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The habenula is a small but important nucleus located next to the third ventricle in front
of the pineal body. It helps to control the human reward system and is considered to
play a key role in emotion, showing increased activation in major depressive disorders. Its
dysfunction may underlie several neurological and psychiatric disorders. It is now possible
to visualize the habenula and its anatomical subdivisions—medial habenula (MHB) and
lateral habenula (LHB)—using MR techniques. The aim of this study was to further
differentiate substructures within human lateral habenula (LHB) using ex vivo ultra-high
field MR structural imaging, distinguishing between a medial part (m-LHB) and a lateral
part (l-LHB). High resolution T1w images with 0.3-mm isotropic resolution and T2∗w
images with 60-micrometer isotropic resolution were acquired on a 7T MR scanner and
quantitative maps of T1 and T2∗ were calculated. Cluster analysis of image intensity was
performed using the Fuzzy and Noise Tolerant Adaptive Segmentation Method (FANTASM)
tool. Ultra-high resolution structural MRI of ex vivo brain tissue at 7T provided sufficient
SNR and contrast to discriminate the medial and lateral habenular nuclei. Heterogeneity
was observed in the lateral habenula (LHB) nuclei, with clear distinctions between lateral
and medial parts (m-LHB, l-LHB) and with the neighboring medial habenula (MHB).
Clustering analysis based on the T1 and T2∗ maps strongly showed 4–6 clusters as
subcomponents of lateral and medial habenula.
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INTRODUCTION
The habenula (HB) is a small but important nucleus located next
to the third ventricle in front of the pineal body (Figure 1). It is
considered to play a key role in controlling emotion (Hikosaka
et al., 2008; Hikosaka, 2010), and its dysfunction may under-
lie several neurological and psychiatric disorders: Overactivation
is associated with depression (Morris et al., 1999; Sartorius and
Henn, 2007). The habenula is divided into a medial and lateral
habenula based on histological investigations (Herkenham and
Nauta, 1977, 1979), mainly receiving inputs from limbic and basal
ganglia forebrain structures through the stria medullaris and pro-
jecting via fasciculus retroflexus to dopaminergic, serotonergic,
and noradrenergic midbrain areas.

Herkenham and Nauta (1977) proposed a heterogeneous
architecture of the lateral habenula that included a medial part
(m-LHB) associated with the limbic system and a lateral part (l-
LHB) associated with the motor system. Diversity within lateral
habenula has also been reported by Iwahori (1977) and Andres
et al. (1999). Histology of the human brain has shown the divi-
sion into a medial and lateral habenula (Riley, 1943; Ranft et al.,
2010). Alterations of habenula volume associated with a cell loss
have been reported in studies investigating patients with major
depressive disorder both in vivo (Savitz et al., 2011) and ex vivo
(Ranft et al., 2010).

Few studies have investigated the anatomical complexity of
the habenula. However, these studies have mainly focused on the
histology of the rat and cat brain. At standard field strengths
(=3T) MRI of the habenula shows few internal details. The
habenula shares properties of both gray and white matter that
only become visible at a high enough field strength and spatial
resolution.

It has recently been shown that human habenula and its
subdivisions—medial habenula (MHB) and lateral habenula
(LHB)—can now be clearly visualized using MRI (Strotmann
et al., 2013). This study aimed to use ex vivo ultra-high field MR
structural imaging to further differentiate between volumetrically
different subregions within the lateral habenula (LHB), and also
to distinguish between m-LHB and l-LHB.

MATERIALS AND METHODS
DATA ACQUISITION
MRI experiments were performed on a 7T whole-body MR scan-
ner (MAGNETOM 7T, Siemens Healthcare, Erlangen, Germany)
with a custom-built miniature loop coil for post mortem brain
samples (Figure 2). To this end, one post mortem brain was fixed
in 4% formalin within 24 h after death (female, 65 years old, car-
diac failure). Formalin fixation of brain tissue decreases relaxation
parameters (Tovi and Ericsson, 1992; Dawe et al., 2009), which
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FIGURE 1 | The Habenula, the small rein, sits next to the third ventricle

above the thalamus prior to the posterior commissure. Together with
the pineal body the habenula is regarded as the epithalamus. The habenular
commissure connects the habenula on both hemispheres and forms a
trigone in front of the posterior commissure [published in Strotmann et al.
(2013)].

FIGURE 2 | Miniature loop coil with post mortem sample.

needs to be considered when choosing parameters for MR image
acquisition.

These post mortem results are consistent with in vivo data
obtained from volunteer human subjects (Strotmann et al., 2013),
given the poorer spatial resolution available in vivo.

The coil consisted of a single loop made of tin-plated semi-
rigid coax (coax diameter 2.2 mm) with a 13-mm inner diameter
(Figure 3). The sample was placed in a plastic pipette centered in

FIGURE 3 | Custom-built miniature single loop coil.

the loop. The cylindrical shape of the pipette avoided unwanted
B0 distortions.

The loop was tuned to 297.2 MHz and matched to 50
Ohm with variable capacitors (Thin-Trim 9402 series, Johanson
Manufacturing, USA) that allowed the coil to be adjusted to dif-
ferent loads. Fixed value capacitors were connected in parallel to
compensate for the small quality factor of the trimmer capacitors.
A bazooka balun was used to suppress unwanted cable waves. The
supporting frame was made of polypropylene, a low loss dielectric
material. A separate Transmit/Receive-Switch (Stark Contrast,
Erlangen, Germany) was used for interfacing with the scanner.

We acquired high resolution maps of T1 with 0.3-mm isotropic
resolution using an MP2RAGE sequence (Marques et al., 2010)
(TR = 3000 ms, TE = 2.61 ms, TI1 = 150 ms, TI2 = 900 ms, 4
averages). For T∗

2 contrast we obtained data with 60-µm isotropic
resolution using a 3D FLASH (Fast Low Angle Shot) multi-echo
gradient echo sequence (GRE) with the following parameters
(TR = 54 ms, 288 slices, flip angle = 25◦, 9 averages). Echo times
(TE) used were 10, 20, 29.9, 39.8, and 54 ms.

IMAGE ANALYSIS
MRI images and brain sections were compared with
macroanatomical landmarks (Mai et al., 2008), and FSL
(FMRIB Software Library, University of Oxford 2006, http://
www.fmrib.ox.ac.uk/fsl) and the software package MIPAV
[Medical Image Processing, Analyzing and Visualization (http://
mipav.cit.nih.gov/, version 5.4.4)] from the National Institute
of Health (NIH) with its plug-ins were used for further analysis
of the data. Given the high degree of inter-subject variability
and asymmetry of the structure, defining subcompartments of
the habenula properly required an accurate delineation of the
complete tissue for the data set. Boundaries were defined based
on the structural identification of anatomical features (Riley,
1943; Mai et al., 2008).

The use of different contrasts provided additional informa-
tion regarding the properties of habenular tissue. For this purpose
the MRI parameters T1 (using the MP2RAGE sequence) and T∗

2
(using a GRE sequence) were quantitatively mapped.

Initially, we selected four anatomical landmarks (on the brain
tissue surface close to the habenula, as indicated in Figure 4)
to register the T1 map to the higher resolution T∗

2 image, and
minimized the distance between landmarks selected in the two
images with a least square algorithm (Arun et al., 1987). This
approximation was further improved by an optimized automated
registration algorithm (Jenkinson and Smith, 2001).
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FIGURE 4 | Human Habenula ex vivo (axial view, from left to right):

Maps of T1 and T2∗ show distinct habenular subcompartments: lateral

habenula (LHB) with a lateral part (l-LHB) and a medial part (m-LHB) and

medial habenula (MHB). In comparison, histological stain section of human
(axial view) and rat brain (Andres et al., 1999) (coronal view). Anatomical
landmarks used for registration as indicated by pink dots.

FIGURE 5 | Habenular clustering based on image intensities in T1 (MP2RAGE) and T∗
2

(GRE) images of ex vivo data. K = 2, 3, 4, 5, 6, 7 clusters (from
left above to right below).

To improve the accuracy of the registration, the inversion
recovery image with the longest inversion time (INV2) of the
MP2RAGE data was co-registered to the T∗

2 image using the
same registration procedure and the results were compared. The
inversion recovery image with the second inversion time shows
much better contrast-to-noise ratio across different tissue types.
Therefore, we registered the T1 map to the results of the INV2 to
the T∗

2 data.
As extraneous tissue might contaminate the clustering results,

we created a habenula mask based on the higher resolution

T∗
2 image, used both modalities to cross-check the mask and

applied to both contrasts. To distinguish between subcompart-
ments within habenula, images were segmented by the Fuzzy
and Noise Tolerant Adaptive Segmentation Method (FANTASM)
tool (Pham and Prince, 1999) of the TOADS-CRUISE plugins
for MIPAV (http://www.nitrc.org/projects/toads-cruise/). For a
given input number of tissue classes, this tool classifies each pixel
of the images as belonging to a particular class, and further esti-
mates inhomogeneity, attributing a membership value from 0 to 1
for each class (Bazin et al., 2007). After the number of clusters has
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been selected, the intensity centroids, gain fields, and member-
ship values are calculated. We performed this analysis for k = 2,
3, 4, 5, 6, 7 clusters within the habenula.

RESULTS
Figure 4 shows, in axial sections through the habenula, computed
parameter maps of the relaxation times T1 and T∗

2. Lateral habe-
nula (LHB) and medial habenula (MHB) are clearly visible. The
habenula can be visualized on both maps and therefore shows sig-
nal characteristics of both gray and white matter. Subdivisions of
lateral habenula, medial (m-LHB), and lateral (l-LHB) can be dis-
tinguished. The medial part (m-LHB) shows a higher contrast
from the surrounding brain tissue and differs from l-LHB and
medial habenula (MHB), and we compared to the histology of
human and rat brain (Riley, 1943; Andres et al., 1999).

Figure 5 shows color-coded images based on image intensities
of all voxels within the habenular nucleus based on T1 and T∗

2
contrast for a given number of clusters. The weight of each clus-
ter is represented by an arbitrary gray-white intensity scale where
the lowest intensity is represented by the darkest shade and the
brightest shade indicates high mean values. It depicts the differ-
ence between clusters when a Gaussian distribution of intensity
in each cluster is assumed.

Anatomic details present in the ex vivo T1 and T∗
2 contrast

MR data become more apparent, and show several compartments
within the habenula. As the number of clusters increases, we find
a distribution of intensities in the lateral habenula (LHB) that is
more diverse than in medial habenula (MHB).

When 4 to 6 clusters are assumed, similar patterns are revealed
and the clustering found appears to be less dependent on the
number of clusters. The spatial configuration of the clusters found
is also more consistent.

Figure 6 shows the mean intensity values of T1 and T∗
2 for each

clustering with its standard error as an ellipse and the distribution
of the mean intensities. Mean intensity values for each clustering
reveal different subdivisions in lateral and medial habenula.

DISCUSSION
Ex vivo ultra-high resolution 7T MR imaging of the human habe-
nula provides sufficient signal-to-noise and contrast-to-noise
ratio to enable a clear visualization and identification of the lateral
and medial nuclei of this important brain component.

Our data revealed heterogeneity of the lateral habenular (LHB)
nuclei as suggested by Herkenham and Nauta (1977), Iwahori
(1977), and Andres et al. (1999). A lateral and a medial part (l-
LHB, m-LHB) can be clearly discriminated, and distinguished
from the neighboring medial habenula (MHB).

Furthermore, advanced registration procedures and clustering
methods showed subcomponents of lateral habenular nucleus as
well as in medial habenula based on the contrast in quantitative
maps of T1 and T2∗. Between 4 and 6 clusters having different
image intensities within the habenular nucleus can be observed,
which distinguish between subdivisions of the lateral and medial
habenular nuclei.

Lateral and medial habenula have previously been shown with
histology in the human cadaver brain, and several subdivisions
were shown in lateral and medial habenula in the animal brain.

FIGURE 6 | Mean intensity values of T1 and T2∗ with standard error for

each cluster (k = 3, 4, 5, 6, 7) as an ellipse (left) and distribution of

mean intensity values for T1 (blue) and T2∗ (green) (right) and

subdivisions of habenula as marked by lines and indicated by M for

medial habenula (MHB) and L for lateral habenula (LHB).
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For the first time, we can observe subdivisions of lateral and
medial habenula in the human brain. Using MRI, in particular,
we can confirm heterogeneity of lateral habenula, which have
previously been reported in the rat and cat brain.

Our findings are in line with previous findings based on struc-
tural and diffusion data of the human habenula that showed
in vivo a subcompartment between medial and lateral habenula
(Strotmann et al., 2013).

The foci of this study were high-field post-mortem MRI, the
analysis of these images, and the potential for transfer of these
findings for the interpretation of in vivo MRI scans. Because of the
unique ability of MRI to visualize brain structures in three dimen-
sions, ex vivo MRI is becoming increasingly important (e.g., Leuze
et al., 2013). Future studies will include detailed correlation of
these findings to histology.

Our ex vivo results should help to interpret in vivo scans of
the habenula region, when the increasing well-understood reduc-
tion in relaxation parameters after fixation has been taken into
account.

Use of a small-animal MR system will provide results with
still higher spatial resolution. However, to facilitate comparison
with future in vivo experiments, we performed this study using
a 7T whole-body system, which enabled easy transfer of scan-
ning parameters and sequences. The loss of SNR that might occur
when using small tissue blocks and whole brain RF coils was
avoided by the use of a custom-built miniature single loop coil.
Similar image quality within reasonable scanning time and with
(0.15 mm)3 resolution may be achievable in vivo, with optimized
scan parameters and a 64-channel phased array RF receive coil.
In addition, simultaneous slice excitation pulse techniques using
only 2D phase encoding might be used for this purpose.

Our analytical approach reveals only the clustering of habe-
nular tissue based on prior assumptions (k = 2–7 clusters). We
compared clustering patterns and found that assuming 4 to 6
clusters gives similar findings, which appeared to be less depen-
dent on the number of assumed clusters. Our analysis approach
is based on this prior assumption, whereas a probabilistic cluster-
ing approach such as k-means clustering might be less prone to a
potential bias, but harder to evaluate, especially due to the small
sample size (N = 1).

The layered pattern we found is consistent with Iwahori (1977)
description of the neuronal organization in the cat, where MHB
was found to consist of small compactly arranged neurons of two
types (piriform and fusiform shape), and LHB contained four dif-
ferent types of neurons (large, medium, small sized projections
neurons, and small cells with short axons). Andres et al. (1999)
described MHB in the rat brain as containing small, densely
packed neurons, m-LHB with smaller cells and fewer myelinated
fibers, l-LHB consisted of larger neurons and more myelinated
fibers forming the lateral root of fasciculus retroflexus.

This finer parcellation of the habenula may be particularly
useful in patients suffering from major depression where altered
function and structure of the habenula, including cell loss and
reduced volumes, has been reported (Ranft et al., 2010; Savitz
et al., 2011). Inhibition of activity in the lateral habenula via
pharmacology or deep brain stimulation (Sartorius et al., 2010;
Winter et al., 2010) is thought to decrease the symptoms of
depression toward remission.

Medial lateral habenula (m-LHB) is considered to be asso-
ciated with the limbic system, and its lateral part (l-LHB) is
thought to be linked to the motor system (Herkenham and Nauta,
1977).

The habenula’s connectivity to the limbic emotional system
and the motor system might be crucial to gain a deeper under-
standing of its role in psychiatric and neurological disorders. In
major depression, the illness is described as a combination of dif-
ferent symptoms, mainly characterized by a negative mood which
absorbs all energy and involves motor, vegetative, and cognitive
symptoms. A sudden remission of treatment-resistant patients
with major depression has been reported after DBS of lateral
habenula by Sartorius et al. (2010). Therefore, future investiga-
tions and pharmacological research should target the lateral and
medial part of lateral habenula and its role in this “core illness
circuit” in major depression.

These findings may also help to guide fMRI studies of the
habenula which explore the role of lateral habenula in healthy
brain function and in disease.
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