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An essential step in understanding the processes underlying the general mechanism of
perceptual categorization is to identify which portions of a physical stimulation modulate
the behavior of our perceptual system. More specifically, in the context of speech
comprehension, it is still a major open challenge to understand which information is
used to categorize a speech stimulus as one phoneme or another, the auditory primitives
relevant for the categorical perception of speech being still unknown. Here we propose
to adapt a method relying on a Generalized Linear Model with smoothness priors,
already used in the visual domain for the estimation of so-called classification images,
to auditory experiments. This statistical model offers a rigorous framework for dealing
with non-Gaussian noise, as it is often the case in the auditory modality, and limits the
amount of noise in the estimated template by enforcing smoother solutions. By applying
this technique to a specific two-alternative forced choice experiment between stimuli
“aba” and “ada” in noise with an adaptive SNR, we confirm that the second formantic
transition is key for classifying phonemes into /b/ or /d/ in noise, and that its estimation
by the auditory system is a relative measurement across spectral bands and in relation
to the perceived height of the second formant in the preceding syllable. Through this
example, we show how the GLM with smoothness priors approach can be applied to
the identification of fine functional acoustic cues in speech perception. Finally we discuss
some assumptions of the model in the specific case of speech perception.
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INTRODUCTION
A major challenge in psychophysics is to establish what exact
parts of a complex physical stimulation modulate its percept by
an observer and constrain his/her behavior toward that stimulus.
In the specific field of speech perception, identifying the informa-
tion in the acoustic signal used by our neurocognitive system is
crucial in order to understand the human language faculty and
how it ultimately developed in human primates (Kiggins et al.,
2012). In this context, questions of speech segmentation, i.e.,
which acoustical cues are used to isolate word units in the con-
tinuous acoustic speech stream; or phonemic categorization, i.e.,
which among the auditory primitives that are encoded at the neu-
ral acoustic/phonetic interface are actually used by our perceptual
system to recognize and categorize phonemes, still constitute an
important open debate (see Cutler, 2012 for a review). As a con-
sequence, today there is no universal model of speech recognition
that can work directly on the acoustic stream. Models of speech
recognition, even the most efficient and well developed ones, usu-
ally avoid the acoustic/phonetic step (e.g., Luce and Pisoni, 1998;
Norris and McQueen, 2008) or rely on systems that are not based
on realistic human behaviors (Scharenborg et al., 2005).

In this paper we propose a method and procedure allowing
direct estimation of which parts of the signal are effectively used

by our neurocognitive system while processing natural speech. Of
course one way that was used in previous work to identify rele-
vant acoustic cues in speech is to proceed by progressive signal
reductions, i.e., eliminating certain cues from the speech signal in
order to demonstrate which ones are mandatory. In the 1950’s,
phoneme recognition was extensively studied by Liberman and
colleagues for example, using the systematic variation of a limited
number of features in the time-frequency domain (usually one
or two) along a continuum of synthetic speech (Liberman et al.,
1952, 1954, 1957). More recent work conducted on this topic has
involved artificially degraded speech, such as noise-vocoded (Xu
et al., 2005), sine-wave (Loizou et al., 1999), or band-pass filtered
speech (Apoux and Healy, 2009). These approaches can, however,
only offer a very limited account of the problem, as it is known
that the speech comprehension system shows very fast and effi-
cient functional plasticity. Once shaped by linguistic experience,
our speech perception system can rapidly modify the cues that
are relevant for phonemic categorization in response to drastic
signal reductions or even stronger manipulations (see for exam-
ple: Shannon et al., 1995). This resistance of speech perception to
drastic signal impoverishment was attributed to the redundancy
of information in speech: no single acoustic feature in speech is
absolutely crucial for its comprehension (Saffran and Estes, 2006).
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The signal reduction approach can therefore not account for the
many possible acoustic dimensions used by listeners in a single
categorization task, or for their evolution with listening situa-
tions. While signal reduction paradigms are appropriate to study
the functional plasticity triggered in our speech perception sys-
tem by signal reductions, they can hardly inform us on the way
the system reacts in more natural perception situations.

An alternate way to proceed would be to develop a method
allowing experimenters to directly “see” where humans listen
inside natural speech signals, without having to modify them. In
the following, we show how a methodological solution to this
issue can be provided by new developments in the domain of
so-called classification images (CIm). We demonstrate how this
method can now be adapted to auditory experiments and how
this method can further be developed to study the identification
of functional fine acoustic cues in speech perception. We will also
discuss how this method could be adapted to other domains of
studies both in perceptual and cognitive neuroscience.

Since Ahumada and Lovell (1971) first developed a correla-
tional technique to estimate the frequency weighting-function
of observers detecting a 500-Hz tone-in-noise, much has been
done for establishing a robust theoretical framework in which
to describe and analyze the set of techniques gathered under
the name of CIm (see Murray (2011) for an in-depth review).
The basic idea underlying the classification image approach is
that, faced with any kind of perceptual decision, our neurocog-
nitive system will sometimes generate correct perceptions and
sometimes errors, which could be informative on the computa-
tional mechanisms occurring in perceptual systems. If one could
have access to the physical conditions of the stimulation that
favor either perceptual failure or success, then one can derive
the relevant parts of any stimulation that impact the perceptual
decision process. As a consequence, the tasks used to gener-
ate CIm are categorization tasks. The typical paradigm used in
classification image experiments is an identification or detec-
tion experiment, in which each trial consists in the presentation
of one of two possible signals and the participant is instructed
to classify the stimuli between the two options (t0 or t1). In
order to derive a classification image, stimuli are systematically
masked by a certain amount of random background-noise. For
each trial, the response given by the participant, the signal actu-
ally presented and the trial-specific configuration of the noise field
are recorded. The classification image aims at showing the pre-
cise influence of the noise field on the observer’s response, for a
given signal.

The best known (and maybe the most intuitive) method for
calculating a classification image, first used by Ahumada (1996)
and termed reversed-correlation, derives from the idea of estab-
lishing the correlation map between the noise and the observer’s
responses. In practical terms, this is done by averaging all of the
noise fields eliciting response t0 and subtracting the average of all
of the noise fields eliciting response t1. The idea is that if one can
determine how the presence of background-noise at each point
inside the space of a stimulus interferes with the decision of the
observer, one can derive a map of the perceptual cues relevant to
achieve a specific categorization task. By showing which compo-
nents influence the recognition performance, this method gives us

insights into the observer’s internal decision template for this spe-
cific task. Although it has been primarily conceived as an answer
to a question raised in the auditory domain (Ahumada and Lovell,
1971; Ahumada et al., 1975), and although the method could
have easily been further developed to study auditory processes,
this powerful tool has been mostly exploited up to now in studies
on visual psychophysics. This technique has been used to inves-
tigate a variety of visual tasks, including the ability to perceive
two segments as aligned or not (i.e., Vernier acuity, Ahumada,
1996), the detection of Gaussian contrast modulation (Abbey and
Eckstein, 2002), the processing of illusory contours (Gold et al.,
2000), visual perceptual learning (Gold et al., 2004), and lumi-
nance (Thomas and Knoblauch, 2005) and chromatic (Bouet and
Knoblauch, 2004) modulation.

In the auditory domain, the classification image is a promising
approach for determining which “aspects” of the acoustic signal
(formant position or dynamic, energy burst, etc.) are crucial cues
for a broad variety of psychoacoustic tasks (i.e., tonal or pitch
discrimination, intensity perception or streaming, etc.) and par-
ticularly in the context of speech comprehension. However, to
our knowledge, attempts to adapt this methodology to the audi-
tory modality have until now produced limited results. Among
noteworthy attempts, Ardoint et al. (2007) have adapted the
reversed correlational method to study the perception of ampli-
tude modulations and very similar correlational procedures have
been used to determine spectral weighting functions of speech
stimuli (see for example: Doherty and Turner (1996); Apoux
and Bacon (2004) or Calandruccio and Doherty (2008)). Two
severe limitations can, at least partly, explain the limited devel-
opment of the technique. Firstly, several thousands of trials are
typically needed to compute a classification image accurately. The
minimum number of trials theoretically required is equal to the
number of free-parameters, but many more are needed to be
able to estimate the classification image with an adequate signal-
to-noise ratio (up to 11400 trials, in Barth et al., 1999). This
problem has been overcome in the visual domain by reducing the
number of random variables under consideration, for example
by averaging along irrelevant dimensions (Abbey and Eckstein,
2002, 2006), or by using a “dimensional” noise (Li et al., 2006).
Unfortunately, none of these methods can be used with such com-
plex and time-varying stimulus as speech. Furthermore, mental
and physiological fatigue occurs rapidly when listening to very
noisy stimuli. The second factor restricting the use of reverse-
correlation for estimating auditory CIm is the strong assumption
about the statistical distribution of the noise imposed by the sta-
tistical theory. Since its theoretical background has mostly been
developed assuming additive Gaussian-noise, methods such as
reverse-correlation are not the most suitable statistical framework
to deal with non-Gaussian noise-fields. In the visual domain,
CIm can be based on Gaussian noise, for example in the case of
luminance noise which will modify the observer’s perception in
a symmetric fashion, adding or subtracting luminance to pixels
in a picture. The interest of using CIm for the study of speech
signals, however, imposes the use of acoustic stimuli which will
have complex spectro-temporal composition and the calculation
of an auditory classification image should therefore not be based
on the amplitude of the noise samples, but rather on the power of
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the time-frequency bins of their power spectrum. These unfor-
tunately generally have non-Gaussian distributions. These two
limitations make it difficult to calculate auditory CIm using the
standard reverse-correlation method.

A major advance in the comprehension and computation of
CIm was achieved by Knoblauch and Maloney (2008) who pro-
posed to fit the data with a Generalized Linear Model (GLM),
which provide a more accurate and comprehensive statistical
framework for calculating CIm. This initial work was followed
by Mineault et al. (2009) and Murray (2011, 2012). Interestingly,
this appealing approach offers a way to overcome the two pit-
falls mentioned above. Firstly, GLMs naturally allow the addition
of prior knowledge on the smoothness of the expected classi-
fication image, resulting in Generalized Linear Models (GLMs)
(Hastie and Tibshirani, 1990; Wood, 2006). By exploiting the
dependencies between adjacent noise values, one can signifi-
cantly reduce the number of trials required. In fact, GLMs with
priors are widely used for describing the stimulus-response prop-
erties of single neurons (Pillow, 2007; Pillow et al., 2008), in
particular in the auditory system (in terms of Spectrotemporal
Receptive Field, STRF, Calabrese et al., 2011). Secondly, unlike
the reverse-correlation method, the GLM does not require the
noise to be normally distributed. Accordingly, it can measure
CIm using noise fields from non-Gaussian distributions, such
as the power spectrum of an acoustic noise, in a similar way to
the calculations of second-order CIm using GLM by Knoblauch
and Maloney (2012). Therefore, Generalized Linear and Additive
Models provide suitable and powerful tools to investigate the
way in which the human system achieves fast and efficient cat-
egorization of phonemes in noise. In this paper we applied the
GLM with smoothness priors technique to the identification of
acoustic cues used in an identification task involving two VCV
speech sequences: ABA (/aba/) and ADA (/ada/). In this particu-
lar case a strong hypothesis, formulated in Liberman et al. (1954),
is that the second formant transition would be a key for classi-
fying the stimulus into [ABA] or [ADA]. Under this assumption,
the classification image would be focused on the time-frequency
localization of the second formant transition.

MATERIALS AND METHODS
In the following sections we use the convention of underlined
symbols to indicate vectors, double underlined symbols to indi-
cate matrices, and non-underlined symbols to indicate scalars.

EXPERIMENTAL PROCEDURE
Three native French-speaking listeners took part into this study:
the first two Léo Varnet and Michel Hoen are co-authors on the
paper and were not naïve regarding details of the study, a third
participant was thus added, S.B. who was completely naïve toward
the task. They were 24, 25, and 35 year old, males, right handed
and native French speakers, without known language or hearing
deficits.

Targets sounds, hereafter denoted t0 and t1,were two natural-
speech signals (ABA /aba/ and ADA /ada/ respectively) obtained
by concatenating the same utterance of /a/ with an utterance
of /ba/ or /da/. Original sounds were recorded in a soundproof
chamber by the same female speaker and digitized at a sample

rate of 44.1 kHz. The sound samples were 680 ms long, and their
average power was normalized. Each stimulus si consisted of
one target-sound, embedded in a Gaussian additive-noise using
Equation (1):

si = αi · tki
+ ni (1)

In (1), i is the trial number, ki the target number (0 or 1) asso-
ciated with this trial, ni the noise field drawn from a normal
distribution, and αi a factor allowing the adjustment of signal-
to-noise ratio (SNR) as a function of the participant’s behavior,
see Adaptive stimulus-delivery procedure below. Each stimulus
was normalized in intensity level using the root mean square
and preceded with a Gaussian fade-in of 75 ms convolved with
a Gaussian-noise, in order to avoid clicks or abrupt attacks. The
sample rate was the same as for the original sounds.

The experiment consists in the presentation of a list of
N = 10,000 noisy stimuli (5000 for each target) presented in a
completely random order. Participants were instructed to listen
carefully to the stimulus and then indicate by a button press
whether the masked signal was t0 or t1, a response denoted by
ri (= 0 or 1). The following trial began after 200 ms. Listeners
could complete the task over a period of 1 week, at their own
pace, depending on individual fatigue and availability, for a total
duration of approximately 3h. Each participant divided the exper-
iment in sessions of approximately 1000 stimuli, on their own ini-
tiative. The experiment was run in a quiet experimental room and
stimuli were delivered using Sennheiser’s HD 448 headphones.

ADAPTIVE STIMULUS-DELIVERY PROCEDURE
During the course of the experiment, the signal level was con-
stantly adjusted to ensure a correct response rate around 75%, as
in several previous classification image experiments (e.g., Gold
et al., 2000). Signal contrast must be strong enough to ensure
that the SNR will not severely affect the decision rule, but suffi-
ciently low so that noise influences the decision of the observer.
That is to say, that noise must be misleading on a sufficient
number of stimuli, without leading the observer to reply ran-
domly on the task. For this purpose, the SNR was varied from
trial-to-trial on the basis of a local rate of correct responses cal-
culated on a 10-trial window, with an adaptation of 0.2, 0.4, 0.6
or 0.8 dB for differences of 5, 10, 15, or 20% between intended
and actual scores (variations of the SNR were limited to the range
−20 dB to −0 dB; we systematically record the final SNR value
for one session and use it as starting value for the next session
before the adaptive algorithm takes over in adjusting the SNR).
However, in the following we assume that the SNR does not affect
the observer’s strategy for categorization, a point that will be
discussed in Discussion.

DERIVING AUDITORY CLASSIFICATION IMAGES
Each stimulus noise ni is characterized by its power spectro-
gram, whose components are entered as predictor variables in the
model. Power spectrograms were calculated with Matlab function
spectrogram, using a Short-Time Fourier Transform with a mov-
ing 512 points Hamming window and no overlap, resulting in
86.13 Hz frequency resolution and 11.6 ms temporal resolution.
Since the last 340 ms of the signal were almost silent, we limited
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our analysis to a time range of 0–0.34 s and a frequency range of
0–4048 Hz, thus ensuring that the size of the data-set would not
exceed computational limits. The resulting 46-by-30 matrix (fre-
quency bins by time bins) is reshaped into a 1380-by-1 vector of
time-frequency bins, labeled Xi. A similar treatment is applied to
both targets, resulting in vectorized power spectrograms T0 and
T1 (Figure 1).

More biologically-inspired time-frequency representations of
the noise, as a cochleagram, can replace the spectrogram for
deriving the CIm, in order to obtain a “higher-level” representa-
tion of the functional acoustic cues. Or more simply, we could
apply a logarithmic scale to the frequency axis to account for
the non-linear spacing of filter center frequencies, as it is done
in the STRF calculation. Nevertheless, in our case the aim was
only to replicate a known property of the speech comprehen-
sion system, which is more intuitive on a simple time-frequency
representation.

In general agreement with the literature on classification image
(for example Ahumada, 2002) we assume that the observer per-
forms the detection of acoustic cues linearly by template match-
ing, a longstanding model for decision making. First, an internal
decision variable di is computed by taking the scalar product of
the input with a weighting function w referred to as the observer’s
template, and adding a random variable εi representing the inter-
nal noise of the system (accounting for the fact that the observer
does not necessarily give the same response when presented with
the same stimulus twice). In (2), the errors εi are assumed to have
a zero mean symmetric distribution and to be independent from
trial to trial.

di = (
Xi + Tki

)T · w + εi (2)

Then the response variable is given by (3):

ri =
{

1 if di > c
0 otherwise

(3)

c is a fixed criterion that determines the bias of the observer
toward one alternative. Knoblauch and Maloney (2008) reformu-
lated this very simple model in terms of a GLM, by expressing the
probability that the observer gave the response ri = 1, given the

FIGURE 1 | Spectrograms of target-signals t0 (/aba/) and t1 (/ada/)

used for the vectorized spectrograms T 0 and T 1, on a logarithmic

scale (dB). Blue boxes indicate the second formantic transition (F2).

data Xi, in the case of presentation of the target number ki:

P(ri = 1) = �(Xi
T · β + ski) (4)

with � cumulative distribution function associated with ε, β the
classification Image, and s a two-level factor reflecting the influ-
ence of the target actually presented on the response. In line with
the psychophysics literature, we could assume that ε is taken from
a logistic distribution (a common choice for modeling binomial
data), and therefore the associated psychometric function � will
be the inverse of the logit function. It would still be possible
to use other assumptions, as a Gaussian distribution for ε and
as a consequence, the inverse of the probit function as �. Such
changes might have an impact on the model though it would be
presumably small.

The structure of Equation (4), with a linear combination of
parameters linked to the dependent variable via a psychometric
function, is the typical form of a GLM (Fox, 2008; Knoblauch and
Maloney, 2012). At this stage we could thus determine the values

of the model parameters θ =
{
β, s

}
that best fit the empirical

data, by simply maximizing the log-likelihood:

L
(
θ
) = log

(
P
(

r
∣∣∣θ, k, X

))
(5)

= log

(∏
i

P
(
ri

∣∣θ, ki, Xi

))

that is a natural measure of match between data and fit, assuming
statistical independence between responses ri. Thus, calculating:

θ̂ML = argmax
θ

L
(
θ
)

(6)

by a standard maximization algorithm (e.g., the built-in Matlab
function glmfit) would provide us maximum likelihood estimates
of the CIm, β̂ and of the stimulus factor s.

Unfortunately, these estimates would be presumably too noisy
to be decipherable. Indeed GLMs, as well as reverse-correlation,
when comprising a large number of predictors (1382 in this
example), are prone to overfitting, which means that the model
will describe the trial-dependent noise as well as the underlying
classification mechanism. Estimates of the observer’s template by
GLM can therefore be quite noisy, and the model will not be able
to generalize to novel data. For proper predictions of previously
unseen data, templates should not be determined by the specific
distribution of noise in trials used to fit the model, but rather
reflect the decision process of the observer.

One solution has been developed in the GLM frame-
work under the name “Penalized Likelihood,” which has been
widely used for estimating the receptive fields of single neu-
rons (Wu et al., 2006; Calabrese et al., 2011; Park and Pillow,
2011) and adapted to CIm by Knoblauch and Maloney (2008)
and later by Mineault et al. (2009). Another example of
using a similar method for an application in the auditory
domain can be found in Schönfelder and Wichmann (2012),
who modeled results from a classical auditory tone-in-noise
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detection task using this approach. Among the various R
or Matlab toolboxes available, we decided to use Mineault’s
function glmfitqp (http://www.mathworks.com/matlabcentral/
fileexchange/31661-fit-glm-with-quadratic-penalty) that allows
optimizing a GLM with quadratic penalty. The aim of this method
is to incorporate prior knowledge about the smoothness of the
intended classification image (which is equivalent to introduce
dependencies between adjacent predictors). To do so, we asso-
ciate with each value of the model parameters θ a probability
P(θ|λ) representing our a priori beliefs about the true underly-
ing template (in our case, a smoother classification image will be
more expected, and therefore have a high prior probability). This
prior is defined by a distribution and a set of hyperparameters
λ, as explained later. Then, instead of maximizing the likelihood

as before, we maximize the log of the posterior P
(
θ

∣∣∣r, k, X, λ
)

that takes into account the likelihood and prior information, as
evidenced with Bayes’ rule:

P
(
θ

∣∣∣r, k, X, λ
)

=
P
(

r
∣∣∣θ, k, X

)
· P
(
θ
∣∣λ )

P(r|k, X)
(7)

Therefore the Maximum A Posteriori (MAP) estimate of the
model parameters is given by:

θ̂MAP = argmaxθ log
(

P
(
θ

∣∣∣r, k, X, λ
))

(8)

= argmax
θ

log
(

P
(

r
∣∣∣θ, k, X

)
· P
(
θ
∣∣λ ))

= argmax
θ

[
log

(
P
(

r
∣∣∣θ, k, X

))
+ log

(
P
(
θ
∣∣λ ))]

= argmax
θ

[
L
(
θ
)+ R

(
θ
)]

The last equation can be seen as the same maximization of the log-
likelihood as before, with an additional penalty term, R

(
θ
)
, that

biases our estimate toward model parameters with higher a-priori
probability. The optimal estimate is a tradeoff between fitting
the data well and satisfying the constraints of the penalty term.
Therefore, a prior on smoothness will favor CIm with slow vari-
ations in time and frequency (but note that other types of priors
exist (Wu et al., 2006), e.g., implying assumptions on indepen-
dence (Machens et al., 2004), sparseness (Mineault et al., 2009;
Schönfelder and Wichmann, 2012), or locality (Park and Pillow,
2011) of the model parameters).

In agreement with the Matlab function we use, we chose our
smoothness prior to be a sum of two quadratic forms:

P
(
θ|λ1, λ2

) = λ1θ
TL

1
θ + λ2θ

TL
2
θ (9)

where L
1

is the Laplacian matrix along dimension 1 (time), L
2

the Laplacian matrix along dimension 2 (frequency) in the time-
frequency space (Wu et al., 2006). Thus, the quadratic form
θTL

D
θ provides a measure of the smoothness of θ over dimen-

sion D. As we do not know the appropriate importance of
smoothness along the time and frequency axis, we introduce two

hyperparameters (indeed the scale of smoothness in the spec-
tral and temporal dimensions are presumably unrelated) λ =
{λ1, λ2} that control the prior distribution on θ, and therefore
the strength of penalization. The absolute values of the hyperpa-
rameters (also called “regularization parameters”) have no clear
interpretation, as they represent the relative importance of qual-
ity of fit and smoothness. For large (>1) values of λ1 and λ2 we
put a strong disadvantage on sharp CIm, and for λ1 = λ2 = 0 we
recover the initial maximum likelihood solution.

The standard method for setting the value of the hyperparam-
eters is cross-validation (e.g., in Wu et al., 2006; Schönfelder and
Wichmann, 2012). This approach involves a partition of the data
between a “training” and a “test” set. For each given couple of
hyperparameters, we can estimate the model parameters on the
training-set by maximum a posteriori, as explained previously. It
thus becomes possible to assess how the model parameters would
generalize to an independent dataset, by comparing the predicted
responses on the test-set to the actual responses. When the model
predicts the most accurately unseen data, the strength of priors is
considered as optimal.

We determined one single couple of optimal hyperparameters{
λ1, opt, λ2, opt

}
by participant. More precisely, the selection of

λ1,opt and λ2,opt is performed on a model gathering together trials
on which signal 0 or 1 was presented, following the equation:

P (ri = 1) = �(Xi
T · β + b) (10)

This GLM relates strongly to that derived from Equation (4),
except that it does not take into account information about the
target signals that was actually presented at each trial (the two
level factor s being replaced with a constant term b). In particu-
lar this simple linear model cannot account for the fact that when
presented with a masked target ti the observer is more likely to
respond ri and as a consequence, it yields less accurate predic-
tions. Nevertheless, because the estimated template β̂ is very close
to that derived from Equation (4), this model provides a good
basis for estimating a common set of optimal hyperparameters,
which will then be applied in all estimations of CIm for this sub-
ject. To do so, we plotted the 10-fold cross-validation rate of the
model as a function of the hyperparameters {λ1, λ2} used for fit-
ting this model. The optimal hyperparameters

{
λ1, opt, λ2, opt

}
are found by choosing the models that yielded the best prediction
of responses to a new data set i.e., that correspond to a maxi-
mum of cross-validation rate. When the function exhibits several
peaks, the values are chosen to favor smooth weights along the
two dimensions. The same procedure was repeated for both par-
ticipants. In more simple terms, this technique yields to a form
of Automatic Smoothness Determination (Sahani and Linden,
2003) allowing us to apply smoothing in a principled fashion.

We assessed the statistical significance of the weights in
the resulting CIm by a simple permutation test. “Resampled”
estimates of the CIm were computed from 500 random re-
assignment of the responses to the trials (i.e., random permuta-
tion of the response vector r). We therefore obtained estimates of
the distribution of weights at each time-frequency bin, under the
null hypothesis of no effect of noise at this time-frequency bin.
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We used these estimated distributions to highlight weights signif-
icantly different from 0 (p < 0.005, two-tailed) in the actual CIm.

RESULTS
The SNR was manipulated across trials via an adaptive proce-
dure, in order to maintain the percentage of correct answers
roughly equal to 75% during the course of the entire experi-
ment. In consequence, variations of SNR provide an overview
of observers’ performances in the phoneme categorization task.
Figure 2A plots the evolution of SNR during the experiment and
the mean SNR for each participant, showing that there is no
strong effect of perceptual learning as a decline of SNR for the
same performance level over the course of the experiment. The
psychometric functions are therefore estimated on all available
data for each participant (Figure 2B). As noted by Eckstein et al.
(1997), linear observers such as the one described in Equations
(2) and (3) produce a linear relationship between signal con-
trast and detectability index (defined here as d′ = �−1 (PH) −
�−1 (PFA) with PH the proportion of response 1 when signal t1

was presented and PFA the proportion of response 1 when signal
t0 was presented). For the real data, such a linear relationship can
be observed in the range 2–10% signal contrast, supporting our
assumption of a (at least locally) linear model for the observers.
Furthermore, the small number of trials corresponding to very
high or very low contrast could also account for the non-linearity.

As explained in the Methods section, an optimal set of hyper-
parameters is chosen by plotting the cross-validation rate of the

FIGURE 2 | (A) Evolution of SNR across trials (mean SNR by blocks of 1000
trials) for each participant, and overall mean SNR (red dotted line). (B)

Psychometric function of each participant: detectability index d ′ (defined as
d ′ = �−1 (PH

)− �−1 (PFA
)

as a function of signal contrast (values
calculated on less than 20 observations are not included).

model derived from Equation (4) and fitted by MAP estimate
as a function of {λ1, λ2}. An example of resulting surface for
subject MH is shown on Figure 3, with a clear maximum at
λ1 = 3.16e-08, λ2 = 1e-08 (a similar pattern of cross-validation
rate is seen for the four other subjects). The low values of cross-
validation rate, ranging from 0.49 to 0.53, are explained by the
fact that the very simple model described in Equation (10) does
not take into account information about the target signal pre-
sented, which is critical for an accurate prediction of observer’s
responses. Nevertheless, it allows us to track how the calculated
template generalizes to new data sets, excluding predictors other
than noise. For low values of hyperparameters, the model is over-
fitted and cannot generalize to the “test” dataset, resulting in
prediction performances around chance level (50%). For high
values of hyperparameters, the classification image is flat and the
model always gives the same answer, which corresponds to the
response bias of the observer (in this case 52% of Michel Hoen’s
answers were “aba”). In between a couple of hyperparameters may
be found that maximizes prediction performances.

Figure 4A shows the CIm β̂ obtained by the GLM method with
smoothness priors, as well as the optimal values of λ1 and λ2 for
the three listeners. For each participants, the classification image
provides a measure of the strength of the relation between the
noise at different time-frequency locations and the speech iden-
tification scores. In that sense, the classification image may be
regarded as a measure of the contribution of each time-frequency
bin to categorization, with high absolute values for locations
at which the power of the noise influences the decision of the

FIGURE 3 | Prediction accuracy of the model (in terms of 10-fold

cross-validation rate) as a function of regularization parameters λ1

(x-axis) and λ2 (y-axis) in logarithmic scale, for one participant (MH).

Around are shown classification images obtained with different pairs of
regularization parameters (λ1, λ2) (n = 10000 trials for each estimate).
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FIGURE 4 | (A) Classification Image β̂ for each participants, estimated with
optimal smoothness hyperparameters λ1 and λ2 (n = 10000 trials for each
estimate). Weights are divided by their maximum absolute values. Boxes

corresponds to the position of the second formantic transition (F2) in the
original stimuli spectrograms. (B) Same as above except that non-significant
weights are shown in gray scale (p < 0.005, permutation test).

observer. As can be seen from Figure 4, CIm often exhibit both
positive (red) and negative (blue) weights corresponding to areas
where the presence of noise, respectively, increases or decreases
the probability of stimulus to be identified as signal t0 (/aba/)
(weights are divided by their maximum absolute value to pro-
vide a common basis for comparison). Figure 4B shows the same
classification image, but non-significant weights are represented
in gray tones (p < 0.005, permutation test), as explained in the
method section.

For a better understanding of these CIm, we ran a similar test
performed by an ideal template-matcher (Figure 5). This clas-
sifier is the optimal observer for the linear model presented in
Equation (2) and (3) and is defined by taking w = (T1 − T0)/K
with K a normalization constant (difference template shown on
Figure 5A), and c = 0. Note that as it is used by the template-
matcher as a linear weighting function, we represented it with
a linear scale, whereas speech spectrograms on Figure 1 are
classically represented using a logarithmic scale (dB). Since the
difference template corresponds to the difference between the
two target spectrograms, the template-matcher observer bases
its classification strategy on the time-frequency bins where the
spectrograms of the two signals differ most in terms of power
(corresponding in this case to the region of the onset of the first
formant, which appears in red on the difference template). As the
performances of the algorithm do not vary over time, the SNR for
stimulus presentation was set to −25 dB, for a resulting percent-
age of correct answers of 68%. The difference template and the
obtained CIm are plotted on Figure 5.

FIGURE 5 | (A) Difference template w used by the template matcher
(difference between spectrograms of the targets). (B) Estimated model
parameters for the template-matcher optimal hyperparameters λ1 and λ2

(n = 10000 trials). Weights are divided by their maximum absolute values.

The classification image obtained from the optimal observer
(Figure 5) is very different that those obtained from human lis-
teners (Figure 4), suggesting that the usage of acoustic cues by the
human speech perception system is suboptimal in this particular
example.

DISCUSSION
By providing insight into how a given noise distribution affects
speech identification, the GLM may help to better understand the
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perceptual mechanisms behind speech-noise interferences. With
the present study, we demonstrated that CIm obtained from the
categorization of natural speech signals, i.e., the phonemes /b/
and /d/ embedded in /aba/ and /ada/ logatomes, can offer insight
into the way in which the human speech perception system
achieves fast and efficient categorization of phonemes in noise. By
adapting the GLM with smoothness priors to an adaptive identifi-
cation task performed on speech stimuli, we have shown that CIm
are applicable to studies in the auditory modality and can be used
to identify relevant portions of speech.

AUDITORY CLASSIFICATION IMAGES FROM A PHONEME
CATEGORIZATION TASK
Because the optimal values obtained for the smoothing parame-
ters λ1 and λ2 are not the same for all participants, the calculation
yields smoother CIm for MH than LV, and SB (left vs. middle
and right panel on Figure 4). Nevertheless, a similar pattern of
weights is observed for both participants. If we map the CIm
obtained from our human listeners onto the original stimuli spec-
trograms (Figure 1), we can observe two main foci of high- and
low-value weights, located in the time-frequency domain exactly
over the second formant F2 (blue frames in Figure 4). More
precisely, our preliminary observations suggest that, unlike the
template-matcher, which bases its decisions on main energy dif-
ferences between the two signals, the human observers used for
categorizing /aba/ and /ada/ speech specific cues, namely the end
of F2 in the first vowel and the onset of F2, on the consonant,
just following the occlusion. This is in agreement with previous
findings by Liberman et al. (1954): they showed that the second
formantic transition can serve as a cue for classifying phonemes
into /b/ or /d/, by using synthetic speech and by modulating the
direction and extent of the second formantic transition. However,
they did not test all possible cues and limited their study to
manipulations of F2, leaving open the possibility that other por-
tions of the signal could also be identified as functional cues
for this categorization task. Our approach conversely takes into
account all possible acoustic cues which might be used in the cat-
egorization and thus the results provides stronger support for the
hypothesis that the second formantic transition is the only crucial
characteristic for performing the task.

The pattern consistently observed at each time-frequency loca-
tions of the second formantic transition, composed of a cluster of
positive weights below a cluster of negative weights, supports the
assumption that frequency information is coded in terms of rela-
tive difference across frequency bands (Loizou et al., 1999). When
the energy of the noise is concentrated around 2000 Hz during
the formantic transition, the second formant sounds higher than
it actually is, and therefore the consonant is more likely to be per-
ceived as /d/. On the contrary, a high noise power around 1500 Hz
biases the decision toward /b/. In both cases, this phenomenon is
strengthened by a similar distribution of the noise at the end of
F2 in the preceding vowel /a/. Indeed, the strong absolute val-
ues of weights around 0.075 s for frequencies between 1500 Hz
and 2200 Hz in Figure 4, indicates that the decision depends on
this region, even though it contains no useful information for
performing the task (in our experiment the first syllable was the
same for both stimuli because it was obtained by concatenating

the same utterance of /a/). A very similar pattern of weights has
been observed for a Vernier acuity task in the visual domain
(Ahumada, 1996), highlighting the fact that our phoneme cate-
gorization task could be seen as the detection of the alignment
of formants in time. In addition, the obtained CIm evidence the
fact that the estimation of the second formant by the auditory sys-
tem is a relative measurement, since the presence of noise masking
the position of the second formant in the preceding vowel influ-
ences the decision of the observer. This is in-line with theories
postulating phonemic perception as an interpretation of phonetic
movements and trajectories. Further work will be dedicated to
studying in details the relationship between classification image
and phonetic discriminations.

This simple example illustrates the fact that our method is
suitable for studying the processing of fine-acoustic cues during
speech categorization by the human speech perception system.
Indeed, the use of a GLM with smoothness priors as a statisti-
cal method for the estimation of CIm in the auditory modality
is a reasonable way of overcoming traditional limitations of this
methodological approach in the auditory modality.

First, this method allows the addition of prior knowledge
about the smoothness of the expected image. By exploiting the
dependencies between adjacent noise values, one can significantly
reduce the number of trials required to obtain a reliable classifica-
tion image. Since our goal here was to explore the possibilities of
the method, participants completed a very large set 10,000 trials,
in order to gather sufficient amount of information and data to be
able to run accurate simulations. Nevertheless, there is in fact no
need for so many trials to calculate a classification image. To get an
idea of the appropriate amount of data, we estimated the model
parameters at various stage of completion of the experiment for
participant Michel Hoen, and calculated their correlation with
the “overall” CIm (calculated on 10,000 trials) as a measure of
accuracy (Figure 6). It can be seen from this graphs that we
reached the level of r = 0.8% with approximately 6000 trials, and
therefore this amount of data can be considered as sufficient to
calculate a reliable estimate of the underlying template. On the
other hand, below 6000 trials the optimal set of hyperparameters
becomes very difficult to identify because the cross-validation rate
exhibits several peaks and a less typical profile.

Second, unlike the reverse-correlation method, the GLM does
not require the stimulus or the noise to be normally distributed.
Accordingly, it can efficiently measure CIm using noise-fields
with non-Gaussian distributions, such as the power spectrum
of an acoustic-noise, in a similar way to the calculations of
second-order CIm using GLMs (Barth et al., 1999; Knoblauch
and Maloney, 2012). It should be noted that we could also rely
on the Central Limit Theorem and assume that images are nor-
mally distributed, as long as the noise is not heavy-tailed, but
this approximation leads to less precise estimation and to far less
smooth CIm. In this experiment we used white noise in order to
mask equally acoustic cues at low and high frequencies; however,
it is known that the human auditory system does not perceive all
frequency octaves with equal sensitivity (Robinson and Dadson,
1956; Suzuki and Takeshima, 2004). One option could be to use
another spectral distribution that compensates for the weight-
ing function of the auditory system, like pink noise in which
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FIGURE 6 | Correlation between coefficients of the Classification

Images estimated on n trials and the “overall” Classification Image, for

participant MH. Examples of Classification Images are shown at 3000,
6000, and 10,000 trials.

all frequency octaves are assumed to be perceived with an equal
loudness.

As mentioned earlier, our approach based on GLM with
smoothness priors has the advantage that it does not make
any assumptions about the distribution of noise in the stimu-
lus, unlike the reverse correlation approach. Nevertheless, other
strong assumptions about how observers perform speech catego-
rization tasks in noise have been made or maintained and must
be discussed.

SPECTROTEMPORAL ALIGNMENT OF TARGETS
The first simple requirement for observing functional cues
involved in our identification task is the precise spectrotempo-
ral alignment of the two targets. As we want to know in which
time-frequency bins the listener is focusing, the acoustic cues of
interest must be at the same time-frequency locations on the spec-
trogram of the stimuli on which the CIm is based. If this is not
the case, the resulting CIm would probably exhibit two clusters
corresponding to the same acoustic cue, instead of one. If not
addressed, this issue could put into question the method, as this
alignment is not trivial for natural speech. Of course, we also
do not know in advance the functional cues which have to be
matched between the two targets. Two possible practical solutions
can be considered:

1) Forcing the temporal alignment of the targets by using syn-
thetic speech or by cross-splicing the constant parts of the
stimuli. In the above example the first syllable /a/ was the same

FIGURE 7 | Classification Images ̂β
0

and ̂β1 estimated on the trials where t0 (/aba/) or t1 (/ada/) was presented respectively (n = 5000 trials for each

estimate). Hyperparameters values are the same as for the “overall” Classification Images Figure 4. Weights are divided by their maximum absolute values.
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in the two targets. This is a very convenient solution as it also
ensures that participants would not rely on trivial non-speech
cues to perform the task, such as a delay in the beginning of the
second syllable of one target compared to the other. However
in some cases we do not want to manipulate the natural utter-
ances of the targets, and we will have to go with a second
option.

2) Calculating two separate “target-specific” CIm, based only on
trials where one target was presented. Therefore, we ensure
that for all stimuli considered the acoustic cues are at the same
time-frequency locations. This is done simply by optimizing
the GLM parameters on a subset of our data, the 5000 tri-
als where t0 or t1 are presented, with the same regularization
parameters as for the “overall” CIm (Figure 7). The result-
ing CIm β̂

0
and β̂

1
are of course noisier than previous ones,

because they each rely on the half of the data, but they are
helpful in checking that the position of functional cues does
not differ when participants are presented with one target sig-
nal or the other. The “target-specific” CIm will be discussed
in more detail in the next section. This last point raises the
broader issue of non-linearities in the processing of the input
stimuli.

NON-LINEARITY OF THE AUDITORY SYSTEM
Our model is derived from Equation (2) defining the decision rule
for a linear observer. As for all studies involving any classification
image technique, we modeled the real observer performing the

identification task as a template-matcher linearly combining the
input sound and a decision template to calculate a decision vari-
able. It should be noted, however, that information processing
throughout the human auditory system is obviously non-linear
(Goldstein, 1967; Moore, 2002).

A first type of non-linearity already mentioned occurs when
the listener’s strategy is not identical when targets t0 or t1 are
presented. This phenomenon can be revealed by estimating two
separate CIm β̂

0
and β̂

1
based on the trials where the target sig-

nals t0 or t1 were presented, respectively (Figure 7). Differences
between the two estimates for a given observer are generally inter-
preted as evidence for non-linearities in the auditory system, the
template used for detection depending on the input signal [Abbey
and Eckstein (2006)]. For all participants the critical patterns
of positive and negative weights show up at the same time-
frequency locations, although sometimes less clearly because they
are estimated with only 5000 trials. As expected, for the ideal
template-matcher case, β̂

0
and β̂

1
are very close because this sim-

ulated observer is actually implemented as a linear algorithm
involving a single template. Similarly, for real listeners, differences
between the estimated templates appear to be less visible than in
other studies involving a discrimination signal-present vs. signal-
absent task (Ahumada, 2002; Thomas and Knoblauch, 2005).
Note that in our experiment the amount of phase uncertainty is
reduced by the presentation of a signal in both conditions.

We additionally assumed here that non-linearities in the audi-
tory system may be locally approximated by a linear function

FIGURE 8 | Classification Images ̂β for conditions lowest SNR (min to

median SNR) or highest SNR (median to max SNR), estimated using

GLM approach with smoothness priors (n = 5000 trials for each

estimate). Hyperparameters values are the same as for the “overall”
Classification Images Figure 4. Weights are divided by their maximum
absolute values.
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within the SNR range studied, a hypothesis supported by the local
linearity of psychometric functions (Abbey and Eckstein, 2006).
To explore this assumption empirically, we estimated the model
parameters for all participants by taking into account only tri-
als with signal contrast in the linear part of their psychometric
function. The resulting CIm are very similar to those obtained
previously on the whole dataset.

Furthermore, even if higher-order computations are involved,
the actual mechanisms of phoneme categorization are very
likely to rely on time-frequency regions highlighted by our CIm
because, to some extent, noise in these regions predicts the
response of the participant. In that sense, the literature on visual
tasks suggests that even when the strategy used by observers is
clearly non-linear, CIm may still be informative about the time-
frequency location of the cues involved in the categorization
mechanism. As a second step, some of these studies investigate
specific non-linear effects to account for the observed divergence
from linearity in their results, such as spatial or phase uncertainty
(Barth et al., 1999; Murray et al., 2005; Abbey and Eckstein, 2006).

ADAPTIVE SNR
Another related theoretical issue of interest here relates to the use
of an adaptive-SNR method. When gathering together data from
the whole experiment in order to calculate a classification image,
we assume that the observer’s strategy for phoneme categoriza-
tion in noise does not change drastically with SNR. However, this
is somewhat unlikely as a number of neurophysiological stud-
ies have highlighted significant changes in cortical activity with
the level of acoustic degradation of speech sounds (Obleser et al.,
2008; Miettinen et al., 2010; Obleser and Kotz, 2011; Wild et al.,
2012). This led us to investigate the effect of SNR on the classifica-
tion image, by estimating the model parameters only on the half
of the dataset with the lowest SNR (from min to median for each
participant) and on the half of the dataset with the lowest SNR
(from median to max) separately (Figure 8). The result seems
to indicate a difference in processing within the categorization
mechanism: while for low SNR the estimated templates exhibits
stronger weights in absolute value on the first cue, for high SNR
participants appear to rely equivalently on both cues, maybe even
more on the second F2 transition. A simple explanation for this
phenomenon could be that, when the noise fully masks the sig-
nal, the only remaining indicator to temporally track the relevant
cues is the onset of the stimulus. Therefore, temporal uncertainty
is stronger on the latest cue, resulting in more dispersed weights
on the second F2 transition. This example underlines that cate-
gorization mechanisms in noise do depend on SNR level and that
a lower signal contrast can bias estimated weights toward earliest
cues. Further developments and studies will thus be dedicated to
studying the evolution of functional fine acoustic cues with SNR
value and also to adapting the methods in order to account for
this influence (limiting the allowed SNR range for example).

CONCLUSIONS
We have shown how an adaptation of a GLM with smoothness
priors provides a suitable and powerful framework to investigate
the way in which the human speech perception system achieves
fast and efficient categorization of phonemes in noise and to esti-
mate how human observers differ from ideal template matchers.

Further developments and improvements of this method can be
derived from the visual classification image literature (i.e., gener-
alizing to multiple response alternatives and rating scales, see Dai
and Micheyl (2010) and Murray et al. (2002)). Additionally, the
possibility of calculating CIm in non-Gaussian noise makes it fea-
sible to extend our method to more ecological situations as com-
plex as speech-in-speech listening situations for example (Hoen
et al., 2007; Boulenger et al., 2010); a situation that is well known
to cause particular challenges in certain speech-development
pathological conditions, for example dyslexia (Ziegler et al., 2009;
Dole et al., 2012). Further developments should also deal with the
issues of realizing and analyzing group studies.
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