous system. Informed written con-
sent was obtained from all participants prior to taking part in the
experiment. The study was anonymous and fully obeyed to the
Helsinki Declaration, Convention of the Council of Europe on
Human Rights and Biomedicine.

EXPERIMENTAL PROCEDURE
Subjects were seated in a chair in front of a computer in a quiet,
dim room. Each participant was subjected to a memory encoding
task while their PFC activation was monitored using fNIRS neu-
roimaging and then behaviorally tested in a retrieval task. After the
eight fNIRS probe-set was adjusted on the forehead scalp overlay-
ing the DLPFC (see fNIRS section below for a description) and
the in-ear headphones inserted, subjects were informed that they
would be presented with different lists of words with two different
auditory contexts: music or silence. They were asked to memo-
rize both the lists of words and the context in which words were
encoded.

Verbal stimuli consisted of 42 taxonomically unrelated concrete
nouns selected from the French “Lexique” database (New et al.,
2004, http://www.lexique.org). They were randomly divided into
6 lists of words (7 words each list, 21 words for each encoding
condition), equated for word length and occurrence frequency. In
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the music encoding condition, the background music used in all
blocks was an upbeat, acoustic jazz piece (“If you see my mother”
by Sidney Bechet), chosen for its positive valence and medium
arousal quality.

The encoding phase consisted of three blocks of “music encod-
ing” and three blocks of “silence encoding” intermixed with 30-s
rest periods. In each block, seven words were displayed succes-
sively in the presence of a music or silence auditory context. The
audio stimulation started 15 s before the first word was displayed,
continued during the sequential display of words, and ended 15 s
after the last word. Words displayed in each block were paced
at 4 s per word, amounting to 28 s for the sequential presenta-
tion of seven words. Each block therefore had a duration of 58 s
(15 s context, 28 s words, 15 s context), and was followed by a
30 s rest (silent) between each block (Figure 1). The order of
music/silence blocks was counterbalanced, as well as the order of
word lists and the order of words in the lists. During the rest peri-
ods subjects were instructed to try to relax and not to think about
the task any longer; in contrast, during the context-only phases
of the blocks (i.e., silence and music blocks), participants were
instructed to concentrate on a fixation cross on the screen and
to prepare/focus on the task. The entire encoding phase, together
with fNIRS recording, took about 10 min.

Prior to the retrieval phase, subjects performed two 5-min
interference tasks: a“X-O”letter-comparison task (Salthouse et al.,
1997) and a “plus–minus” task (Jersild, 1927; Spector and Bieder-
man, 1976). Subjects were then tested for item and source memory
recognition. We used item-memory and source-memory tasks
(Glisky et al., 1995) in order to evaluate the subjects’ memory for
the context of encoding. The retrieval test included the 42 words
presented previously, together with 42 new words which were lure
items matched for word length and occurrence frequency. For each
word, subjects were asked to judge if they had already seen the
word before (yes/no button on the keyboard; item-memory task).
If they believed they had, they were asked to indicate in which
context they saw the word (music/silence/I don’t know; source-
memory task). The presentation of task instructions and stimuli
as well as the recording of behavioral responses were controlled by
the E-Prime software (Psychology Software Tools, Inc.) running
on a laptop with a 15′′ monitor.

fNIRS MEASUREMENTS
An eight-channel fNIRS system (Oxymon MkIII, Artinis Medical
Systems B.V., The Netherlands) was used to measure the concen-
tration changes of O2Hb and HHb (expressed in micromoles)
using an age-dependent constant differential path-length factor
given by 4.99 + 0.0067*(age 0.814; Duncan et al., 1996). Data
was acquired at a sampling frequency of 10 Hz. The eight fNIRS
optodes (four emitters and four detectors) were placed symmetri-
cally over the dorsal part of the PFC (Brodmann Areas 46 and 9,
EEG electrodes AF7/8, F5/6, F3/4, and AF3/4 of the international
10/10 system; Okamoto et al., 2004; Jurcak et al., 2007), and the
distance between each emitter and detector was fixed to 3.5 cm
(Figure 2).

To optimize signal-to-noise ratio during the fNIRS recording,
the eight optodes were masked from ambient light by a black plastic
cap that was kept in contact with the scalp with elastic straps, and

FIGURE 1 | Representation of one block of encoding. Each block
consisted in 15 s of context alone (music or silence in the earphones), then
28 s of context and words encoding (seven words for each block, 4 s for
each word) and then again 15 s of context alone.

all cables were suspended from the ceiling to minimize movement
artifacts (Cui et al., 2011). During data collection, O2Hb and HHb
concentration changes were displayed in real time, and the signal
quality and the absence of movement artifacts were verified.

DATA AND STATISTICAL ANALYSIS
Behavioral data
Each subject’s item- and source-memory accuracy (hit) rates
(number of hits for each condition during the yes/no recognition)
as well as false alarms were calculated for both the silence and
music conditions. To examine source memory, we analyzed the
proportion of correct source judgments among item-memory hits.
A paired t-test was used to compare the item- and source- mem-
ory scores between the silence and music conditions. One sample
t-tests were used to ascertain that all the scores were significantly
above chance.

fNIRS data
For each of the eight fNIRS measurement points, the O2Hb and
HHb signals were first low-pass filtered to eliminate task-irrelevant
systemic physiological oscillations (fifth order digital Butterworth
filter with cutoff frequency 0.1 Hz).

In order to ascertain the DLPFC activation during the word
encoding task as compared to the rest phase, we first ran
a complete timecourse analysis on the O2Hb and HHb sig-
nals using a 2(music/silence condition) × 2(left/right hemi-
sphere) × 4(optodes) × 13(successive measures of concentrations,
averaged over 5 s windows with the last 10 s of the rest phase as
baseline) repeated-measures ANOVA, on which Fisher’s LSD post
hoc comparisons determine which steps of the O2Hb and HHb
time course showed significant increase/decrease of O2Hb and
HHb as compared to the baseline point set during the rest phase
(Figure 3).

In order to determine the amount of activation during the
encoding phase for the two conditions, data in each of the six
experimental blocks was baseline corrected using the mean of the
O2Hb and HHb signals during the first 5 s of each block (i.e.,
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FIGURE 2 | fNIRS optode localization on the forehead scalp region

overlying the dorsal part of the prefrontal cortex. fNIRS transmitters [(A)

Tx1–Tx2, (B) Tx3–Tx4, yellow circles) and receivers [(A) Rx1–Rx2, (B) Rx3–Rx4,

blue squares) were placed on the (A) and (B) forehead scalp region, which
corresponded to AF7/8, F5/6, F3/4, and AF3/4 EEG channels (international
10/10 system), respectively renamed left/right channels 1, 2, 3, and 4.

during context-only phase, before the start of word encoding).
We then sample-to-sample averaged (i.e., 10 samples/s) the
baseline-corrected signals over the three blocks of each condition,
yielding one average music and silence O2Hb and HHb signal
per participant. We then computed the maximum O2Hb (max-
O2Hb) value and the minimum HHb (min-HHb) value over
the 28 s stimulus window (i.e., from t = 15 s to t = 42 s), for
both the music and silence average block of each participant.
The peak concentrations (max-O2Hb, min-HHb) were analyzed
using a repeated measure MANOVA with 2(music/silence condi-
tion) × 2(left/right hemisphere) repeated factors and optodes (4)
as a multivariate. The significance level was set at p < 0.05.

RESULTS
BEHAVIORAL RESULTS
Both the item and source memory scores were significantly above
chance (one sample t-test, p < 0.003), demonstrating that par-
ticipants did not encounter strong difficulties to remember the
specific context in which words were presented.

There was a statistically significant difference in item recogni-
tion performance between the music (mean = 18.36, SD = 2.84)
and silence [mean = 16.59, SD = 3.98; t(21) = 2.63, p = 0.016]
conditions, with improved recognition in the musical condition.
However, there was no significant difference (p > 0.05) in source
memory performance between music (0.67 ± 0.22) and silence
(0.68 ± 0.22) conditions.

fNIRS RESULTS
Figure 3 shows the grand average time course of PFC O2Hb and
HHb concentration changes at each of the eight fNIRS channels in
the music and silence encoding conditions. The repeated-measure
ANOVA on the O2Hb and HHb timecourse series revealed a
main effect of condition (F = 8.130, p = 0.01), corresponding
to significantly greater O2Hb increases bilaterally in the silence
than music condition. Although the increases in O2Hb are visi-
ble bilaterally during the silence condition (especially in bilateral
channels 1 and 2 as shown by post hoc LSD Fisher comparisons),
together with a decrease in HHb (in particular for left channels
1, 2 and right channel 2), the music condition was associated
with a strong bilateral decrease of O2Hb (underlined by significant
LSD Fisher post hoc comparisons especially for bilateral channels
3 and 4).

Figure 4 shows the group mean of max-O2Hb and min-
HHb values recorded at each of the eight fNIRS channels on the
PFC for the silence and music conditions. The repeated-measure
MANOVA on max-O2Hb values revealed a statistically significant
main effect of condition [F(4,18) = 4.207, p = 0.008], with greater
O2Hb increases bilaterally in the silence than music condition, and
a significant main effect of channel laterality [F(4,18) = 5.006,
p = 0.003], with greater O2Hb increases in the left hemisphere
regardless of condition. Although there was no effect of condi-
tion for min-HHb values, which is typical with several other NIRS
studies (e.g., Matsui et al., 2007; Okamoto et al., 2011), there was
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FIGURE 3 | Grand-average (±SEM) time course of prefrontal cortex

O2Hb (red lines) and HHb (blue lines) concentration changes

(vertical axis) over the left and right hemisphere during memory

encoding (horizontal axis: time) for the silence (right side) and

music (left side) conditions. * and (*) show, respectively, significant
(p < 0.05) and marginally significant (0.05 < p < 0.09) time points
compared to baseline obtained by post hoc Fisher’s LSD
comparisons.

a significant effect of laterality [F(4,18) = 3.783, p = 0.013], with
greater values in the right hemisphere (which is coherent with
smaller O2Hb values, i.e., overall smaller O2Hb increases in the
right hemisphere).

DISCUSSION
The present study shows that a background musical context dur-
ing the encoding of verbal material modulates the activation of
the DLPFC and, at the same time, facilitates the retrieval of the
encoded material. Despite a few recent studies (e.g., Racette and
Peretz, 2007; Moussard et al., 2012) reporting a perturbing effect
of music on the memorization of verbal material, a consistent
part of the literature (e.g., Balch et al., 1992; Wallace, 1994; Balch
and Lewis, 1996; Chan et al., 1998; Brotons and Koger, 2000; Ho
et al., 2003; Thaut et al., 2005; Thompson et al., 2005; Racette
et al., 2006; Franklin et al., 2008; Särkämö et al., 2008; Simmons-
Stern et al., 2010) claims that music can have a positive effect on
memory in both healthy and clinical populations. However, most
of these studies had remained on a behavioral level. The criti-
cal new point of the present study was to also track the brain
activation response during the encoding phase with fNIRS: we
found that improved word recognition coincides with reduced
DLPFC activation in musical encoding compared to silence
encoding.

BEHAVIORAL RESULTS
Our behavioral results showed an effect of music on subsequent
item recognition memory performance, although this did not

extend to a source memory performance. We found that music
played during encoding facilitates item recognition. The role of
background music in learning and memory tasks is still an open
and debated question in the literature (e.g., Schellenberg, 2003,
2005; De Groot, 2006; Peterson and Thaut, 2007; Jäncke and Sand-
mann, 2010). Research in music cognition is increasingly aware
of the fact that it is necessary, rather than stating a general and
reliable positive effect of music, to disentangle which experimen-
tal paradigm can lead to memory improvements through music,
when and with whom. Our results are in line with previous stud-
ies on healthy subjects (Balch et al., 1992; Wallace, 1994; Balch
and Lewis, 1996; De Groot, 2006) and clinical populations (Bro-
tons and Koger, 2000; Ho et al., 2003; Thaut et al., 2005; Thompson
et al., 2005; Racette et al., 2006; Franklin et al., 2008; Särkämö et al.,
2008; Simmons-Stern et al., 2010) which showed a positive role of
music in verbal memory encoding. Consistent with the view that
context is crucial during episodic memory encoding, our findings
support the idea that music provides rich and helpful contextual
cues that are useful for subsequent item recognition.

fNIRS RESULTS
The novel finding of the study was that DLPFC activation was
significantly higher during the silence than music encoding con-
dition (Figures 3 and 4). As predicted in our hypothesis, the
facilitatory effect of music during verbal encoding resulted not
only in better recognition performance, but also deactivation
of DLPFC activity. On the one hand, encoding PFC activity in
the silent condition followed the classical hemodynamic response
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to neuronal activation, showing a bilateral increase of O2Hb
together with a decrease of HHb as compared to baseline. This
result confirms the involvement of the DLPFC in episodic mem-
ory encoding (Blumenfeld and Ranganath, 2007; Murray and
Ranganath, 2007; Innocenti et al., 2010). On the other hand,
encoding in the music condition showed a bilateral reversed PFC
hemodynamic response (with a sustained decrease in O2Hb and
minimal change in HHb), which only returned to baseline at
the end of each music block (see Figure 3). This result sug-
gests that the DLPFC was deactivated during word encoding in
the musical context and that music can strongly modulate the
activity of the bilateral DLPFC. Similar PFC deactivation have
already been shown by fNIRS studies investigating human cogni-
tion (Matsuda and Hiraki, 2006, 2004), and specifically in verbal
learning tasks when subjects were helped to memorize words by
a given strategy (Matsui et al., 2007) or by a pharmacological
stimulant (Ramasubbu et al., 2012).

However, to the best of our knowledge, none of the previous
fNIRS studies which investigated memory processes or music per-
ception reported music-specific PFC deactivation. In the present
study, this PFC deactivation during memory encoding with a
musical context could be the manifestation of our hypothesis that
music plays a facilitating, less-demanding role for the PFC during
word encoding.

fNIRS analysis of the maximum O2Hb concentration values
reached during word encoding in the music and silence condi-
tions revealed also a significant main effect of lateralization. As
predicted, we found greater PFC activation (represented by O2Hb
increases) in the left than the right hemisphere during the entire
encoding phase (especially for channels 1 and 2, see Figure 4).
This result is in line with the hemispheric left prefrontal asym-
metry during the encoding of verbal material, as predicted by
the HERA model (Tulving et al., 1994; Nyberg et al., 1996), and
confirms the feasibility of fNIRS neuroimaging for the study of
long-term memory processes (Kubota et al., 2006; Matsui et al.,
2007; Okamoto et al., 2011).

It is important to discuss the possible mechanisms by which
music may act on the PFC during memory encoding tasks. The
PFC, specifically the DLPFC, is known to be recruited during tasks
demanding organizational (Blumenfeld and Ranganath, 2007)
and relational inter-item processing during encoding (Murray
and Ranganath, 2007). Therefore, one possible interpretation of
the deactivation of the PFC (i.e., O2Hb decrease) during music
in the present study is that music helps to generate inter-item
and item-source relationships, without demanding high-cognitive
PFC processes. Investigating the correlation between PFC activ-
ity and semantic associations during word encoding with fMRI,
Addis and McAndrews (2006) found that greater semantic associa-
tions correlated with reduced activity in the inferior frontal gyrus
(IFG) region of the PFC. A recent fNIRS study by Ramasubbu
et al. (2012) also supports this explanation. The authors gave
methylphenidate (a central nervous system stimulant) or placebo
to subjects and measured PFC activation during a working mem-
ory task (N-back). They found a reduction in PFC O2Hb from
baseline together with better behavioral performance, which the
authors suggested was due to methylphenidate improving neu-
ronal efficiency or signal–noise ratio during the memory task.

In the present study, the decreased PFC activity observed dur-
ing the music condition could therefore indicate better neuronal
efficiency.

The musical context may afford efficient mnemonic strategies
to bind items between one another, and/or to bind items to music,
so that less PFC activity is required to drive these associations. In
line with the idea of music as an help for cognitive functions which
could lead to a deactivation of PFC activity, it has been recently
shown how exposure to consonant music improve performance
during a Stroop task, suggesting that music may help overcom-
ing cognitive interference (Masataka and Perlovsky, 2013). So
how could music represent a facilitatory factor particularly for
words encoding? Previous EEG studies underlined how few sec-
onds of music can influence the semantic and conceptual processes
of words, showing that both music and language can prime the
meaning of a word and determine physiological indices of seman-
tic processes (Koelsch et al., 2004; Daltrozzo and Schön, 2009a,b).
It is therefore possible that this semantic priming could also be
reflected in easier associations and bindings between items when
background music is present. Further investigations on organiza-
tional strategies during verbal encoding with music may confirm
this explanation and shed new lights on music-verbal memory
cognitive processes.

Another possible explanation of the music-specific PFC deac-
tivation is an increase of attentional mechanisms in the music
condition. Music is known to modulate attentional processes
(Janata et al., 2002; Janata and Grafton, 2003; see also Masataka
and Perlovsky, 2013) and previous fNIRS studies reported that the
more attention the subjects put to a task, the more greatly rCBF
(Mazoyer et al., 2002; Geday and Gjedde, 2009) and O2Hb concen-
trations (Matsuda and Hiraki, 2004, 2006) were decreased in the
PFC. This second interpretation would be in line with previous
behavioral studies which attributed improved cognitive perfor-
mance in the presence of a musical background to higher amounts
of arousal and attention (Foster and Valentine, 2001; Thomp-
son et al., 2005; Patel, 2011). However, in apparent conflict with
this interpretation, a considerable amount of literature claims the
importance of the PFC in attentional processes, mainly for the
maintenance and mental manipulation of memory contents (see
Ptak, 2012 for a review). In the present study, we observed that PFC
O2Hb increase seems to precede the word encoding phase by a few
seconds in the most lateral fNIRS channels (i.e., left channels 1
and 2, corresponding to EEG channels AF7 and F3, Figure 3), and
this, even in the silence condition (Figure 3). This may indicate
that attentional processes are already in full use when encoding in
silence, and put a limit on the potential of even further recruitment
of attention specific to music.

Finally, we should also note that it has been repeatedly
observed that music-related processing typically recruits more
widely distributed networks of cortical and subcortical areas
than non-musical verbal function (Halpern, 2001; Parsons, 2001;
Peretz, 2002; Altenmüller, 2003; Patel, 2011). If so, PFC deacti-
vation in the music condition could also reflect broader network
recruitment during word encoding with music. Further research
is needed to test this hypothesis.

fNIRS data interpretation of the present study must be done
bearing in mind certain limitations. First, recent studies suggest
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FIGURE 4 | Mean (±SD) of the prefrontal cortex max-O2Hb (red lines)

and min-HHb (blue lines) concentration values over the left (channels 1,

2, 3, and 4, corresponding to EEG channels AF7, F5, AF3, F3) and right

(channels 1, 2, 3, and 4, corresponding to EEG channels AF8, F6, F4, AF4)

hemisphere during memory encoding for the silence (solid lines) and

music (dotted lines) condition.

that caution should be exercised when applying fNIRS to infer
PFC activation: the task-evoked changes occurring in forehead
skin perfusion could represent an overestimation of the corti-
cal changes as measured by fNIRS. Recent reports have raised a
question against the assumption that PFC O2Hb/HHb changes
originated only from the cortical hemodynamic response (Kohno
et al., 2007; Gagnon et al., 2011, 2012; Takahashi et al., 2011;
Kirilina et al., 2012). Furthermore, as previously described, fNIRS
acquisitions in the present study were limited to eight channels
covering the bilateral DLPFC. So, it is not possible to know whether
other cortical areas were involved during episodic encoding, espe-
cially for the music condition. Despite these limitations, several
studies have shown fNIRS feasibility for the study of cognitive
processes (Cutini et al., 2012), and this study for the first time
applied fNIRS to investigate if and how music can help memory
during episodic encoding.

An important perspective for further research is to apply
fNIRS monitoring during the retrieval phase. Indeed, research on
episodic memory during the past century has demonstrated that
a complete understanding of how memories are formed requires
appreciation of the many cognitive and neurobiological processes
that constitute encoding and retrieval, as well as the interaction
among these two stages (Brown and Craik, 2000). The behav-
ioral and fNIRS data we obtained lead us to wonder about what
is also happening during retrieval. Further studies with multi-
channel fNIRS systems during both encoding and retrieval phases
are needed to determine which regions are more activated and to
clarify how music could act on long term memory processes.

Another interesting perspective for further studies is to extend
our paradigm to applications in older adults or patients with
dementia. Several studies have highlighted that memory impair-
ments in normal aging as well as several types of dementia (e.g.,
Alzheimer’s disease) are often linked to impairments or damage

in frontal lobe functions (e.g., see Maillet and Rajah, 2012 for a
review). Our results suggest that music helps verbal encoding by
facilitating associative and organizational processes (i.e., generate
inter-item and item-source relationships) without demanding the
high-cognitive PFC processes which are usually required. At the
same time, fNIRS is a non-invasive technique and its features allow
it to be used also with special populations by preserving good
ecological settings (Cutini et al., 2012; Ferreri et al., in press). Fur-
ther fNIRS investigations on normal and pathological aging could
therefore be pivotal for better understanding of how music can be
used as a tool in rehabilitation of memory disorders.

In conclusion, we have shown that background music context
during the encoding of verbal material modulates the activation
of the PFC during encoding and, at the same time, facilitates the
retrieval of the encoded material. This opens interesting perspec-
tives on how music could act on the PFC of subjects with memory
disorders for whom the prefrontal lobe is hypo-activated, impaired
or damaged, such as older adults or Alzheimer’s patients.
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