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The rapid demographical shift occurring in our society implies that understanding
of healthy aging and age-related diseases is one of our major future challenges.
Sensory impairments have an enormous impact on our lives and are closely linked to
cognitive functioning. Due to the inherent complexity of sensory perceptions, we are
commonly presented with a complex multisensory stimulation and the brain integrates
the information from the individual sensory channels into a unique and holistic percept.
The cerebral processes involved are essential for our perception of sensory stimuli
and becomes especially important during the perception of emotional content. Despite
ongoing deterioration of the individual sensory systems during aging, there is evidence
for an increase in, or maintenance of, multisensory integration processing in aging
individuals. Within this comprehensive literature review on multisensory integration we
aim to highlight basic mechanisms and potential compensatory strategies the human
brain utilizes to help maintain multisensory integration capabilities during healthy aging
to facilitate a broader understanding of age-related pathological conditions. Further our
goal was to identify where further research is needed.
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MULTISENSORY INTEGRATION
Each of our sensory systems provides us with a qualitatively dis-
tinct subjective complementary impression of our surrounding,
which are of critical importance for perception, cognitive process-
ing and control of action and can occur in a highly automatized
manner (Meredith and Stein, 1983, 1985; Stein and Meredith,
1990). However, most of our everyday percepts are conveyed
by multiple sensory systems like the olfactory, auditory, visual,
gustatory, and tactile system. Our brain has the remarkable ability
to integrate even disparate and complex multisensory informa-
tion into a unique and coherent percept. The computational
mechanisms responsible for this integration assure that the signal
is amplified and any kind of accompanied noise is filtered out,
thereby promoting the saliency of ecologically meaningful events.
Input from two sensory channels, in comparison to a single one,
increases the likelihood and speed of detecting and correctly
identifying events (Gottfried and Dolan, 2003; Dematte et al.,
2006, 2009) and also enhances sensory sensitivity (Dalton et al.,
2000; Chen and Spence, 2011). It has also been indicated that
higher cognitive sensory processing, like pleasantness evaluation
of an odor, is enhanced when it is combined with a congruent
auditory stimulus (Seo and Hummel, 2011). Overall, numerous
results indicate that multisensory integration plays an important

role in our daily life by facilitating and improving our perceptual
capacities.

In more detail, multisensory integration is governed by four
different principles. First, unimodal sensory stimuli need to be
applied within a certain temporal sequence and second, spatial
concordance is necessary in order to achieve optimal integration
results (King and Palmer, 1985; Meredith and Stein, 1986). Thus,
sensory stimuli of different modalities have to coincide with
regards to time and space in order to be integrated. Third, con-
textual, semantic congruency, or correspondence, is fundamen-
tal for efficient multisensory integration (Spence, 2011). When
those preconditions are fulfilled, the sensory stimuli appear as if
emanating from the same object. Importantly, multisensory inte-
gration processes follow the principle of inverse effectiveness—
cross- or multisensory integration is most effective and therefore
elicit maximal behavioral enhancements when less intense or
weak and ambiguous individual stimuli are applied (Stein and
Stanford, 2008).

Initial research on multisensory integration observed the supe-
rior colliculus of anesthetized cats as an important part of the neu-
ral network involved (Meredith and Stein, 1983, 1985; Stein and
Meredith, 1990). Nowadays, it has been demonstrated that the
traditional cortical network supporting multisensory integration
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in humans consists primarily of the superior temporal sulcus
(STS) and the intraparietal sulcus (IPS); it has been suggested that
the STS is associated with the integration and labeling of object
identity, whereas the IPS is involved in a low-level spatial informa-
tion processing (Calvert, 2001; Stein and Stanford, 2008). Further,
the insula is considered a key area for detection of crossmodal
coincidence and matching (Calvert, 2001). However, orbital and
ventral areas of the frontal cortex and hippocampal areas have also
been identified as neuronal correlates of bimodal multisensory
integration involving the olfactory and gustatory domains (Got-
tfried and Dolan, 2003; Small and Prescott, 2005). Those areas
might be responsible for attention and memory processing and
are involved in novelty detection, congruency assessment, or task
difficulty evaluation (Calvert, 2001). Within frontal areas, a dis-
sociation with regard to object identity exists: the orbital network
seems to be especially important for the integration of multisen-
sory input related to food items while the ventrolateral prefrontal
region mediates the assessment of non-food objects (Price, 2008).

The existing functional imaging research regarding multi-
sensory integration processes can be divided into two topics:
multisensory integration of (i) object observation and (ii) emo-
tional perception. For the investigation of multisensory pro-
cesses during object recognition, combinations of two different
modalities—combined visual-auditory stimulations—is the most
utilized. A concurrent combination of three different and congru-
ent sensory stimuli has yet to be applied within a neuroimaging
setting. However, when analyzing areas of overlap between the
three senses of touch, sound, and vision, both the STS and
IPS demonstrate a considerable overlap in processing (Bremmer
et al., 2001; Beauchamp et al., 2008; Langner et al., 2012). In
addition, the left fusiform gyrus (FG) seems to play a putative
role within trimodal sensory object manipulation (Kassuba et al.,
2011). Most of these studies are, however, based upon a com-
bination of simple stimuli or a conjunction analysis of brain
activation related to unimodal sensory stimulation. Multisensory
integration mechanisms are of special importance during the
perception and processing of emotions. Research from our own
and other groups provides evidence for a neural network involv-
ing the amygdala, insula, frontal areas, FG, and STS which are
responsible for integration of cross- or multisensory information
related to emotional perception during stimulation with dynamic
stimulus material of different modalities (Ethofer et al., 2006;
Kreifelts et al., 2009; Seubert et al., 2010a,b; Klasen et al., 2011,
2012; Muller et al., 2011, 2012; Regenbogen et al., 2012a,b).
Although we gained novel insights into multisensory integra-
tion processes with regards to object and emotion perception
during the last years, a systematic investigation of multisensory
integration in relation to differences between age groups and
age-related pathologies using functional imaging means is still
missing. Since emotional perception accounts for a major part
of our everyday wellbeing and multisensory processes are heav-
ily involved in emotional processes we want to draw attention
towards a better understanding of multisensory processes and
the underlying neural connections during emotional perception.
Therefore, the aim of this review is to outline the knowledge about
multisensory integration across the lifespan with a special focus
on behavioral and neural correlates of multisensory integration

during aging and age-related diseases. We further aim to identify
areas where further research is needed in order to shed light onto
the mechanisms of multisensory integration.

MULTISENSORY INTEGRATION DURING AGING
In light of the evolving demographic changes of our society,
one important future task for the research communities is to
further our understanding of lifelong healthy aging. Aging is a
multifactorial and multidimensional process involving physio-
logical, psychological, and social alterations. As part of ongoing
degeneration throughout life, there is a progressive deterioration
of physical function leading to loss of viability and an increase
in vulnerability. Particularly, sensory impairments have an enor-
mous impact on our lives and are closely related to intellectual
functioning. Because we experience our environment through
multiple sensory systems, which ultimately ensure our everyday
safety, quality of life, and social adjustment, it is of interest
to understand how multisensory integration processing changes
as a function of healthy aging. In facing these challenges, the
following question is noteworthy: what age-dependent changes
in the neuronal integration of multisensory stimuli occurs in
individuals experiencing healthy aging?

Effectiveness of multisensory integration depends upon func-
tioning of the peripheral sensory organs as well as higher cognitive
processes. As we age, we experience a decline of function in
all our five senses—e.g., visual acuity decreases (Spear, 1993)
and auditory thresholds increase (Liu and Yan, 2007). Olfactory
capabilities are known to decline during aging as well (Rawson,
2006), however this deterioration can be attributed to a poor
medical status and cognitive decline in the elderly (Nordin
et al., 2012). Typically, motor speed and executive functions
(Falkenstein et al., 2006), as well as working memory and atten-
tion control deteriorate as well (Fabiani, 2012). Previous struc-
tural neuroimaging studies, including voxel-based morphometry
(VBM), deformation field morphometry (DBM), cortical thick-
ness analyses, manual tracing techniques, and diffusion-weighted
magnetic resonance imaging (MRI) have given some insights into
the complexity of age-related structural brain changes (Sowell
et al., 2004; Raz and Rodrigue, 2006; Sala et al., 2012). In a
recent review, Hedman et al. (2012) concluded that apart from
brain volume increases during childhood and adolescence, a
continuous volume decrease of 0.2% per year can be observed,
which accelerates to an annual brain volume loss of 0.5% at
age 60 and more than 0.5% above the age of 60 years. Thereby,
evidence is provided for a volume loss of gray matter and cortical
thinning during aging. However, not only structural changes
occur during lifespan. Evidence exists that older participants
exhibit altered patterns of functional activation during cognitive
tasks. The elderly engage brain areas (especially frontal areas)
to a greater extent than young adults; this is most likely to
compensate for impaired function in other brain areas (Posterior-
Anterior Shift with Aging, PASA; Grady et al., 1994; Davis et al.,
2008; Grady, 2012). In contrast to task-based methods, the task-
independent approach of a resting-state analysis is appealing due
to its ability to assess altered brain function independent of the
participant’s active involvement and task understanding as well
as independent of their sensory performance. The resting-state
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approach assesses altered brain functions caused by the summa-
tion of subtle physiological and pathological changes across the
lifespan, which, in turn, can be linked to respective structural
changes as noted above (Reetz et al., 2012). Given the extensive
changes of perceptual and cognitive processes and the underlying
structural and functional brain changes during healthy aging, it
seems reasonable that multisensory integration performance as
well is altered throughout the lifespan.

Research on multisensory integration in aging in relation to
young adults mainly focused on visual-auditory paradigms and
employed mostly static stimuli. These early studies indicated that
older adults, when compared to younger adults, do not benefit
from multisensory conditions (Stine et al., 1990; Walden et al.,
1993; Sommers et al., 2005) or even report a suppressed cortical
multisensory integration response in the elderly (Stephen et al.,
2010). More recent studies, however, point towards an enhance-
ment of multisensory integration effects also in older adults.
Among others, shorter reaction times in response to multisensory
events have been reported (Helfer, 1998; Laurienti et al., 2006;
Diederich et al., 2008; Mahoney et al., 2011, 2012; Diaconescu
et al., 2013). A potential reason for the earlier negative results
and more recent positive results can be that the early studies
focused on very complex auditory-visual speech perception and
thus involve sensory as well as higher-order cognitive processes
whereas later studies mostly used simpler combinations of stimuli
originating from objects. Another explanation for the conflicting
results is the use of different multisensory testing and data analysis
techniques. It is also possible that the basic principles for a
successful multisensory integration (temporal and spatial accor-
dance, inverse effectiveness, semantic congruency) have been
violated within the earlier studies.

Different aspects were discussed as basis for this improvement
in multisensory integrative function in elder adults (Mozolic
et al., 2012). General sensorimotor and cognitive slowing during
aging is obviously not able to explain response times acceleration
(Laurienti et al., 2006; Peiffer et al., 2007). However, it was recently
demonstrated that older adults have a broader time window of
integration as a consequence of increased response times and
a wider distribution or range of response times; the combined
effect aids older adults to separate stimuli in time (Diederich
et al., 2008). In this study, older adults demonstrated a lower
probability of integration due to the broader time window; how-
ever, in case of a successful integration the gain of older adults
was larger compared to younger adults. Age-dependent deficits in
top-down selective attention to incoming sensory information do
not provide an explanation for the enhancement of multisensory
integration in older subjects (Mozolic et al., 2008; Hugenschmidt
et al., 2009). One plausible explanation is the principle of inverse
effectiveness, i.e., that reduced sensitivity in the individual sensory
systems (e.g., rigidity of the lenses, loss of hair cells in the
ear and olfactory receptors) combined with age-related alter-
ations in cognitive processing increases the relative magnitude
of multisensory enhancements (Hairston et al., 2003). Thereby,
multisensory integration becomes more important during aging
as it helps to counteract the often-destructive consequences of
unisensory deterioration. Mozolic et al. (2012) recently proposed
a second possible explanation. They suggested that elderly do

not adequately filter sensory noise and hence are more prone
to distraction than their younger counterparts. As soon as the
extraneous sensory information becomes relevant, however, older
adults benefit from this enhanced processing of sensory back-
ground information. Evidence for a higher level of background
sensory processing in the elderly was also provided by several
resting-state studies pointing towards an increased default mode
network (DMN) activity (Grady et al., 2006; Li et al., 2007). Fur-
thermore, in elderly, the observed decrease in visual memory and
visuo-constructive functions seems to be strongly associated with
an age-dependent increase of functional connectivity specifically
in the temporal lobe (Schlee et al., 2012).

Age-related changes during information processing
(compensatory reallocation, neural compensation,
dedifferentiation, inhibition) are based upon basic circuitry
of the sensory systems involving several interactive neuronal
loops such as prefronto-thalamo-cortical gating between the
thalamus and the neocortex in order to effectively process
sensory and higher-order cognitive information (Mahoney et al.,
2011). Using magnetoencephalography, Diaconescu et al. (2013)
indicated that sensory-specific regions showed an increased
activity after visual-auditory stimulation in young and old
participants, whereas inferior parietal and medial prefrontal areas
responded preferentially in older subjects. Further, activation of
the latter areas was related to faster detection of multisensory
stimuli. This relation was mediated by age-related reductions in
gray matter volume in those regions (Diaconescu et al., 2013).
The authors propose that posterior parietal and medial prefrontal
activity is the basis for the integrated response in older adults.
This hypothesis is supported by the theory of PASA described
above as well as the theory of cortical dedifferentiation stating
that healthy aging is accompanied by decreased specificity of
neurons in the prefrontal cortex (Park and Reuter-Lorenz, 2009).

Thus, the neural network governing multisensory integration
displays clear age-dependent alterations and age-related changes
in cognitive function have clear implications for multisensory
processing. That said, although age is the number one major
risk factor for a large range of degenerative diseases, it remains
to be determined how multisensory integration is affected in
different states of age-related diseases, and in particular, diseases
of neurodegenerative nature. Unfortunately, to date, there are few
published studies on this topic. Any potential changes due to
neurodegenerative states might, however, be highly relevant as
most of the age-related neurodegenerative disorders are preceded
by long presymptomatic periods. Neuropathobiological changes
occur many years, even decades, before the clinical manifestation
of the disease and numerous compensatory mechanisms and
neuroplastic capacities of the human brain remain to be clarified.

The most frequent age-related neurodegenerative disorder is
Alzheimer’s disease (AD). Due to aging of populations in both
developed and developing societies, AD affects 24.3 million peo-
ple worldwide and has become one of the most severe socio-
economical and medical burdens (Ferri et al., 2005). AD, the most
common form of dementia, is a complex disease characterized by
an accumulation of β-amyloid plaques and neurofibrillary tangles
composed of tau amyloid fibrils. These changes are associated
with synapse loss and neurodegeneration leading to a general and
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progressive loss of cognitive functions, initially predominantly
manifested as memory impairment. As studies have revealed
that increased DMN activity in healthy aging is associated with
a higher level of background sensory processing (Grady et al.,
2006; Li et al., 2007), functional changes in AD are of particular
interest. Recent studies have mainly demonstrated task-induced
deactivations of the DMN as well as a decreased DMN functional
connectivity along a continuum from normal aging to patho-
logical conditions (Andrews-Hanna et al., 2007; Hafkemeijer
et al., 2012). Resting state functional MRI demonstrated that
the regional coherence of brain activity is significantly altered in
patients with AD [e.g., Filippi and Agosta, 2011]. Furthermore,
abnormalities in the precuneus of patients with amnestic mild
cognitive impairment compared to controls were found while
AD patients showed alterations of large-scale functional brain
networks extending well beyond the DMN. Moreover, episodic-
memory related task-based functional neuroimaging studies in
AD have revealed increased activity in the precuneus (Browndyke
et al., 2013); an area which plays a crucial role in the DMN and has
the highest metabolic and blood perfusion rates during resting
conditions (Gusnard and Raichle, 2001). The clinical relevance
of resting state networks beyond the DMN is notable because
the degree of connectivity in the resting state networks may
predict individual cognitive and emotional functions (Wang et al.,
2010a). Specifically, interhemispheric functional connectivity of
the hippocampi (Wang et al., 2010b), as well as connectivity
between the hippocampus and the posteriomedial cortices, pre-
dicts memory performance in healthy individuals (Wang et al.,
2010a). The available research demonstrates that suppression of
the DMN during task performance is important. However, con-
ceptualizing the network in terms of suppression implies that the
DMN is a sort of nuisance network where its importance to vol-
untary cognitive functions lies primarily in minimizing its activity
during tasks. Consequently, patients with AD that demonstrate
hypometabolism in the precuneus/posterior cingulate component
of the DMN (Bradley et al., 2002; Chetelat et al., 2008; Langbaum
et al., 2009; Petrie et al., 2009; Schroeter et al., 2009) should
have very good cognitive functioning during purposeful tasks
because the DMN is not active. However, this is clearly not
the case. Therefore, further studies with a focus on functional
connectivity analyses might foster our understanding of changes
in the context of multisensory integration in healthy populations
and pathological conditions.

Overall, very little is known about behavioral benefits during
multisensory integration in patients with age-related neurode-
generative disorders. Using bimodal stimulation (audio-visual
speech presentation), patients demonstrate a limited ability to
benefit from concurrent perceptual and linguistic cues compared
to healthy aged subjects (Phillips et al., 2009). Given the fact that
we have a poor understanding of multisensory integration in neu-
rodegenerative disorders, further studies regarding behavioral and
neuronal substrates of multisensory integration are warranted.
The knowledge of mechanisms involved in multisensory integra-
tion in neurodegenerative disorders, with AD representing the
most common one, is of high value given the fact that multisen-
sory stimulation has an inherently high potential for early inter-
vention and thus, also therapeutic application (Staal et al., 2003).

CONCLUSION
Advances are being made in disentangling the multisensory inte-
gration mechanisms in elderly, thus encouraging future larger
longitudinal studies needed to understand the specific neurobio-
logical and neuropathological basis of multisensory integration in
health and disease. The current state of research on multisensory
integration in healthy aging and age-related neurodegenerative
disorders would greatly benefit from further studies as we aim
to understand basic mechanisms and potential compensatory
strategies of the human brain that help maintain multisensory
integration capabilities during both healthy and pathological
aging. Early identification of changes in multisensory integration
will help to better inform choice of therapy and aid a personalized
approach to clinical treatment. Future studies are warranted to
determine the clinical translational value of multisensory integra-
tion processes in the elderly.
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