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1. INTRODUCTION

Amongst the most significant questions we are confronted with today include the
integration of the brain's micro-circuitry, our ability to build the complex social networks
that underpin society and how our society impacts on our ecological environment. In trying
to unravel these issues one place to begin is at the level of the individual: to consider
how we accumulate information about our environment, how this information leads to
decisions and how our individual decisions in turn create our social environment. While
this is an enormous task, we may already have at hand many of the tools we need. This
article is intended to review some of the recent results in neuro-cognitive research and
show how they can be extended to two very specific and interrelated types of expertise:
perceptual expertise and social cognition. These two cognitive skills span a vast range of
our genetic heritage. Perceptual expertise developed very early in our evolutionary history
and is a highly developed part of all mammals’ cognitive ability. On the other hand social
cognition is most highly developed in humans in that we are able to maintain larger and
more stable long term social connections with more behaviorally diverse individuals than
any other species. To illustrate these ideas | will discuss board games as a toy model
of social interactions as they include many of the relevant concepts: perceptual learning,
decision-making, long term planning and understanding the mental states of other people.
Using techniques that have been developed in mathematical psychology, | show that we
can represent some of the key features of expertise using stochastic differential equations
(SDEs). Such models demonstrate how an expert's long exposure to a particular context
influences the information they accumulate in order to make a decision.These processes
are not confined to board games, we are all experts in our daily lives through long exposure
to the many regularities of daily tasks and social contexts.

Keywords: expertise, perceptual template, theory of mind, social cognition, neural networks, stochastic differential
equations

of personal variation (Hambrick et al., 2013). On the other hand

Those that have spent decades mastering a complex task have
been the subject of considerable research and popular interest
throughout the twentieth century and it is now a mature and well
established area of research for the twenty-first century. Much of
the interest in popular culture comes from the remarkable feats
of accuracy, memory and speed these experts demonstrate with
such relative ease when compared with the rest of us. It is hard
not to be impressed by a chess Grand Master who can play against
a half dozen other Grand Masters with little effect on the quality
of their play (Gobet and Simon, 1996). Even more impressive is
the ability of some chess players to play dozens of simultaneous
games while blindfolded (Saariluoma, 1991). These are remark-
able cognitive feats, but the basis of much current research is the
idea that experts are not naturally or genetically privileged. There
are aspects that are important; at what age training begins and
the many hours of deliberate practice (Ericsson et al., 1993) play
a vital role, but these are external factors. In principle at least, we
all have the basic mechanisms that enable similar feats of excel-
lence to be developed, up to some (possibly significant) degree

much of the scientific interest in this area stems from new ways
in which neuro-imaging can be combined with expertise-specific
tasks in order to analyze the basic neural processes that underpin
these cognitive abilities and their development.

This article begins with the principle that there are universal
mechanisms that exist in all of us but that experts have exploited
these mechanisms to the very limits of their abilities. The sig-
nificance of the universality of these mechanisms lies in the role
“expertise” plays in all of our lives. For example we are all experts
in facial recognition, we have a specific part of the brain dedicated
to this task called the fusiform face area (Sergent et al., 1992). We
are also experts in social reasoning, we have dedicated regions of
the brain [such as the precuneus (Huth et al., 2012)] that enable
us to perceive some situations as specifically social in nature. From
this point of view, board games are a highly focused, complex task
that involves multiply interacting processes, the constituent parts
of which may be compared to what is already understood regard-
ing simpler and comparatively well understood systems that may
be differentially integrated and activated in experts.
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This article addresses two specific aspects of expertise in board
games using stochastic differential equations (SDEs), this is an
approach to expertise that has not yet been explored in the lit-
erature but has been used extensively as a realistic model of
neural dynamics in decision making and has lead to significant
insights into the theoretical and computational modeling of neu-
ral dynamics (Bogacz et al., 2006; McMillen and Holmes, 2006).
The first is the categorization of board positions by a fast feedfor-
ward mechanism and its integration with other neural processes
as a source of contextual information (Harré et al., 2012). This
framework captures the rapidity with which an expert can uncon-
sciously appreciate a game’s gestalt (Simon, 1986) and generate
good options for the next move without conscious deliberation.
The second is the ability of experts to understand the perspec-
tive of their opponent in deciding their next move. While strategic
perspective taking is a little studied aspect of board game expertise
there is considerable neuro-imaging evidence suggesting that per-
spective taking in economic games has mechanisms in common
with board game expertise. With this in mind, the key contri-
butions of this article are threefold: the introduction of an SDE
formulation of expertise, its application to perceptual categoriza-
tion in board games and its application to perspective taking in
board games.

2. PERCEPTUAL CATEGORIZATION FOR EXPERTS

It has been hypothesized that expert perception in complex tasks
is based on implicit learning of the statistical regularities of the
environment to which the expertise pertains (Kahneman and
Klein, 2009; Kellman and Garrigan, 2009; Harré, 2013). For
example these statistical regularities allow a Grand Master chess
player to rapidly categorize the current state of a game and gen-
erate good intuitive guesses as to what the next move might be.
This requires a neural process of rapid consolidation of experi-
ence weighted percepts into a single categorical “whole” (Serre
et al., 2007; Kriegeskorte et al., 2008; Wan et al., 2011; Harré and
Snyder, 2012; Huth et al., 2012). An important implication is that
for unconscious perceptual categorization of this sort there is no
need for reward feedback, it is an unsupervised learning pro-
cess as suggested by the early visual processing model in Serre
et al. (2007). Such processes have been the subject of psycholog-
ical studies at least since the early work of Ratcliff (1978) on the
brain’s statistical accumulation of percepts to a decision boundary
and Nosofsky’s (1984) work on categorical similarity for decision
making.

2.1. STOCHASTIC PROCESSES AS MODELS OF DECISION-MAKING

This section introduces the mathematical framework in which
perceptual decisions are modeled by SDEs. While the focus of
this work is on binary decisions due to their simplicity of expo-
sition, real decisions are the selection of one option from many
alternatives. So while the work on stochastic decision boundaries
(the basis of what follows) has recently been extended to multi-
ple alternatives (McMillen and Holmes, 2006), the focus here is
on the binary case. The simplest form of these equations is that
of a time series of the incremental changes in a noisy variable x
that has a constant (fixed) “drift” component p and a statistical
“diffusion” term odW (dW is a standard Wiener process with unit

variance). During a time interval df the change in x is given by:
dx = pdt + odW. (1)

With 0 — 0 the noise term reduces to zero and x = |t + ¢ with
integration constant ¢, i.e., a straight line with gradient p and
so the drift is thought of as the linear change in the accumula-
tion of a signal x. With o # 0 the path followed by x fluctuates
around the expected increase pt with the fluctuations propor-
tional to the variance 2. In the perceptual decision literature this
drift diffusion model is often interpreted as a threshold decision
process: if x > Z; or x < Z, then x has crossed a decision bound-
ary, Z; or Z, and a decision has been reached favoring one of
two hypotheses, H; or H;, represented by these two boundary
values. This accumulation to a decision threshold is shown in
Figure 1. A common interpretation, and the one adopted here,
is that a neuron (or an assembly of neurons) can be thought of
as a noisy accumulator of signals from other neurons such that
when the neuron is excited to a level Z it fires thereby signaling
a decision to those neurons to which it is (forward) connected.
This is loosely described as a neuron’s decision-making process or
a neuron having “made a decision.”

There are three variations to this model that are interesting
in the current context. The first is that the p term can be split
into as many components as needed to represent the dynamic
microstructure within the interval dt providing these values are
constants. For instance the composite term p* = w; — pa + 13
is the “net drift” in x as the term w* is still constant, but the

z, . T

time

Cumulative Evidence: x

<

FIGURE 1 | A schematic of the net accumulation of evidence in favor of
one choice over another and the mean trajectory followed by the
“average” time course of evidence accumulation. y is the average
amount of information received during dt over the time course of evidence
accumulation. Note that because there is some statistical variation in the
time course of the accumulation of information, for a non-zero o (cf.
Equations 1-4) there is a finite chance that the signal will cross the wrong
boundary (and therefore the neuron signals the wrong decision) in the
sense that the underlying signal is distorted to the extent that the boundary
that is crossed is different from the boundary that would have been
crossed in the absence of noise. So as o increases so too does the chance
that the wrong boundary is crossed.
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component parts |; may have neurological, psychological or
perceptual interpretations that are useful to distinguish.

The second generalization is to split the process into two
separate and independent stochastic variables: If | and p,
are independent stochastic processes with fluctuations o; then
Equation (1) can be generalized:

dx; = wdt + o1dW (2)
dx; = podt + 6,dW, (3)

This is often referred to as the race model: x; races against x; to
reach their respective decision boundaries. In neurological mod-
eling studies the x; are seen as independent accumulators, they
collect noisy signals from other neurons until they cross their
respective decision boundaries. The average signals they receive
are the |; plus fluctuations o;dW;, so these are thought of as feed-
forward neural models, neurons that fire at a pervious time feed
an average signal of |; that is aggregated in the decision variable
x; encoded by a neuron.

A third generalization is to introduce a dependency of the rate
of change in x on the current state of x. In this case dx is driven by
a constant drift term p as well as the present state of x:

dx = (W + Ax)dt + cdW (4)

again noting that p can be split into its (constant) constituent
parts. This is called an Ornstein-Uhlenbeck (O-U) SDE, a com-
mon model of the neural processes involved in stochastic deci-
sions (Bogacz et al., 2006). The interpretations of these models
will be introduced as needed.

2.2. STOCHASTIC DECISIONS REGARDING CATEGORY MEMBERSHIP
These SDEs can be used as a model of neural interactions and
category formation in the early stage, feedforward perceptual sys-
tems of the brain (DiCarlo et al., 2012). From this point of view
a neuron receives signals from other neurons at an earlier stage
of perceptual processing that encode a simpler set of percepts
and this later neuron then aggregates these signals into a more
complex representation. This is a process with some statistical
variation due to the inherently noisy nature of the external envi-
ronment as well as neural activity, but over a large population
of neurons the information a higher level “scene categorization”
neuron receives will represent the correct category. Figure 3A
shows an abstract representation of the set of neurons that either
excite or inhibit one of two higher level category neurons as mod-
eled by Equations (2, 3). Figure 3B shows how two neurons (E;
and I) can encode a signal that excites one categorical neuron
while inhibiting the other.

The decision neurons C; and C, represent two different
hypotheses regarding the state of the world. H; : the current scene
can be represented as a category encoded by Cj, H; : the current
scene can be represented as a category encoded by C,. A deci-
sion regarding the state of the world is reached when evidence
for one category accumulates to one boundary before an alter-
native boundary is crossed and so either C; or C, fires signaling
the category for which there is more evidence. This process can
be thought of as a stream of signals arriving at the retina and

being processed by neurons that encode increasingly more and
more complex representations that span an ever larger range of
the visual field as the signals pass through a feedforward neural
network (Serre et al., 2007).

An SDE representing changes in the level of excitation of neu-
rons C; and C; is given by (see the caption of Figure 3 for the cell
groups notation):

C) excitatory signals
dxy = [E1 + E\Ez + Erlb — (I1 + 1B + [1b)]dt + 01dW)
= u’fdt—i—oldwl (5)

C) inhibitory signals

dx, = [E; + E2E1 + ExI} — (I, + LE, + L1))]dt + 6,dW,

C, excitatory signals

C, inhibitory signal
= pydt + 02dW; (6)

Note the similarities of Equations (5) and (6) to Equations (2)
and (3) and that the p} are simply constants independent of
the x; (also note the discussion regarding p* just before these
equations). In Equations (5) and (6) the u;‘ terms represent the
deterministic component of the net drift of the stochastic vari-
able x; toward a threshold value Z, this threshold represents the
evidence necessary to recognize a category. This drift in dx; is an
aggregation of visual signals and such aggregation of signals is not
perfect, so some signal (such as the detection of a “spikey hat” on
the top of a chess piece) might suggest a Queen piece or a King
piece when in fact it is a bishop, however, when aggregated over
many different visual cues we often accurately differentiate Kings
from Queens from Bishops. These stochastic infelicities occur at
all levels of the processing of visual signals, so we model these
noisy signals using SDEs just as is done in studies of simple per-
ceptual decision making, the key difference here lying principally
in how far along the perceptual hierarchy the neurons in ques-
tion happen to lie, this perceptual hierarchy runs along the ventral
stream from right to left in Figure 2 and from top to bottom in
Figure 3. So in order to categorize a whole board, a bishop in a
certain position might inhibit the recognition of a certain game
opening (because it never occurs in that position for that par-
ticular opening) while it excites the recognition of an alternative
opening, but such a recognition is again imperfect, the square on
which the bishop is placed may be misidentified by the player or
a critical nearby pawn might be overlooked. Some of these infe-
licities might be addressed through slower and more deliberate
analysis of the board position, but this may not always be effec-
tive as the perception of the game category can set the context on
which further deliberate analysis of the board is based.

The visual processing of scene information goes from the per-
ception of simple lines and angles in region V1 through to actual
objects such as single chess pieces and ultimately to a representa-
tion of the category to which the board configuration belongs,
if the player is experienced enough to have learned such cat-
egorical representations, see Figure 2 that summarizes some of
the key ideas in the literature. This is different from recogniz-
ing every individual game element on the board, a category in
the current sense means the broad strategic layout of the game,
usually indicated by a number of key game pieces in particular
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FIGURE 2 | A representation of the category formation mechanism.
Information arrives at the eye and passes to the anterior regions of the
brain where these signals arrive at V1 (an early visual processing region of
the cortex). These signals then pass along the ventral stream of the
inferotemporal cortex (IT). Most people from a western country are likely to
be able to recognize a single chess piece, more experienced players
develop “Chunks” that are aggregates of games pieces as well as
schematics for the whole board that include key pieces and their spatial
relationships, these “Templates” enable the rapid comprehension of the
current state of the game and provide “slots” into which the smaller chunks
can be fitted [see for example Gobet et al. (2001) and Gobet and Lane
(2010) who have modeled unsupervised template learning in their CHREST
model and suggested a neural model for it (Chassy and Gobet, 2011), as
does the perceptual templates in Harré (2013) and Harré and Snyder (2012)].
Some of the information (individual pieces) are shown obscured in the
Template (far left), only information which is necessary to distinguish one
category from the many other possibilities is needed, such game pieces
need to have frequently co-occurred in the same places over and over again
through a player’s training and experience of the game. In this diagram only
one template is shown, however, an expert will have encoded thousands of
such templates in their IT and each one “competes” to be recognized:
signals that originate from earlier neurons encode simpler representations
(a line detected by V1 is simpler than a game piece, a game piece is
simpler than a chunk and a chunk is simpler than a template) that combine
to make larger and more complex representations of the game, eventually
signaling the most complex learned representation such as a template. The
neuron that accumulates enough (typically noisy) information to cross that
neuron’s threshold is the winner [see the race model, Equations (2) and (3)]
i.e., for two categories the competition would be between neurons C; and
C; in Figure 3 and the thresholds would be Z; and Z; in Figure 1.

key positions (Harré and Snyder, 2012; Harré, 2013). So minor
variations on a particular chess opening can belong to a single cat-
egory, indicated by key pieces in key positions that have frequently
occurred in these same positions. This is what is meant by the sta-
tistical regularity of the environment, it enables a chess player to
implicitly learn the strategic context of a game and then, as they
grow in experience, to use this context in their search for good
moves based on the implicitly recognized cues involving spatial
relationships, color and some pieces. But an expert player will
have acquired many thousands of different such categories over
their career so the i in dx; of Equations (5) and (6) runs into the
1000’s. Recent work has extracted these templates and enumer-
ated them using an artificial neural network and real games of
amateurs and professionals (Harré, 2013). And just as identifying
a single game piece can be a statistically uncertain process, so too

is identifying the current game’s categorical membership out of
the many thousands of possibilities.

These SDEs are similar in nature to those described in Bogacz
etal. (2006) as well as the hierarchical structure recently proposed
by Serre et al. (2007) and DiCarlo et al. (2012) where feedfor-
ward inhibitory and excitatory signals compete to accumulate
evidence for one category over another. The key notion of this
new approach is the use of SDEs to describe the neural mecha-
nisms and to apply these ideas to expertise. So in this model a
visual signal will elicit a combination of signals from neurons in
precursor neural assemblies (of intermediate complexity) Ej, Es,
I, and I, (Equations 5, 6). The solutions to these equations can
be usefully expressed in terms of the probability that one of the
category boundaries is crossed (Bogacz et al., 2006):

X
B

p(Z; is crossed) = j, kefl,...,1000s} (7)

! Bk

where B = 2z/0? (for simplicity symmetrical decision boundaries
are used: j € {1, 2}, Z; = Z, = z), see Figure 1 for a schematic of
the binary categorization dynamics and the probability of cross-
ing one threshold versus another. Equation (7) has a very simple
interpretation: The probability of recognizing “board category” j
is a function of the sum of the evidence u]’? in favor of that cate-
gory (relative to the evidence for other categories p1}) subject to
some statistical variability parameterized by .

3. PERSPECTIVE TAKING AND OUR “STRATEGIC THEORY OF

MIND”

The previous section extended the well studied modeling
paradigm of SDEs to the issue of expert board perception and
rapid categorization. While this is a novel extension of recent
work the goal is relatively modest in that it aims to connect the
theoretical principles of two approaches to the modeling of both
simple and complex perceptual decisions.

This next section has a more ambitious goal: to use an exten-
sion of these SDEs (a hybrid combining Equations 2, 3 with
Equation 4) as a model of decision-making processes whereby the
decision-maker has an internal representation of the perspective
of another person such as a chess opponent. One of the assump-
tions made in what follows is that in order to understand another
person’s perspective an individual needs a representation of the
other’s internal mental states e.g., their constraints and goals, and
that these might be different from those of the first person. At
this point two concerns arise: Is this a reasonable assumption? and
What is the evidence for such an assumption? The latter will be cov-
ered in sections 3.1-3.3 but a few words are needed first to justify
the reasonableness of this approach.

When a skilled player looks at a game in progress there may
be sufficient information available in the first few moments of
viewing the game for the player to make a decision as to where
to move their eyes in order to refine their search such that only
the most promising areas of the board are explored (De Groot
et al., 1996). This fast perceptual comprehension is an uncon-
scious aspect of expertise and it is an important part of an expert’s
remarkable speed in selecting a good move from a very short
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FIGURE 3 | A feedforward schematic of how percepts of intermediate
complexity either excite or inhibit more complex percepts. C; and C, are
neurons that encode high order scene categories that are composed of
percepts of an intermediate complexity. (A) A conceptual framework of cell
assemblies that act to excite and/or inhibit more complex categorical
representations. The groups of neurons Eq, Ep, I1, and /, are each a set of
neurons some of which have overlapping functionality between excitation

and inhibition. For example the cells in the group E1/, = E1 N I, excite Cy and
inhibit C, whereas the cells in group h l, = l1 N I, inhibit both C; and C,. (B)
A more detailed model showing how a neuron in assembly E; receives noisy
inhibitory and excitatory signals from other percepts. It can then directly
excite percept C; while indirectly inhibiting C, via the excitation of
intermediary inhibitory neurons that terminate on C,. The “Ventral Stream” is
the feedforward direction of the neural signaling as shown in Figure 4.

exposure to a game position (de Groot and de Groot, 1978). The
idea is that for exceptionally familiar positions the next move is
so well understood that very little (if any) further analysis is nec-
essary in order to know what the best move is. In such situations
no comprehension of the other player’s mental state is necessary,
purely perceptual processes based on their extensive experience
are sufficient to explain an expert’s behavior and performance.
If this is the case then very little planning and control beyond
the early stages of perception is needed and a player’s decision-
making can circumvent the slow and computationally expensive
sequential process of searching multiple alternative branches of
play in order to find the best strategy and instead can move
directly to organizing the motor pathways necessary to physi-
cally move the player’s arm to make the move on the board. In
Figure 4 this is shown as the frontal region of the inferotemporal
cortex providing a contextual signal directly to the primary motor
area, i.e., a contextual signal generated by the activation of a sin-
gle Template (see Figure 2) can contain sufficiently unambiguous
information on which to base the next move. Also in Figure 4
can be seen how such a contextual signal might connect directly
to the frontal eye fields in order to signal the eyes of an expert [an
expert’s Templates guide their visual search Chun and Jiang, 1998]
to quickly orientate their eyes to relevant regions of the board.
Even for very experienced players skilled perception is often
necessary but it is not always sufficient for strong play, in such
cases the state of the game will have information that enables a
player to refine their choices but still leaves ambiguous exactly
which move to make. So templates need to be supplemented with
more deliberate strategic planning and analysis. Such executive
control for any task is thought to occur in the prefrontal cor-
tex (PFC, Figure 4) (Koechlin and Summerfield, 2007). The PEC
integrates information from diverse regions of the brain (Miller
and Cohen, 2001), this is part of a bottom—up process but note
that the PFC can be circumvented for rapid and automatic behav-
iors (Miller and Cohen, 2001). The PFC also exerts top—down
control, for example modulating earlier perceptual signals (Bar
etal., 2006) and even directly eliciting long term memories stored

FIGURE 4 | A schematic representation of the major cortical pathways
of expertise: feedforward visual processing (red), strategic Theory of
Mind and associated reward mechanisms (green) and top down
planning and control (blue) discussed in the main text. The
anterior-most frontal regions integrate information from a strategic ToM
network and a perceptual network for recognizing individual items of
intermediate complexity. The categorical signal projects to a region
posterior to the anterior regions of the frontal cortex that are associated
with high level strategic planning and control processes. This allows for the
possibility of the contextual signal to rapidly activate an eye saccade (and
other motor activities) to a strategically relevant portion of the visual field
without passing through the top—down planning areas in the PFC. Such
search guided by implicitly learned visual cues was established by Chun
and Jiang (1998, 1999) for large but relatively simple environments. V1,
visual area 1 in the occipital cortex; OTJ, occipitotemporal junction; TPJ,
temporoparietal junction; STS, superior temporal sulcus; IT, inferotemporal
cortex; PC, precuneus; CN, caudate nucleus; ACC, anterior cingulate cortex;
PFC, prefrontal cortex; Cont., visual context integration; FEF, frontal eye
field; PM, primary motor cortex.

in the inferotemporal cortex (IT) (Tomita et al., 1999) (Figure 4
only shows feedforward signals to the PFC, but feedback path-
ways exist from the PFC to the IT). From this point of view the
PFC modulates and integrates perceptual signals with internally
generated goals, plans future actions and acts as an informational
switchboard for other regions of the brain. So it is in the PFC that
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we should expect planning, strategic analysis and forward search
to be carried out for complex tasks such as chess (see sections 3.1—
3.3 for a selection of the literature supporting this), which might
include a representation of another player’s state of mind.

In terms of chess playing, when a player is planning their next
sequence of moves, each player will associate a different “value”
or place different constraints on the same move, for example a
Black Kingside castling is never a move that white can make, so
the constraint on this move is “illegal” for white but “legal” for
black. A more sophisticated example is how a player represents
the motivations on which another player bases their decisions. To
illustrate this imagine a very well known chess opening has been
played out for the fist three moves by each player. How does player
1 consider their choice of next move given that it is only a “good”
move within the context of what player 2 might do in reply? It
is not sufficient for player 1 to have a singular value of a move,
a move’s value is contextualized by the other player’s likely next
move, and player 2’s likely next move is based on how player 2
values their move within the context of what player 1 will do fol-
lowing player 2’s move. From this point of view player 1 needs to
encode their estimate of the value of a move as well as the value
player 2 will attach to the move player 2 is likely to make next.
This regressive process of player 1 evaluating their choices in the
context of player 2’s likely choices is also the basis of economic
game theory and requires each player to be able to approximate
the other’s mental strategic space which can include the other
player’s evaluation of the game, the strategy they seem to be fol-
lowing as well as the other’s experience and habits, should these
be known to player 1. These cognitive processes of the PFC are
informed by the early perceptual signals the PFC receives from
regions such as the I'T but they are also based on a player’s internal
representation of their own strategy and how this strategy is con-
textualized by their internal representation of the other player’s
strategy.

With these ideas in mind, research into our “Theory of Mind”
(ToM) focuses on the psychological and neurological mechanisms
through which we understand the internal mental states and goals
of other people (Lieberman, 2007) but it has not previously been
connected with board games and expertise, and only in simple
economic games such as those used in neuro-economics have
SDEs been used to model these simple choices. ToM research
covers a very broad range of topics, from psychological and neu-
rological development through to genetic differences, traumatic
brain injury and neuro-degenerative diseases. This breadth is due
at least in part to the extensive interrelated cognitive processes
that are involved and the very deep connection that our ToM has
to the way in which we introspectively view ourselves, others and
the choices we individually and collectively make.

In this section the goal is to first emphasize the overlapping
neurological processes that play a role during ToM processing
tasks, economic games (simple games), and board games (com-
plex games). An important caveat is that the resultant model rep-
resents a strict subset of neurological processes that will be called
our strategic ToM. Having illustrated the plausibility of a common
neural mechanism, an SDE model of strategic social interactions
will be introduced. The significant components are the cogni-
tive ability to separate rewards received in the first person versus

rewards received in the second person and a conscious perception
of the relevant components in the external environment.

3.1. NEURO-ECONOMIC GAME THEORY AND OUR “STRATEGIC 10"

The term strategic IQ was introduced in Bhatt and Camerer
(2005) where the neural correlates of self-referential strategic rea-
soning, i.e., reasoning about someone else reasoning about you,
in economic games were demonstrated using fMRI analysis. As
discussed above, this is a minimal cognitive ability necessary to
understand our actions in the context of other people’s actions,
but it is not the only necessary mechanism. In this section a sam-
ple of the fMRI literature on game theory, strategic IQ and ToM is
explored and in the section that follows our strategic ToM is intro-
duced and the literature from board game expertise supporting
such an extension is surveyed.

A key point of interest in neuro-economics involves the neural
regions that are active when we are thinking about our deci-
sions in the context of other people’s decisions. This entails at
least some of the mechanisms that are active during ToM tasks
and so there is an overlap between ToM research and neuro-
economics. This has recently lead Yoshida et al to proposes a game
ToM (Yoshida et al., 2008) using the simpler economic games
to motivate their basis of a ToM. ToM studies include a broadly
defined and general purpose network that is activated in many
situations in which inferences need to be made regarding the cog-
nitive states of others. But there is also a specific sub-network
that is activated in strategic interactions such as economic games
where assessing another person’s internal states is necessary for
our performance in strategic decision making. As such accurate
predictions regarding how others think about their environment
as well as how they think about us improves our outcome in
the interaction. This second definition narrows our focus, the
ToM networks of neuro-economics are concerned with strate-
gies and expected rewards and this circumscribes the situations
considered.

The broad definition of a ToM neural network frequently
includes (Amodio and Frith, 2006) the medial prefrontal cor-
tex (mPFC), the temporal pole, the superior temporal sulcus
(STS), the anterior cingulate cortex (ACC) and the temporopari-
etal junction (TPJ). Many of these areas may or may not be active
during strategic interactions as they might play a role in more
general social cognition. The TP]J for example appears to be active
in many different social contexts such as when a person is simply
observing other people interacting (Saxe and Kanwisher, 2003).

Using a combination of results from game theory and fMRI
studies a related network of neural activity can be identified. This
article is not a review of this entire field, but there are two specific
types of task to focus on. In the first type a subject plays a game
against a computer or a human and differentiated neural activ-
ity shows brain regions that are active when we play strategically
against another socially aware subject. This enables us to differen-
tiate between “social” and “non-social” strategic interactions and
the associated brain activations. The second type is one in which
subjects play games that involve different levels of strategic think-
ing regarding their opponent’s thought processes. In this second
task, a key finding is the correlation between the reward earned
and increases in brain activity in specific areas.
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When playing strategic games against a human as opposed
to a computer the brain regions that are differentially activated
include the ACC (McCabe et al., 2001; Gallagher et al., 2002;
Sanfey et al., 2003), the STS (Rilling et al., 2004; Fukui et al., 2006;
Coricelli and Nagel, 2009), the TPJ (Krueger et al., 2008; Coricelli
and Nagel, 2009; Carter et al., 2012), the mPFC (McCabe et al.,
2001; Bhatt and Camerer, 2005; Coricelli and Nagel, 2009) and the
caudate nucleus (CN) (Bhatt and Camerer, 2005; Delgado et al.,
2005; Rilling et al., 2008). As these regions are differentially more
active for human opponents than computer opponents it suggests
that these brain regions play a role in social competitive situa-
tions. This does not preclude them from playing a role in other
strategic and/or social tasks of course.

On the other hand a player’s strategic 1Q is correlated with
a related network of brain regions. In one recent study stronger
activity in the precuneus and the CN (Bhatt and Camerer, 2005)
correlate with strategic IQ in games that differentiated between
degrees of belief regarding the other player’s strategy. In a similar
study it was shown that the depth of interpersonal strategic rea-
soning co-varied with activity in the medial PFC (Coricelli and
Nagel, 2009). In a third study, along with the reward prediction
based activity of the medial PFC it was shown that activity in the
posterior STS was strongly correlated with the influence a player’s
action’s had on another player (Hampton et al., 2008). These
studies identify a network of key brain regions that are active in
strategic situations involving economic rewards: the mPFC, the
CN, the ACC, the posterior STS and the PC, all of which are
strongly related to the strategic success of a player and that have
an overlap with those regions that also play a role in our ToM
network.

3.2. PERCEPTION, GAMES AND A STRATEGIC THEORY OF MIND

Board game expertise activates a large neural network with many
interacting brain regions that can be differentiated on the basis of
the task involved. In recent work it has been shown that the neural
networks activated by game experts involves a large number of
brain areas, some belong to the visual system and some to the
ToM system, but these findings have not yet been integrated in
terms of the overlaps and differences possibly due to the different
research areas to which they belong. This section discusses four
particular articles that have recently shed significant light on the
different brain regions involved in board game expertise. These
results are discussed in terms of a single system for board game
expertise that encompasses both ToM and visual perception.

In two recent fMRI studies (Bilali¢ et al., 2010, 2012), Bilali¢
et al have explicated the brain regions that are activated in expert
chess play and their relationship to rapid eye movement toward
areas of strategic importance. This is a purely perceptual body of
work and so usefully isolates the perceptual mechanisms that gen-
erate eye movements without the need for considering the social
context in which games are played (cf. the introductory remarks
to section 3). Specifically they identified the ventral visual path (in
the temporal cortex) as playing an important role in recognizing
game pieces as well as familiar positional relationships between
the game pieces in support of the role the IT plays in generat-
ing eye movement signals (cf. Figure 4). In the dorsal visual path
the region forming a conjunction with the parietal, occipital and

temporal cortices was found to be related to specific game pieces
and their functional roles. A further activation in the retrosplenial
cortex was also observed, a region that has been identified with
scene context and the authors suggested this region plays a role
in parsing the relationships between objects. Beyond the neuro-
logical findings, both of these studies highlighted the differences
in eye movement between novices and experts. Experts focused
quickly on the task relevant pieces in the scene and ignored irrel-
evant pieces whereas novices attended to irrelevant pieces much
more often. In control tasks in which game piece relationships
could not be used to guide the expert’s behavior their perfor-
mance decreased significantly but still maintained an advantage
over novices.

A third article by Wan et al. (2011) considered three ranks
of players, low ranked amateurs, high ranked amateurs and pro-
fessionals of the Japanese board game Shogi. The players were
required to generate the next move as quickly as possible while
fMRI brain imaging followed the time-course of neural activity.
The PC and CN were two regions that were strongly activated in
professionals but not amateurs. As previous studies have shown
that the PC is activated in understanding social contexts (Huth
etal, 2012) and the CN is activated in strategic interactions with
other people (Delgado et al., 2005; Rilling et al., 2008) as well as
correlating with depth of strategic reasoning (Bhatt and Camerer,
2005), this suggests that the results of Wan et al. (2011) overlap
with strategic reasoning, and as argued above strategic reason-
ing is a subset of the cognitive processes used during some ToM
tasks. There was also considerable activity in the dorsolateral PFC
for both amateurs and professionals when contrasts were made
with control tasks. The authors concluded in part that this was
not a direct “stimulus-response” activation as the players reported
being unable to figure out a complete strategy before making their
next move selection. Instead they concluded that “the generation
of the next best move had to be based on perception of key fea-
tures extracted from the pattern but not the pattern itself. In other
words the mapping from inputs to outputs had to be categorical.”
Furthermore, the players were not able to picture all of the nec-
essary intermediary moves required to complete the checkmate
task they were given, instead they were only able to “get an idea
of the arrangement of key pieces at the final checkmate.” Beyond
the activation of the PC and CN, an indicator of a socio-neural
response, the conclusion that can be drawn is that categorical
recognition and pattern completion are two key aspects of an
expert’s ability to quickly generate the next move in board games.

The fourth study was on the role of expertise in board
games (Duan et al., 2012) in combination with the “default mode
network” (DMN) (Raichle et al., 2001). The DMN is the rest-
ing activity of the brain and it plays a significant role in our
understanding of ToM (Spreng et al., 2009). What is most inter-
esting about this network is that it is significantly deactivated
during goal directed tasks, presumably so that our cognitive func-
tions can focus on the external environment rather than internal,
reflective or introspective ruminations. In the study by Duan et al.
(2012) Masters and Grand Masters (experts) of the game Chinese
chess were imaged using fMRI for their resting state neural activ-
ity and for their task induced (Chinese chess problem solving)
neural activity. There were two key findings: experts significantly
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deactivated the DMN relative to novices and the CN was consid-
erably more active in the expert’s DMN than that of the novice’s.
This should be contrasted with the areas commonly associated
with ToM, in the earlier list of ToM brain regions the CN was
excluded, this finding by Duan et al suggests that the DMN net-
work (and therefore the ToM network) is significantly different
for experts.

The relevance of these findings is in the relationship between
the neural networks activated during economic games, during
expert task execution and our understanding of another person’s
cognitive state. With this in mind the CN plays a striking role: it
is significantly active in the DMN for experts, board game experts
and in strategic economic games. The role the CN is commonly
attributed with is in relation to feedback based learning (Haruno
et al., 2004) so it is not so surprising that it should be active in
economic games when rewards are earned based on performance,
and perhaps even in the case of board games where rewards tend
to be more abstract (winning or losing after many moves are made
as opposed to money received immediately). But its role in the
DMN is not immediately intuitive, but it might be understood to
play a role in the encoding of another’s payoffs as well as personal
payoffs. Three recent papers have shown that this is a plausible
role for CN; the macaque monkey CN encodes its own rewards
as well as social status (Santos et al., 2012), in humans the CN
is active in cooperation between people where no rewards are
forthcoming (Krill and Platek, 2012) and it also encodes another’s
“moral character” in economic games (Delgado et al., 2005).
These studies point to the CN as potentially encoding value judge-
ments regarding other players as well as our own. Such estimates
of another person’s evaluation of the situation seems a likely mini-
mum for estimating the motivations for another person’s choices,
and so representing another person’s estimated value in order to
model their motivations may well co-opt the pre-existing system
of reward feedbacks that play a critical role in motivating our own
decisions in a non-social context.

Strategic IQ is a measure of the depth to which we are able
to reason about other people thinking about us thinking about
them thinking about us etc. as measured by payoffs in economic
games (Coricelli and Nagel, 2009). This is potentially an infi-
nite regress for which there is no stopping point, however, it
has been shown that an equilibrium point can be reached in
this dynamic, and this equilibrium has been measured in the
neural activity of people playing economic games (Bhatt and
Camerer, 2005), but to date no theoretical model of the neural
mechanisms involved has been proposed. On the other hand, a
ToM is a very general cognitive process (Lieberman, 2007) that
enables people to build a representation of the cognitive states of
another person, including their beliefs, constraints, perceptions
and potentially a ToM allows one person to build an internal
representation of another person’s representation of them. So
the definitions of ToM and strategic IQ have commonalities but
they are either too broad (ToM) or too narrow (strategic 1Q)
to capture the processes that are likely being used by decision-
makers in complex, social-competitive situations. To address this
the term Strategic ToM encompasses the psychological aspects,
neural dynamics and subsequent equilibrium points necessary to
finitely represent our representation of another person thinking

about us, but expanding on the strategic IQ notion to include
the ToM components important to complex social-competitive
decision-making.

Taken collectively, these studies have identified a network of
activity that encodes visual perceptual cues and task specific
objects as well as reward and social learning mechanisms in
combination with aspects of a strategic ToM. Some of the most
commonly cited and important brain regions in this network are
identified in Figure4 for the perceptual aspects (red) and the
strategic ToM aspects (green). This is necessarily a reduction to
only the simplest functional roles and relationships, but it gives an
indication of how these regions likely combine together to form a
multifunctional network of interrelated brain regions. In the next
section a theoretical model of rewards and strategic ToM is intro-
duced, providing a theoretical approach to understanding some
of the mechanisms discussed in this section.

3.3. AN EXAMPLE OF PLAUSIBLE NEURAL ACTIVATIONS DURING
GAME PLAY

Before introducing the SDE dynamics of a strategic ToM we want
to motivate what follows by illustrating the ideas presented so far
with a worked example. To begin, a chess game opening is already
in progress (as shown in Figure 5) and we ask what are the brain
regions that might be activated in seeing this game and what roles
do they play? We use the simplifying assumptions that most of the
signals we are interested in will first pass through region V1 so that
we are only considering the visual aspects of the game and that the
players only ever consider two moves as they search forwards in
the game looking for good moves to make. This second simplifi-
cation makes the discussion much simpler, but the ideas can be
readily extended to multiple base moves and multiple subsequent
branches.

The social and reward related neural networks (green path
in Figure 4) are activated when the player first sees the game.
Generally the TPJ is activated if the situation requires under-
standing the internal mental states of another person (Saxe and
Kanwisher, 2003), it is activated when strategically thinking about
other people rather than computers (Krueger et al., 2008), its
activation level correlates with the depth of strategic reason-
ing (Coricelli and Nagel, 2009) and it is associated with socially
guided decisions (Carter et al., 2012). The PC is activated if the
current situation is a social context involving people, movement,
certain animals, cars, tools, equipment, talking etc. (Huth et al.,
2012) as well as ToM tasks (Saxe and Kanwisher, 2003), but in this
case it happens to be a chess game in progress (Wan et al., 2011),
perceived visually by the chess board, game pieces and another
player. The CN activation is strongly associated with activation
of the PC in board games (Wan et al., 2011) and with the ACC
when learning (reward feedback) in economic games (Sanfey,
2007) and in distinguishing between “me” and “not me” based
rewards (Tomlin et al., 2006). Finally in this social/reward path
the STS is activated during ToM tasks (Saxe and Kanwisher,
2003) and in the perception of intentional behavior in other
people (Gallagher and Frith, 2003). Taken as a combination of
activations, this neural network recognizes the social context of
the board game and the tools of this social context (the board and
chess pieces). It also recognizes that another person is involved in
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FIGURE 5 | The game tree for forward search in a game. Black is to play
first from the initial position and the tree analysis is simplified to considering
only two possible branches at each stage. Knight to 6 and Pawn to d6 are
two different “base moves” from which black then begins their analysis of
subsequent play. In order for black to estimate the success of these two base
moves they need to consider how White will reply, and the way White will
reply depends on how white evaluates how black will reply to White's moves,
hence Black needs to evaluate how white will evaluate Black’s reply to

\about black’s move
White's next move. Note that Black's final move choices shown here (pawn to
d5 and Bishop to ¢b) are the same irrespective of what White chooses prior
to these moves, this is a strategy that might occur in a real game. However,
white values Black's possible responses differently depending on what move
White is considering (either the Knight or the pawn) and subsequently this
changes what Black might prefer to do when choosing either the Knight or
the pawn as their very first move in this sequence. Such considerations in
complex games have some commonality with economic games.

the situation and that they have internal mental states that will
play a role in the decisions that will need to be made. Finally the
feedback from the outcome needs to distinguish between rewards
received by the first player (“me”) and the second player (“not
me”) for their respective choices in order to accurately attribute
each player’s gain or loss to the relevant player and strategy, see
section 3.4 for further discussion about each player’s rewards and
their influence on choices. This establishes the immediate social
context in which decisions will be made.

The visual perception of this opening position is also acti-
vated when first seeing the game. The occipito-temporal junction
(OTY) is differentially activated for chess experts when compared
to both controls and non-expert chess players as well as playing
a role in guiding the eye movements of experts when searching
the board for their next move (Bilali¢ et al., 2010, 2012). The ven-
tral stream along the inferotemporal cortex as a whole has been
extensively studied in humans and other primates (Kriegeskorte
et al., 2008) and it has been computationally modeled in terms
of more and more complex visual representations of larger and
larger portions of the visual scene (Serre et al., 2007). So this
ventral pathway identifies visual objects such as individual chess
pieces and constructs progressively more complex representations
of these objects, including their familiar spatial relationships. As
has been suggested in Wan et al. (2011) sufficiently complex rep-
resentations of a board game are categorical representations, it
is not an exact pattern matching process. Once the ventral path
has aggregated the visual scene to the extent the player’s experi-
ence makes this possible, a “context” signal can follow one of two
paths. If there is sufficient information in the contextual signal to
suggest a single move then the primary motor area (PM, Figure 4)
is signalled to make that move. Alternatively a signal arrives at the

frontal eye field (FEF, Figure 4) to tell the eyes where to move
to next in order to explore different regions of the board, this is
the basis of expertise guided search based on the contextual cues
embedded in scenes (Chun and Jiang, 1998) and games (Bilali¢
et al., 2012). This establishes the initial perceptual processing of
the board as a visual “scene.”

The final process shown in Figure 4 is the activation of the
PFEC and the subsequent processes that lead to the player actually
making a move on the board (blue path). In the chess example
this is where the social context, the differentiated roles of the two
players and the perceptual information are integrated so that a
coherent strategy can be developed. If a move has not yet been
made (i.e., the context was not sufficient to suggest a move to
make immediately) then the eyes are searching the scene provid-
ing more information to the PFC. This information needs to be
integrated in terms the constraints, plans, goals and incentives of
the player as well as a representation of the same mental states
of their opponent. With this in mind Koechlin et al. (2003) and
Koechlin and Summerfield (2007) have proposed a model of cas-
cading levels of processing that begins in the most anterior regions
of the PFC and ends at the posterior region of the PFC just before
the PM cortex, this is the anterior to posterior path shown in blue
of Figure 4. Importantly, the most anterior regions of the PFC
seem to play a role in the integration of the outcome of multiple
cognitive processes when a person is pursing a higher behavioral
goal (Ramnani and Owen, 2004). In terms of exploring and plan-
ning possible moves in chess, the eyes foveate a potentially useful
region of the board, this is called a “base move” (Gobet, 1997),
guided by perceptual templates and from this region branching
strategies of potential moves the player and their opponent might
make are then searched to find a good intermediate position in
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the game (either a piece captured or a strong strategic config-
uration). So in Figure 5 the Black player’s eyes initially saccade
to the pawn at d7 and the player considers moving this pawn to
d6 from which a number of alternatives are possible for White
to then play and Black to then reply etc., two of White’s options
are shown in Figure 5. The black player’s eyes then saccade to
the knight at g8 and considers the sequence of moves that begins
with a move of the knight to f6 and a sequence of possible plays
is shown in Figure 5. Once the black player has decided which
of these two strategies to adopt (knight to f6 or pawn to d6),
the neural activation cascades (Koechlin and Summerfield, 2007)
from the anterior regions of the PFC in which strategic planning
and branching has been mapped out at the conceptual level to
the posterior regions of the PFC where a motor plan leads to the
moving of the relevant parts of the body (Ramnani and Owen,
2004) to shift a game piece in order to make the first move. While
this style of reasoning is somewhat similar to that used in the
much simpler (and strategically different) economic games (Bhatt
and Camerer, 2005), it is far more complex in that perception,
constraints, learning and uncertainty in evaluations play signif-
icant roles in the decision-making process over and above the
purely strategic structure of the game and the payoffs of economic
theory.

3.4. STOCHASTIC DYNAMICS FOR A STRATEGIC THEORY OF MIND

In order to model one player’s internal representation of another
player, and how they use this perspective to evaluate their own
strategy, it is necessary to represent the neural processes that are
used in evaluating multiple different strategic alternatives that
both players might consider, as illustrated in Figure 5. In order
to do so, the following borrows significantly from the economic
game theory literature in a similar fashion to that of Yoshida
etal. (2008) but within the context of strategically complex games
and using SDEs to model the underlying neural dynamics within
the PFC. To begin, we identify the neural encoding of a player’s
strategy with levels of neural activity, a strongly favored strat-
egy is reflected in higher levels of neural activity in an analogous
fashion to other decision-making activations in other regions of
the brain (Gold and Shadlen, 2001; Brown et al., 2009; Simen
et al., 2009; Rorie et al., 2010). In this case K represents the level
of neural activity associated with Black’s encoding of the choice
Knight to f6 and P}, represents the level of neural activity associ-
ated with choice pawn to d6. We will also use the notation p(KCp)
and p(Pp) to represent the probabilities of black choosing each
of these two moves. Either of these two choices by Black leads to
different choices by White when they move next (see Figure 6)
and Black needs to estimate the “value” or “weight” (greek let-
ters in Figure 6) attributed to each of these two outcomes for
Black; Black plays Knight and either White knight to g5 = dygs
or White knight to ¢3 = ¢3, alternatively Black plays pawn and
either White pawn to ¢3 = @p;3 or White pawn to h3 = @pp3.
So Black also needs to encode a representation of White’s likely
choices, we represent the neural activity in Black’s PFC associated
with White’s choices using labels for White’s four possible moves
shown in the left of Figure 6: K& and K if Black plays Knight,
P and P if Black plays pawn. With this interpretation we can
represent changes in the level of neural activity for each move’s

neural encoding as a function of the other player’s strategy with
some statistical variation:

ARy = (rgskC¥ + drs k) de + ofedWye — (8)
APy = (<pp537>;3 + (pphst?) dt + ot dWp )

These are a pair of Ornstein-Uhlenbeck (drift diffusion) equa-
tions in which the drift terms are not constant as they depend on
other dynamic variables, in this case the levels of neural activ-
ity IC§V5, Ke, P, and Pi’?, discussed shortly. Looking at the
rate of change in neural activity for Black’s Knight move diC;, it
is composed of a weighted sum (the weights are the constants
drgs and dy3) of the current level of activity of Black’s neural
encoding of White’s options of two different Knight moves. Just
as in Equation (1) there are noise terms cﬁ’c and 033 represent-
ing non-systematic errors in the encoding of the strategies. Both
dKy, and dPy, are independent of each other in that the level of
activity of one variable does not influence the other (neither term
appears in the expression for the other). The four weights that
appear in Equations (8, 9) (g5, Pke3> Ppc3> and @pp3) are based
upon Black’s previous experience of their own ability in playing
these two strategies. For example Black believes they play K, with
strength ¢g,s against White’s /Cfvs and with strength ¢y against
White’s KC$. These are subjective estimates a player has developed
through experience and are subject to uncertainty in there estima-
tion, particularly when the strategies in question are unfamiliar or
the other player’s ability is unknown.

The Black player arrives at the decision to play either the
Knight or the pawn when the absolute value of either /Cj, or Py
reaches a certain threshold value thereby signaling a decision (in
principle similar to Figure 1, but see Bogacz et al. (2006) for
details) and this signal cascades from the anterior PFC to the pos-
terior PFC where this first move in BlacKk’s strategy is then turned
into a motor plan by the PM cortex. The rate at which the neu-
ral activity of either KCj or P}, reaches this threshold depends on
the fixed weights and the neural activity associated with White’s
strategy. The fixed weights can be attributed to learned and rein-
forced behaviors and so do not change during the time-course
of a single decision, but note that these feedback (reward) based
weights need to be correctly attributed to each player, so the neu-
ral encoding needs to reflect which player did what and what each
player received as feedback. Incorrectly attributing feedback to
the actions of different players will result in misattributing the
weights associated with each player’s strategy in future games.
The neural activity associated with White’s choices is a dynamic
quantity associated with Black’s representation of what Black
believes White will choose to do after Black has made their move.
This requires Black to represent White’s decision-making pro-
cess and White will choose the strategy that best advantages them
given what White thinks Black will do following White’s move.
Just looking at d/Cj, above, Black needs to encode the following
decision-making processes in order to accurately represent what
White is likely to do next:

dKS = (bpasPi + dusBE ) dt + osdWy (10)
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FIGURE 6 | A matrix representation of the estimated weights that Black
uses to analyze their next move (left) and how White will respond to
each of these moves and the rational that White will use to evaluate
their subsequent choices given Black’s prior choices (right). In order for
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Black to understand White's preferences for their next move, Black needs to
encode a representation of the way in which White will select their move.
This is the same process as Black uses to make their decision but using
information pertinent to White's strategic position.

ks = (q;pdspg’S + @bcng5) dt + % dWic (11)

Note that White’s move of either K3, or K have fixed weights on
the right hand side of Equations (10, 11) representing the learned
payoffs White has for Black’s moves of pawn to d5 and Bishop to
¢5, but while there are only two Black moves in Equations (10, 11)
(see the caption to Figure 5), the weights White attributes to these
two possible choices of Black’s are different because White play-
ing Knight to g5 first is strategically different to White playing
pawn to ¢3 first, hence the payoff weights for White are differ-
ent and this has a follow-on effect in Black selecting a move in
Equations (8, 9). In this sense Black has an internal representa-
tion that is encoded in their neural activity of how White will
make a decision, and this in turn depends on what Black will do in
response to White’s choices. Also note that Black needs to be able
to encode the payoffs to White in order to estimate White’s pos-
sible choices, so Black needs to distinguish between their payoffs
and White’s payoffs.

In such a situation it is not obvious that there is a solution to
these dynamics that allow Black to settle on a decision as to which
is the best move to make. Fortunately these types of SDEs have
known solutions, particularly in the case where the drift term,
that which appears immediately before the dt in Equations (8),
(9), (10), and (11), is linear in the dynamic variables (Plastino
and Plastino, 1998). These solutions take the form of probability
distributions over the strategies that Black has available to them:

exp B (91650 + drap(5) ) |

p(Kp) = (12)
exp B (s U + drap (55 ) |
+exp [Bb ((Ppcsp(va3) + Opn3p (7)‘?/3))]
c3 h3
p(Py) = exp [By (0pe3p(PS) + @pnzp(P)) ] (13)

exp By (rgsP(KE) + draap(K5) ) |

+exp [Bo (0pe3p(PE) + @pisp (P1))]

where p(lCﬁ,S) and p(K¢) are probability distributions defined
in an analogous fashion as Equations (12, 13) but for the White
player and a similar substitution for B as for Equation (7) has
been made in order to simplify the expression. Both p(le,S) and
p(K&) have a further dependence on the probabilities over Black’s
subsequent move choices after White’s next move. Note that
although Equation (7), (12), and (13) describe entirely different
cognitive processes they have a very similar functional form:

exp[Bfi(c, x)]

B bl hac S 14
> explBfi(c, 0] (14)

pxi) =

in which B is a noise parameter, fi(c,x) are linear functions
of constants ¢; and dynamic variables x; represented here by
a vector of such terms ¢ and x. Such exponential forms of
probability distributions over choices are common in models
of bounded rationality in economics (McKelvey and Palfrey,
1995; Wolpert et al., 2011), in computational models of simple
reinforcement learning (Williams, 1992; Sato et al., 2002) and
as models of neural activity in theoretical psychology (Bogacz
et al., 2006; McMillen and Holmes, 2006). However, to date the
connection between the generic dynamics of SDEs, theoretical
neuropsychology and expertise does not appear to have been
made.

4. DISCUSSION

The need to distinguish between that which motivates a person’s
choices and that which motivates another person’s choices, and
how these motivations interact in a single individual’s decision
making processes is a critical component to the way in which we
interact socially. How such strategic considerations are then inte-
grated with our perceptual understanding of the environment is
a challenging question that can be discussed in terms of skill in
competitive board games.

This article has developed a model of visual perception and
opponent modeling within the framework of SDEs represent-
ing task specific neural activity and subsequent decision-making.
The modeling of game-scene perception follows a well developed
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research paradigm of progressively more sophisticated represen-
tations of the scene culminating in the most complex representa-
tions that a player’s experience allows for. In the highest ranking
experts this can result in an initial, rapid perception of the board
being sufficient to initiate a single good move almost immedi-
ately after being presented with a game. More generally this expert
perception activates the eyes to rapidly and efficiently search the
board for the most likely candidate regions and base moves from
which to explore possible branches of play. Once one of a small set
of good base moves has been selected an expert is able to search
forward in the game tree with greater strategic depth than a non-
expert and to be able to more effectively estimate the likely replies
of their opponent and how these replies influence the player’s
choice of the next move to make. While these general psycho-
logical results have existed for some time now, there appears to
be no previous analysis of how SDEs, their dynamics and prob-
abilistic outcomes in terms of neural activity are related to the
psychological literature of expertise.

The formal representation of how a player might model their
opponent’s state of mind, particularly their strategy space, incen-
tives, constraints, and the influence these aspects have on their
decisions, is a challenging task. However, the formal techniques
have been available for some time and the results in terms of
probability distributions are not particularly divergent from some
previously established theoretical models. The demanding task
is in the integration of the vast amount of data available from
the neuro-imaging literature into a coherent whole that is both
consistent and convincing. Theoretical (Yoshida et al., 2008) and
empirical (Bhatt and Camerer, 2005) arguments for a game the-
oretical basis of a ToM have appeared in the literature, but these
have not previously been extended to more complex tasks, exper-
tise or used SDEs as the basis for their modeling. Furthermore,
the relationship to the broader neuroscience literature has had
almost no coverage in this respect, specifically how the different
neural networks and their functional roles might be integrated as
a whole in the modeling of expertise. The critical difference in
the approach put forward here is that, unlike previous neural-
connectionist-reinforcement paradigms, this model represents
a player’s internal representation of the other player’s internal
strategic state of mind, not just their own. This entails several
important cognitive steps, principally recognizing that the task
environment contains another cognisant entity that will dynami-
cally adapt their choices according to their beliefs or expectations
about the choices others will make. It also requires the motiva-
tions and constraints of this other entity to be internally rep-
resented and so we need to consider how our ToM and reward
mechanisms interact with our strategic perspective (and how we
model the strategic perspective of others). This represents a sig-
nificant step in showing how different cognitive processes might
be integrated to help explain some of the prodigious skills we
are all capable of expressing to some extent, and the role these
skills might play in a broader context, such as our everyday social
lives.
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