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INTRODUCTION

Traffic accidents occur more frequently during deceleration than during acceleration.
However, little is known about the relationship between brain activation and vehicle
acceleration because it has been difficult to measure the brain activation of drivers
while they drive. In this study, we measured brain activation during actual driving using
vectorbased functional nearinfrared spectroscopy. Subjects decelerated from 100 to
50 km/h (speed reduction task) and accelerated from 50 to 100 km/h (speed increase task)
while driving on an expressway, in the daytime and at night. WWe examined correlations
between average vehicle acceleration in each task and five hemodynamic indices: changes
in oxygenated hemoglobin (AoxyHb), deoxygenated hemoglobin (AdeoxyHb), cerebral
blood volume (ACBV), and cerebral oxygen exchange (ACOE); and the phase angle k
(degrees) derived from the other hemoglobin (Hb) indices. AoxyHb and ACBV reflect
changes in cerebral blood flow, whereas AdeoxyHb, ACOE, and k are related to variations
in cerebral oxygen metabolism. Most of the resulting correlations with specific brain sites,
for all the indices, appeared during deceleration rather than during acceleration. Faster
deceleration resulted in greater increases in AdeoxyHb, ACOE, and k in the prefrontal
cortex (r < —0.5, p < 0.01), in particular, in the frontal eye field, and at night, it also resulted
in greater decreases in AoxyHb and ACBV in the prefrontal cortex and in the parietal lobe
(r> 0.4, p<0.01), suggesting oxygen metabolism associated with transient ischemic
changes. Our results suggest that vehicle deceleration requires more brain activation,
focused in the prefrontal cortex, than does acceleration. From the standpoint of the indices
used, we found that simultaneous analysis of multiple hemodynamic indices was able to
detect not only the blood flow components of hemodynamic responses, but also more
localized frontal lobe activation involving oxygen metabolism.

Keywords: actual driving, supplementary eye field, outdoor brain activation, acceleration, deceleration,
interregional correlation, phase angle, vehicle acceleration

The most common cause of traffic accidents between vehicles in

In recent years, neuroscience research related to vehicle driving
has become popular. Brain function during driving encompasses
responses to external stimuli such as visual stimulation and vehi-
cle acceleration, in addition to internal processing involved in
functions such as motor control and decision making. Functional
neuroimaging during driving examines multiple intricate factors
such as perception, cognition, thinking, and motor functions. It
is important for road safety measures in the Intelligent Transport
Systems (ITS) field to separate these factors and identify the
regions of interest in the cerebral cortex for each of them.

Kato et al. (2013) and Yoshino et al. (2013) demonstrated
that areas of the brain that are activated during acceleration
were significantly different from those activated during decel-
eration in actual road experiments. That study suggested that
brain activation during deceleration is higher than activation dur-
ing acceleration; and this led us to investigate in more detail
the relationship between brain activity and vehicle acceleration.

Japan is the rear-end collision (approximately 38.5%) (Institute
for Traffic Accident Research and Data Analysis, 2011). Rear-end
collisions are caused by deceleration that occurs too late. It is pos-
sible that this is related to differences in brain function between
acceleration and deceleration. However, no studies have yet exam-
ined brain responses during vehicle acceleration and deceleration
in actual road driving.

Since there has been very little investigation of brain activ-
ity during actual road driving, the kind of responses that can
be expected is still unclear. We thus decided to use fNIRS
vector-based analysis, which is capable of explaining all the pos-
sible variations in the ratios of concentration changes in oxyHb
and deoxyHb (Kato, 2006, 2007). This is a method that dis-
plays compositely the hemodynamic response dues to changes in
both oxyHb and deoxyHDb on the same vector coordinate plane.
Oxygenation and blood volume changes reflecting neural activity
cannot be properly evaluated using the conventional analysis of
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either oxyHb or deoxyHb alone. In vector-based analysis, a cere-
bral blood volume (CBV) axis and a cerebral oxygen exchange
(COE) axis are generated from an oxyHb and deoxyHb orthogo-
nal coordinate plane, and the phase of vectors on this vector plane
are evaluated (Yoshino and Kato, 2012; Sano et al., 2013), increas-
ing the possible indices of brain activity. We thought it would be
possible to use this method to evaluate brain activity during actual
expressway driving from various perspectives.

We therefore investigated the relationship between brain
regions and hemodynamic indices that increased or decreased
in relation to calculated vehicle acceleration (m/s?) during tasks,
using vector-based functional near-infrared spectroscopy (fNIRS)
in a vehicle in an actual road experiment. This study aimed to
extract brain responses and indices that are related to vehicle
acceleration and deceleration by recording changes in cortical
hemodynamic responses during driving by normal adults both
during daytime and at night.

METHODS

SUBJECTS

Right-handed twelve healthy adults participated in this study
(eight males and four females; average age, 33.3 & 4.5 years). The
subjects had operational experience on expressways and ordinary
roads on a daily basis. The subjects had no history of men-
tal or central nervous illnesses, and they took no medications
on the day of the experiment. The subjects were comfortable
in the experimental situation because they had previously par-
ticipated in other actual expressway driving research (Yoshino
et al., 2013) while wearing the fNIRS system probes. Written con-
sent was obtained from the participants before enrollment in the
study, and the protocol was approved in advance by the ethics
committee at KatoBrain Co., Ltd. The subjects’ average length of
driving history was 11.8 = 5.8 years. Their frequency of driving
was 6.1 £ 1.6 times / week, and their frequency of expressway
driving was 4.5 = 6.5 times / month. Only two subjects had expe-
rienced an accident (neither accident involved another vehicle or
any personal injuries), and the average number of accidents was
0.2 £ 0.4. The average number of traffic violations was 1.3 £ 1.3
times, mostly for speeding. Since recruitment of the subjects was
based on the conditions of age, right-handedness, and frequency
of driving on a daily basis, the subjects’ genders, their driving
histories, and their histories of violations and accidents were
completely random.

EXPERIMENTAL FIELD AND TEST VEHICLE
The experiment was performed in the Okitsu district, Shizuoka
Prefecture, Japan, on a section of the Shin Tomei Expressway
immediately before it entered service (Yamamoto et al., 2012;
Kato et al., 2013). Installation of signage, lighting and so on had
already been completed, and so there were no problems with the
safety of vehicle travel. For further safety, no vehicles were present
other than the test vehicle on the experimental course. Guard per-
sonnel were located at each point on the experimental course, and
they could immediately contact the test vehicle with a transceiver
in any unexpected contingencies.

The experimental course was 2875m long. It was almost
straight, but included a gentle left and right curve (R = 5000,

both). The slope of the course was almost flat, but there were
uphill and downbhill gradients of 2.0%. The test vehicle traveled in
the left lane (3.75 m in width) in accordance with Japanese traffic
regulations for lane use in two lanes. There was no artificial light-
ing provided on the experimental course, either in the daytime or
at night.

An ordinary van, Hiace, which is made by the Toyota
Motor Corporation (Japan) and is super-long with a high-roof
specification, was used in this experiment. The vehicle was a two-
wheel-drive, gasoline-powered vehicle with a four-speed auto-
matic transmission. A global positioning system receiver and a
vehicle speed pulse counter were attached to the test vehicle, to
record information on vehicle position, speed, and acceleration.
Power was supplied to the fNIRS equipment by connecting a
DC/AC inverter to the battery of the vehicle.

EXPERIMENTAL PROCEDURE

The tasks included a speed reduction task of deceleration from
100 to 50km/h and a speed increase task of acceleration from
50 to 100 km/h. The speed increase task was performed imme-
diately after the speed reduction task (Figurel). One trial
consisted of these two driving tasks, and six trials each were
performed in the daytime and at night. Start and stop posi-
tions were provided on the course, and the subjects performed
the two tasks at their own pace, with no cues on the course.
After receiving their instructions and before putting on the
fNIRS probes, the subjects performed 1-3 practice drives for the
daytime and nighttime trials. The day and night experiments
were performed on different days and the order of the exper-
iments (day or night) was randomized between the subjects.
The average duration of the speed increase task (acceleration)
was 16.8 == 3.3 s, and the average duration of the speed reduc-
tion task (deceleration) was 21.1 £ 8.0s. The average ratio of
acceleration time to deceleration time for all the subjects was
0.90 + 0.30.

fNIRS MEASUREMENTS AND REGISTRATION

A multichannel fNIRS system (FOIRE-3000, Shimadzu
Corporation, Japan) was mounted in the vehicle and used
to measure hemodynamic responses. The equipment irradiated
three wavelengths of NIR light (780, 805, and 830 nm) to the
cerebral cortex, and monitored changes in the hemoglobin (Hb)
concentrations. Sampling intervals for measuring changes in Hb
concentration were set to 70 ms.

Speed reduction Speedincrease
task task

50

Vehicle speed (km/h)

Sixtimes

0
Time (s)

FIGURE 1 | Experimental tasks. Each subject performed 6 daytime trials
and 6 nighttime trials on the experimental course. The tasks included a
speed reduction task of deceleration from 100 to 50 km/h and a speed
increase task of acceleration from 50 to 100 km/h.
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The fNIRS device was tightly secured to the vehicle using two
bars installed behind the driver’s seat and a hook on the floor of
the vehicle. The probe line was also attached to the bars behind the
driver’s seat. Probes were attached to the subject’s head in a way
that allowed for moderate changes in driving posture. To prevent
noise due to sunlight, the front and rear of the device, and the
subject’s head were covered with black cloth after the probes were
attached.

Measurement areas were located on both sides of the prefrontal
cortex, and on the motor cortex and the parietal cortex; the occip-
ital lobe was excluded for the safety of the subjects (Figure 2A).
Forty-eight channels were set up using 16 irradiation and 16
detection probes. The distance between irradiation and detection
probes was 3 cm.

Confirmation of the position of each measurement point
was done by magnetic resonance imaging (MRI), using a
3-Tesla 3D-T2-weighted MRI system (Philips Co., Achieva 3.0
Quasar Dual 3.0T-MRI), in which the subject probe attach-
ments were fitted with registration markers. The sampling
conditions used the spin-echo method with an echo time of
247 ms, a repetition time of 2700 ms, image size of 250 x
250 pixels, a slice thickness of 1.0mm in the sagittal direc-
tion, and an interslice gap of 0 mm. As Figure 2B shows, the
positions of the probes were confirmed for all of the mea-
sured areas based on the locations of the registration markers.
Figure 2C shows the Brodmann areas (BA) having the highest
correspondence with each channel, from the MRIs of all the
subjects.

ANALYSIS

The vector approach

In the blood vessels, changes in oxygenation and blood volume
occur in response to neural activity, and changes in the concentra-
tions of both oxyHb and deoxyHD are involved in this response.
To detect changes in both oxygenation and blood volume, the
following vector analysis method was used.

OxyHb and deoxyHD have different chemical properties (para-
magnetic or diamagnetic) that are due to differences in the
bonding of oxygen molecules (Pauling and Coryell, 1936). Taking
this into consideration, an orthogonal vector coordinate plane is
set up, defined by oxyHb (AO) and deoxyHb (AD) axes (Kato,
2006, 2007). As Figure 3 shows, rotating this AO/AD vector plane
45 degrees counterclockwise results in an orthogonal vector coor-
dinate plane comprising a (AO + AD) axis and a (AD — AO)
axis. A vector (AO + AD) can be defined as a cerebral blood vol-
ume (ACBV) vector, and a vector (AD — AO) can be defined
as a cerebral oxygen exchange vector (ACOE). A positive value
for ACBV indicates locally increasing ACBV and a negative value

AD
90°

180°

(-135°)

_900

FIGURE 3 | Definition of the vector coordinates. Polar coordinate plane
for the analysis of cerebral oxygenation and blood volume. The relationship
between cerebral oxygen exchange (ACOE) and cerebral blood volume
(ACBV) can be detected by vector trajectories.
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FIGURE 2 | Measurement sites and the locations of the probes.
(A) Head probe attachments and channel numbers. (B) Positioning of the
probes was confirmed using MRI. (C) Dashed curves represent the
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schematic boundaries of the Brodmann areas that were confirmed by
MRI. Straight lines connecting the emitters and detectors indicate
channel positions.
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for ACBV indicates decreasing ACBV. A positive value of ACOE
indicates hypoxic change from ACOE = 0, and a negative value
of ACOE indicates hyperoxic change. The relationship among
the four axes of AO, AD, ACBV, and ACOE is described by the
following square matrix:

AO+AD \ (1 1) (AO\ _(ACBV W
<—AO+AD)_<—11)<AD>_<ACOE)

AO\ _1(1-1)(ACBV @)
AD) 2\11 ACOE
These can be expanded to obtain ACBV and ACOE as follows.

Acpy — AP+ A0) 3)

V2

(AD — AO)
ACOE = ————— 4
7 (4)

The phases (octants) on the vector plane described above provide
a quantitatively defined representation of the degree of oxygen
exchange; the phase of a vector is defined by the angle k (degrees),
which is a ratio of AD to AO, and it reflects the strength of oxygen
metabolism. k is the angle between a vector and the positive AO
axis, and it is determined as follows:

k = Arctan <Q> (5)
AO

( ACOE
= Arctan

45° (—135° < k £ 225°
ACBV) + ( - )

k = 0° is on the positive AO axis, and coincides with the oxy-
gen density of arterial blood. An increase in k is defined within
the range of increase in AD or ACOE (0° £ k < 235°), and
a decrease in k is defined within the range of decrease in AD
and ACOE (—135° < k < 0°). An increase or decrease in k thus
indicates a change in oxygen demand.

Data processing and statistics

The AD and AO data were subjected to low-pass filtering at
0.1 Hz to remove any high frequency components. For each of
these two indicators, the average changes per second among the
tasks were determined for each channel. ACOE, ACBV, and
k were calculated using these data. In this process, the actual
changes for each task were calculated by setting the levels to zero
at the beginning of each task.

Average vehicle acceleration (m/s?) during each task was deter-
mined by Equation (6). Positive values indicate average vehicle
acceleration during speed increase tasks, and negative values
indicate average vehicle acceleration during speed reduction tasks.

Average vehicle acceleration (6)
= (initial velocity — final velocity)/time
Analyses of correlations (Spearman’s rank correlation coeffi-

cient) between average vehicle acceleration and each hemo-
dynamic index were performed. Analyses of interregional

correlations (Spearman’s rank correlation coefficient) within
each hemodynamic index were also performed. These tests were
applied separately to each of the daytime and nighttime exper-
iments. The data used for analysis was a total of 70 trials in
the daytime and 70 trials in nighttime. Two trials each in the
daytime and nighttime experiments were excluded because Hb
monitoring was not successful. The significance level was set to
5%. Correlation coefficients that were higher than +0.4 were
evaluated.

RESULTS

AVERAGE VEHICLE ACCELERATION

Table 1 shows average vehicle acceleration during the two tasks.
Negative values indicate deceleration. There were no significant
differences between daytime and nighttime for either of the
tasks.

CORRELATIONS IN THE VEHICLE SPEED REDUCTION TASK

Figure 4 shows mapping images of the correlations between aver-
age vehicle acceleration and each of the hemodynamic indices
in the speed reduction task. The results divide into significant
negative and positive correlations according to the indices used.
Significant negative correlations were observed for ACOE, AD,
and k (p < 0.01). Significant positive correlations were observed
for ACBV and AO (p < 0.01).

Negative correlations in the vehicle speed reduction task

Table 2 shows correlations of —0.4 or lower in the speed reduction
task. The greater the deceleration, the more ACOE, AD, and k
increased. These correlations were observed only in the frontal
lobe (BA10, BA9, BA8 and BA6), and none were observed in the
parietal lobe.

In the speed reduction task, high negative correlations were
observed between ACOE and vehicle acceleration in the medial
BA8 (daytime: r = —0.545, p < 0.001; nighttime: r = —0.670,
p < 0.001). In the nighttime results, in addition to the negative
correlations observed in the medial BA8, negative correlations
increased in the peripheral regions of the left BA8 (Ch. 26), the left
BA9 (Ch. 20), and the left BA6 (Ch. 29) (—0.622 < r < —0.613,
p < 0.001). These correlations during the nighttime tasks were
also observed with AD and k (AD: —0.661 < r < —0.543, p <
0.001; k: —0.596 < r < —0.431, p < 0.001). Negative correla-
tions with vehicle acceleration were also observed with ACOE
and k at night in the medial BA10 (Ch. 3) and in the left BA10
(Chs. 4 and 9) (ACOE: —0.698 < r < —0.604, p < 0.001; k :
—0.614 < r < —0.539, p < 0.001).

Table 1 | Average vehicle acceleration.

Tasks Vehicle acceleration (m/s2) ¢t p

Day time Night time

Speed reduction task —0.75+0.27 —0.76 +0.30
0.86+0.18 0.85+0.16

0.182 0.856 (n.s.)

Speed increase task 0.291 0.772 (n.s.)

n.s., not significant.
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FIGURE 4 | Correlations in the speed reduction task between vehicle
acceleration and each of the brain activation indices. (A) Correlation maps
showing correlations between vehicle acceleration and each of the
hemodynamic indices in the speed reduction task. (B) Correlation diagrams

Vehicle acceleration (m/s?)

06 05
.. -
L o, .
w 03 tos o 025 3'.?,?
) 0% . @ 3
@ %2 =] 0 %y @08
S ¢ Y A& G 0 0° o SxSis
0 ° ““ o [
- iyu At S R
(@ oo ° . ° (@) .'%Q‘;e. °
< 03 I <025 o
.
- * °
06 0.5
2 15 4 05 0 2 15 1 05 0

O Daytime _®_ Nighttime

from the medial BA8 (Ch. 25) and the left BA10 (Ch. 9) showed marked
correlation with vehicle acceleration. Vehicle acceleration correlated
negatively with ACOE and positively with AO. Correlation coefficients were
higher at night than in the daytime.

Positive correlations in the speed reduction task

Table 3 shows correlations 0.4 or more in the speed reduction
task. The greater the deceleration, the more ACBV and AO
decreased. Activation occurred during the daytime tasks mainly
on the periphery of the medial BA8 (r = 0.464, p < 0.001); and
during the nighttime tasks, in the medial and the left BA8 and
the area surrounding them (0.436 < r < 0.654, p < 0.001) and
in both the right and left BA10 (0.486 < r < 0.674, p < 0.001).
Positive correlations were also observed for ACBV in both the
right and the left BA10 at night (0.422 < r < 0.601, p < 0.001).

CORRELATIONS IN THE SPEED INCREASE TASK

Figure 5 shows mapping images of the correlations between aver-
age vehicle acceleration and each of the hemodynamic indices in
the speed increase task. Table 4 shows the correlations of 0.4 or
more in this task.

This task did not divide into positive and negative correla-
tions depending on the index used. There were no correlation
coefficients greater than £0.5 in the speed increase task, except
for ACBV in BA46. The only reproducible correlations found in
either the daytime or nighttime tasks were in the left BA46. In the
left BA46 (Ch. 5), AO demonstrated a negative correlation with
vehicle acceleration in both the daytime and nighttime tasks (day-
time: r = —0.465, p < 0.001; nighttime: r = —0.412, p < 0.001).
The more rapid the acceleration, the more AO decreased in the
left BA46.

INTERREGIONAL CORRELATIONS WITH THE SUPPLEMENTARY EYE
FIELD

Figure 6 shows mapping images of the correlations between
responses in the supplementary eye field (medial BA8, where
there was a high correlation with vehicle acceleration in both the
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Table 2 | Negative correlations in the speed reduction task between
vehicle acceleration and the brain activation indices.

Table 3 | Positive correlations in the speed reduction task between
vehicle acceleration and each of the brain activation indices.

Ch. ACOE AD k Ch. ACBV AO
Day Night Day Night Day Night Day Night Day Night
BA10 Med. 3 —0.604* —0.597* BA10 Right 2 0.434* 0.594* 0.512*
Left 4 —0.663* —-0.614* 7 0.489* 0.486*
9 —0.698* —0.5639* 8 0.459*
_ Left 4 0.601* 0.674*
BA9 Right 13 —0.493 9 0.422*% 0.650*
Left 20 —0.613* —0.661* —0.462*
BA9 Left 20 0.498*
BA8 Med. 25 -0.545* —-0.670* —0.457* —0.603* —0.596* 21 0.419*
Left 26 —0.613* —0.603* —-0.431*
BA46 Right 1 0.476* 0.436*
BA6 Left 27 —-0.413* —0.424*
29 —-0.408* —0.622* —0.543* —0.540* BA8 Med. 25 0.464* 0.654*
Left 26 0.617*
*Correlations of r < —0.4 were all significant at p < 0.01.
BA6 Med. 30 0.484*
daytime and nighttime tasks) and responses in the other areas, Left 27 0.489* 0.528*
during the speed reduction task. Table 5 shows the number of 29 0.650*
channels with correlations of 0.4 or more with the medial BA8
Interregional correlations with k were identified in 4-6 chan-
A . . .. BA7 Med. 40 0.410*
nels (daytime and nighttime tasks). For the other Hb indices, the
Left 44 0.406* 0.414*

number of correlations with the medial BA8 ranged from 11 to 23
channels. Particularly for AO and ACBYV, localization was poor.

For k in the daytime speed reduction task, positive correla-
tions with the medial BA8 were identified in the left BA8 (Ch.
26; r = 0.415), the left BA6 (Ch. 29; r = 0.657), the medial
BA10 (Ch. 3; r = 0.415), and the left BA10 (Ch. 4; r = 0.446)
(p < 0.01). These correlations were higher at night (0.477 < r <
0.741). Correlations also occurred in the area surrounding the
left BA10 (Ch. 4; r = 0.630) and in BA9 (Ch. 20; r = 0.533)
(p < 0.01).

DISCUSSION

RELATIONSHIP BETWEEN CHANGING VEHICLE SPEEDS AND BRAIN
ACTIVATION

Correlations between the hemodynamic indices and vehicle accel-
eration were found to be higher in the speed reduction task, and
lower in the speed increase task. In the speed reduction task,
there were negative correlations between vehicle acceleration and
the indices ACOE and k (that is, ACOE and k showed greater
increases during faster deceleration). Because ACOE and k are
indicators of change in oxygen metabolism, this suggests that
oxygen metabolism increased during rapid deceleration of the
vehicle.

Areas that typically exhibited greater increases in oxygen
metabolism during vehicle speed reduction were BA8 and its sur-
rounding area (including BA9 and BA6), which are involved in
eye movement (Fukushima et al., 2000, 2002; Pierrot-Deseilligny
et al., 2004). The field of view is narrower when the vehicle is
driven at a high speed, while it spreads gradually, approaching a
steady state when the vehicle speed decreases. BA8 controls side-
to-side eye movements, and vergence eye movements responsible
for depth perception (Gamlin and Yoon, 2000). The element of

*Correlations of r < —0.4 were all significant at p < 0.01.

vergence eye movements is particularly important in fast vehi-
cle traveling, but a more balanced ratio between the two types
of eye movements would be required in slow vehicle traveling.
This suggests that a spread in the direction of eye movement
control occurs along with the spread in the field of view that
occurs during rapid deceleration, and the activation of BA8 pos-
sibly increases at that time. In contrast, a possible reason for the
low correlation between vehicle acceleration (positive accelera-
tion) and the activation in BA8 during the vehicle speed increase
task is that the acceleration of the vehicle results in a narrowing of
the field of view, and the direction of the control direction easily
becomes fixed in one direction.

Changes in vision enter the driver’s brain as movement of the
optic flow. It can be hypothesized that the increase in oxygen
metabolism in BAS8 results from the optic flow that is derived from
changes in vehicle speed. The relationship between BAS8 and the
optic flow may be a key point in future research, as one of the
regions of interest in the neuroimaging research on the driver’s
brain.

During nighttime driving, there were more correlations in the
area surrounding BA8 than during daytime driving, and there
were also more correlations between vehicle deceleration and
oxygen metabolism in BA10, which is involved in executive func-
tion. During rapid deceleration at night, enhanced attention, or
increased awareness of one’s visual field and adjustments to one’s
eye movements may be more necessary than in the daytime.
BA10 is known to be activated more in dual tasks (Baddeley and
Della Sala, 1996). Vehicle deceleration at night requires control of
the vehicle speed on a dark road without artificial lighting, and
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FIGURE 5 | Correlation maps showing correlations between vehicle acceleration and results from each of the hemodynamic indices in the speed

increase task. There were no striking correlations.

Table 4 | Correlations in the speed increase task between vehicle
acceleration and each of the brain activation indices (p < 0.01).

Ch. ACOE ACBV AO
Day Night Day Night Day Night
BA9 Left 16 —0.445*
20 —0.443*
22 -0.416* 0.454*
BA46 Left 5 —0.544* —0.465* —0.412*
BA7 Left 44 0.436* 0.461*

*Correlations of r < —0.4 were all significant at p < 0.01.

in addition, the useful field of view at night is narrower than
in the daytime. It is thus likely that increased involvement of
BA10 in deceleration at night occurs because the driver’s atten-
tion must be allocated to a greater extent to both visual and motor
control. Additional differences between daytime and nighttime
driving may also exist in sites that were not included in our
measurements.

INTERREGIONAL CONNECTIVITY AND THE DIFFERENT BRAIN
ACTIVATION INDICES

Interregional correlations between brain activation in BA8 and
BA10 in both the daytime and at night were shown by the angle
k. Correlations with vehicle acceleration, however, were observed
in BA8 only during the day and in both BA8 and 10 at night. This
suggests the possibility of a functional connectivity between BA8

and 10 regardless of the presence or absence of a correlation with
vehicle acceleration. Anatomically, in addition to BA8, the frontal
eye field also includes BA6 and BA9 (Goldberg et al., 1991). This
could explain why correlations were higher with the areas sur-
rounding BA8: BA6 (Ch. 29) and BA9 (Ch. 20). BA10 has been
considered to be a separate area from BAS8, and the detection of
functional connectivity between these areas is thus a new finding.
Further investigation of this point will be necessary.

The present study demonstrated that the identification of
relationships between local brain activation differs according
to the hemodynamic index used. Localized interregional rela-
tionships were shown by the angle k (degrees), which reflects
variation in oxygen metabolism. The relationships shown by
ACBV and AO, however, covered most of the prefrontal cor-
tex. Hemodynamic responses in the blood vessels contain an
oxygen metabolic component and a blood flow component.
Differences in ACBV reflect the blood flow factor, and differ-
ences in ACOE reflects the oxygen metabolism factor. In other
words, a hemodynamic index must include both indicators that
reflect oxygen metabolic relationships and indicators that reflect
vascular relationships. These factors are determined by the ratio
of the variations in deoxyHb and oxyHb, and this is the ratio
k on which the concept of phase is based. In the results of this
study, the use of ACBV and AO reflected vascular relation-
ships, and ACOE and k were likely reflected oxygen metabolic
relationships.

To date, fNIRS studies have frequently been conducted using
time series correlations of oxyHb to detect functional connectiv-
ity (Homae et al., 2010). Increases in oxyHb, however, are related
to the inflow of arterial blood, and thus do not necessarily reflect
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FIGURE 6 | Correlation maps showing interregional correlations
between responses in the supplementary eye field (*), where there were
high correlations with vehicle acceleration during in both daytime and

nighttime trials, and the responses in other areas, in the speed
reduction task, using k and AO. k showed localized areas of correlation,
while AO showed broad correlations in the prefrontal cortex.

Table 5 | Number of channels showing positive correlations with the
medial BAS8 (r > 0.4).

k AD ACOE ACBV AO

Day Night Day Night Day Night Day Night Day Night

BA10 2 3 3 6 2 5 5 6
BA9 1 5 1 6 6 9 6 8 6
BA46 1 1 1 1 3 2
BA8 1 1 1 1 2 1 2 2 2
BAG 1 1 4 1 2 1 6 3 3 4
BA4 1

BA3 1 1

BA7 2 1 2

BA40 1 1

Total 4 6 m 3 15 15 22 19 23 20

increases in neural activity (Kato, 2004). Consequently, because
these correlations based on oxyHb cannot distinguish actual acti-
vation from vascular networks in the scalp or the brain surface,
the possibility that vascular relationships have been overestimated
as functional connectivity cannot be denied. Skin blood flow are
likely to be incorporated into measurements of oxyHb (Takahashi
etal., 2011; Kirilina et al., 2012), and thus the use of phase, based
on the angle k, has been proposed as a solution (Sano et al., 2013).
In future research, the presence of differences in functional brain
imaging based on these indices will need to be addressed as a
technical and physiological issue.

Furthermore, in the present study we examined correlations
using variation per second within the tasks, and this is another

issue that it will be necessary to reconsider, with a view toward
time series correlations in the future.

THE SIGNIFICANCE OF NEUROSCIENCE FINDINGS IN ITS

Since research on the actual expressway driving is still in its
infancy, the brain scientific findings are obviously still insuffi-
cient in the field of ITS as it relates to expressway construction
and management. In particular, there is little basic knowledge
about influences on the brain from the behavior of the vehicle in
actual highway driving. There has been a simulation experiment
on expressway driving using fMRI (Graydon et al., 2004), but it
does not include the actual physical driving operations, and the
field of view is different from that in actual road conditions. From
the viewpoint of actual safety measures and expressway construc-
tion and management, the authors believe that the observation of
brain activity in actual road experiments is essential.

As indicated in the introduction, it is a well-known fact that
more accidents occur during deceleration than during accelera-
tion, but the physiological reasons for this are not known. Our
findings show that brain activation involved in voluntary eye
movement control and in executive function is likely to increase
while the driver is decelerating rapidly, especially at night. As these
kinds of findings accumulate, it is possible that traffic safety mea-
sures can be developed that would help to increase or decrease
brain activation during deceleration, by such means as redesign
of deceleration lanes, or warning systems in places where sudden
deceleration is likely to occur.

The correlations we found between prefrontal cortex activity
and vehicle acceleration, do not necessarily imply a causal rela-
tionship. Time-course analysis will be required to clarify many
issues in the relationship between the human brain and vehicle
operation, including causality.
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CONCLUSION

This study demonstrated that prefrontal cortical activation
increased with faster deceleration during actual road driving. This
means that strong brain activation is required in situations when
a driver has to brake rapidly. If the driver’s prefrontal cortex
does not work well during vehicle deceleration, the risk of acci-
dent may be increased. We also found that localized prefrontal
cortical activation can be detected with good reproducibility by
the simultaneous analysis of multiple hemodynamic indices with
vector-based fNIRS, which makes it possible to detect both oxy-
gen metabolic relationships and vascular relationships in the
evaluation of brain activation.
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